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Abstract—This paper argues for a standardized ontological
representation of the factors influencing the progress of wildfires,
such as weather conditions and landscape characteristics, with
the explicit goal of driving dynamic simulations combining pre-
existing knowledge and, possibly conflicting, field observations.
We review previous work to emphasize the absence of solu-
tions able to cope with wildfire simulations that need to be
dynamically rerun as the phenomenon evolves, in the harsh,
sparsely connected environments of megafires. We argue that an
ontology-based approach for modeling the wildfire’s environment
is the most suitable one to feed data to a decentralized and
dynamic simulator and propose an ontology for this purpose. We
also discuss the inevitable issue of inexact and conflicting field-
submitted data and their implications for wildfire simulations.

Index Terms—Wildfire, Ontology, Simulation, Geoinformatics.

I. INTRODUCTION

Over the past few years, we have experienced an alarming
growth in wildfire activity around the globe. Extreme weather
conditions, driven by climate change, are setting the fuse to
megafires that can burn out of control, threatening human
lives and destroying infrastructure. Even though more and
more resources are committed to fighting these megafires,
the truth is that existing approaches are not enough. To cope
with megafires, the allocation of firefighting resources must
prioritize the areas where they are most effective, being more
threatened by fire spread. Fortunately, considerable scientific
effort has been invested on modeling, understanding and
predicting wildfire behavior. Breakthrough research in the 50s
and 70s led to key publications describing wildfire spread, like
Rothermel’s fire spread model [1], [2]. Since then, scientific
knowledge has been expanded, and wildfire behavior can now
be simulated with increasingly accurate models.

A wildfire behavior prediction model can be an extremely
valuable tool, but even the best model can be a giant with feet
of clay: it is not the inherent accuracy of the model used, but
the use of improper input data that can cause a simulation to
fail in its predictions of the actual spread of a fire. Modeling
a wildfire’s environment is challenging, as it requires both
scientific and empirical knowledge. Estimating, validating and
processing the factors that influence fire behavior is a process
subject to change over time, as the phenomenon is evolving.
For example, wind measurements will differ from area to area
depending on the surroundings (tree foliage, hills, etc.) and due
to fire-induced weather phenomena [3]. Even the composition
and mass of available forest fuel can change over time, as it
is consumed by the fire. In addition, eyewitness observations

of conditions in the field may fail to recognize the exact type
of forest fuel, due to the different knowledge backgrounds or
other cognitive barriers of the observers [4].

To simulate the spread of a wildfire as accurately as
possible, we need to combine pre-existing data (e.g., from
GIS systems) and data dynamically generated on the field,
either due to the availability of more detailed observations
(e.g., drones surveying a hard to reach area, due to a nearby
fire) or due to changing conditions (e.g., change of forest fuel
as the fire progresses). Such data may be partially conflicting,
since different observers at different vantage points may not
have a perfect understanding of the underlying situation (due
to unknown terrain, smoke, cloud cover, etc.) and may not
be available on time (due to partial disconnections from the
network in hard to reach areas). What we need then, is a
unified way to express all these time-dependent and, possibly,
conflicting data, feeding our fire prediction model.

We argue that the best way to achieve this goal is a stan-
dardized ontology specifically targeting wildfire simulations;
it may be compatible to some extent with existing ontologies,
so as to allow data sharing, but it will also have to cover
areas where other ontologies are lacking. By standardizing
this ontology, we will be able to create tools to manipulate
data coming from the field and reconcile them against each
other (e.g., conflicting reports on where the fire front is),
allowing the simulation to take into account as much data
as possible. Furthermore, data produced during a fire will be
more amenable to later analysis if they use a standardized
ontology, allowing researchers to fine-tune both their models
and the tools exploiting them. In this paper we propose such
an ontology, which is being co-developed with our dynamic
wildfire simulation tools.

The outline of the rest of this paper is as follows. In
Section II we motivate our ontological approach and outline
the challenges faced, while in Section III we critically review
existing ontologies related to the problem area. In Section IV
we present our proposed wildfire simulation ontology and
the rationale for its development, while in Section V we
summarize our contributions and discuss future work.

II. WHY AN ONTOLOGICAL APPROACH?

Ontologies are a well-established form of information for-
malism and representation; they have been applied to a variety
of domains where knowledge acquisition and sharing is re-
quired. The term “ontology” involves the process of explicitly
specifying a conceptualization [5]. It signifies a set of concepts
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Fig. 1. The same concept may be assigned to different hierarchical structures.

and objects, plus the relationships between them, describing
the knowledge of a field, an application or a knowledge
base [6]. To ensure that the concepts are clearly and correctly
interpreted, a set of ontological commitments (agreements to
use a common vocabulary consistently) are specified in [6].

The introduction of a strict formalism and the structures
needed to accurately describe the objects involved and their
relationships, introduce complexity and may lead to misun-
derstandings. For example, in the case of SOKNOS [7], the
authors mentioned that domain experts (firefighters) found its
terminology quite irritating, as it did not match their own
perspective and colloquial language. A formalized, hierarchi-
cal structure holding ontological information must serve a
reasoning mechanism, but in this case it was not aligned with
the vocabulary and concepts users were comfortable with.

As an example, when modeling the environment of a typical
wildfire, the most crucial entity to identify is the “forest.” This
term may have different meanings (polysemy) depending on
the educational, cultural and legal background of the person
using the term. A definition derived from ecological science
may be: “a forest is the ecological system consisting of biotic
and abiotic elements which interact with it and is covered
with trees for more than 20% of its area.” An administrative
definition approaches the term differently: “forest is the area
within the administrative boundaries of a forest service, with
or without trees.” Finally, a simpler definition can be derived
by examining the land cover of an area: “forest is the area
with dense cover of trees or other plants.” [6] The advantages
of one definition over the other are not clear. When a user
needs to model a forest in a computer simulator, the most
appropriate way to draw its boundaries is to follow the land
cover definition, but the point here is that there is no single
way to describe the concept, because users are biased by their
personal beliefs and knowledge backgrounds.

Simulating the behavior of a wildfire requires not only
identifying where a forest is located, but what type of plants
and trees it consists of, their height, density, etc., in order
to map the area to its corresponding fuel model. A prob-
lem arises when we try to implement a hierarchy between
concepts, and their corresponding classes, related in a non
strictly defined way. For example, Figure 1 (left) depicts a
hierarchy between land cover; an alternative hierarchy (right)
may be formed between fuel type models. Another common
issue when building hierarchical structures of related concepts
is mixing subtype-supertype relationships with part-of (part-
whole) relationships in the same hierarchy. Figure 2 depicts
a hierarchy which mixes these types of relationships between
the concepts involved.

According to Kavouras et al [6], the main causes of
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Fig. 2. A hierarchical structure with relationships of different types.

conceptual and taxonomic misinterpretations are the different
perspectives between stakeholders, the different training or
methodology applied, cultural and social factors and cognitive
diversity. The last factor is related to the personal beliefs,
assumptions and biases leading each individual to understand
the concepts involved by utilizing knowledge acquired from
their previous training. As a result, modeling the multifaceted
and complex environment of a wildfire with an ontology is
a challenging problem. In this context, we can classify the
most fundamental challenges that must be overcome to create
a standardized wildfire simulation ontology, as follows.
1) Ontology-related challenges:

o Verifying an ontology-based model: verification requires
deep understanding and technical awareness of the knowl-
edge domain that it models.

o Expanding and updating a model: trying to update or
expand an ontology may lead to constraint violations or
misleading information.

« Unrealistic perspectives of the environment: a model tries
to represent the environment, but it is limited by its
creator’s knowledge barriers and cultural biases.

2) Human behavior-related challenges:

o Terminology and polysemy: stakeholders may interpret
the same term with different meanings, or misunderstand
a key concept.

o Ambiguous data: when users submit data required by
the model (observations), they may provide ambiguous,
incorrect, conflicting or noisy data.

A key issue is that users tend to believe that the model and
the data they have is a perfect representation of the environ-
ment (wildfire) and is not subject to changes, modifications or
improvements. This is clearly untrue in a dynamic environment
with imperfect knowledge. Our proposed model tackles this
challenge by explicitly acknowledging that user observations
may be conflicting and time-dependent; this requires com-
bining and merging the diverse individual perceptions to
an updated version of the model (see Section IV). Storing
multiple independent representations of the same entity allows
the use of interpolation techniques (e.g., weighted averaging,
consensus modeling, metaheuristic algorithms), to merge user
inputs in a statistically robust way. The aggregated geometry
is more likely to converge toward the true spatial ground truth,
as it integrates the most probable components of each input,
rather than prematurely forcing agreement. Additionally, it
requires less resources, since new inputs (due to continuous
data evolvement) can be compared directly to all prior rep-
resentations, without requiring a costly re-topologizing of the
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dataset. In the context of a mobile, decentralized wildfire sim-
ulation platform that relies on crowdsourced user data—where
uncertainty is inherently present—prioritizing accuracy and re-
playability over minimal storage constitutes a robust method-
ological choice and defensible design principle.

III. RELATED WORK

Modeling geospatial data is a well-studied field of geoin-
formatics, with a wide range of real-world practical applica-
tions. Under the devastating effects of wildfires, researchers
understood that in order to model the complex phenomena
involved during a wildfire and help elevate firefighting efforts,
a digital geographical representation of wildfire components
should be applied. A plethora of GIS-based approaches have
been proposed for monitoring and early warning, management
of firefighting resources and modeling the wildfire’s envi-
ronment. The technologies utilized for data acquisition and
digitization range from simple user entry, accessing remote
databases, remote sensing from satellite photographs to, even,
crowdsourcing. The majority of the approaches are client-
server oriented, while others may rely on other topologies.

Although many proposals exist, we focus below on those
that tackle the problem from an ontological perspective. They
adopt the approach of not only describing the ontologies
involved, but also making cognitive connections between
them, which leads to a degree of knowledge extraction. We
summarize the proposals covered in Table L.

A. OntoFire

OntoFire [8] is a geo-portal service in which users can both
retrieve and publish geospatial information regarding past and
active wildfires. Access to the service for publishing is limited
to authorized users with a strong scientific background. The
key feature of OntoFire is its search and navigation mecha-
nism which implements both traditional spatial and semantic
queries. The portal can be accessed via a web interface. To
accurately describe a wildfire and its components in OntoFire,
a hierarchy of semantically linked classes is introduced, with
metadata represented in the ISO 19155 format. At the upper
level of the hierarchy, the abstract class “Geo Information Re-
source” is placed and semantically linked classes underneath
it are connected as described in an RDF framework.

B. Onto-Safe

Onto-Safe [10] is a framework for gathering and inter-
preting information from heterogeneous geospatial data col-
lected from diverse sources, such as social media, sensors
and user submitted content. The data is driven through a
knowledge base engine and delivered to decision makers in
the field or in command posts. A key contribution is gathering
user requirements (derived from a fire manager’s needs) and
mapping them to Competency Questions (CQ). The structure
of ontology representation and knowledge base engine must
support these CQs, since they are crucial in identifying the
involved firefighting tactics. CQs include details about weather
conditions, the affected area and firefighting mission related

information. Knowledge is represented with OWL 2 and the
reasoning mechanism is implemented as a set of Shapes
Constraint Language (SHACL) queries linked with the CQs.

C. SoKNOS

SoKNOS [7] aims to handle natural disaster management.
Resources from different sources and services are annotated
with ontologies to facilitate interoperability and visualiza-
tion of data. There is a core ontology and specific domain-
based ontologies representing resources, damages, application-
specific ontologies, etc. The key contribution of SOKNOS is
its mechanism of semantic annotation of the data involved in
the implementation of the software. The project implements a
dynamic mechanism able to map at run time the corresponding
ontological category of a given data object.

D. BeAWARE

The BeAWARE project [11] implements an ontology aiming
to support a decision support system for a Crisis Information
Management system. In the context of the project, various
stakeholders and domain experts expressed their views in order
to gather user requirements (mapped to CQs, as in Onto-Safe)
and establish a common terminology and format. The ontology
developed under BeAWARE represents natural disasters and
their associated climate conditions, based on user-entered and
sensor data and incident management related data.

E. SIADEX / BACAREX

BACAREX is part of the STADEX [13] project, implement-
ing an ontology developed especially for forest firefighting.
Hence, it can describe not only typical information (like
incident coordinates, weather data, etc.) but also operational
related metadata, such as the sections of the incident with their
respective radio frequency. On the other hand, it covers only a
subset of the ontologies developed for general purpose natural
disaster incidents. Part of the project is the planning module
which can generate an attack plan (chronologically ordered
sequence of actions) for the incident.

IV. A WILDFIRE SIMULATION ONTOLOGY
A. Limitations of existing approaches

The ontology-based approaches proposed in the literature
share a variety of similarities, but none of them can be used
unmodified when nearly real-time data from a fire incident
are used to conduct a mostly accurate wildfire simulation,
especially when stakeholders suffer from limited / poor net-
work coverage. These approaches are designed to tackle
problems related to natural disasters and the management of
rescue and suppressing missions. Stakeholders, natural risks,
meteorological conditions, topological data, and so on, are
mapped to classes with corresponding attributes. Semantic
information is represented as linked class instances. Authoring
of such classes can be done using the Resource Description
Framework (RDF) and the Web Ontology Language (OWL).
This has the advantage that we can query RDF data initially
stored in flat files using SPARQL [14] in a SQL-like manner.
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TABLE I
ONTOLOGY BASED APPROACHES FOR MODELING NATURAL DISASTERS AND/OR WILDFIRES.
Publication Main Purpose Retrieval / Reasoning  Ontology Language Architecture
OntoFire [8] Geo portal RQL [9] RDF / ISO 19115 Client-server (WEB)
Onto-Safe [10] Forest fire fighting SHACL OWL 2 Generic Framework
SoKNOS [7] Incident management JQE / F-Logic DOLCE / OWL Generic Framework
BeAWARE [11] [12] General purpose crisis management SPARQL OWL 2 Generic Framework

SIADEX / BACAREX [13] Forest fire fighting

HTN planning Protégé (OWL) Client-server (WEB)

However, these solutions are not intended for a simulation
environment, therefore they do not meet some simulation-
specific requirements, especially for dynamic simulations. One
important problem in a wildfire context is that the data
gathered in the field are subject to a user’s judgment and
personal knowledge about the evolving phenomenon. Poor
judgment, fragmentary knowledge, and lack of experience
may lead to datasets of poor quality, with limited value to
simulation software. Therefore, the ontology must take into
account that data entered in the field can be contradictory.

Another problem is that a wildfire is a natural phenomenon
which evolves dramatically over time. Even minor changes to
parameters (such as wind direction) may have a huge impact
in the final outcome. Due to the phenomenon’s fast-changing
nature, any information gathered is subject to regular updates
over time. For example, areas with vegetation (combustible
fuels) are displaced by burnt areas, fuel humidity declines due
to radiation from flames, fuel discontinuities may be formed
from firefighting activities, etc. Therefore, the ontology must
take into account the time of each observation.

Finally, the client-server architecture adopted by most solu-
tions is a limiting factor when we need to exploit the collective
knowledge of users deployed in the field. Not only the connec-
tivity in the wildfire area is questionable, but each individual
stakeholder cannot interpret and model the incident and its
surroundings at their full extent. Firefighters deployed in the
field have the experience, the knowledge and the proximity to
identify, describe and model the required parameters, unlike
in previous solutions where information is spread top-down
by a small group of experts or stakeholders. This implies that
updated information must spread to other nearby users quickly;
but, due to the evolving connectivity of users, each user may
have only partial knowledge of the situation.

B. Proposed approach

We approach the problem of representing semantic infor-
mation regarding wildfire behavior from the perspective of its
utilization for dynamic simulations. This imposes additional
requirements regarding sharing, relaying, reusing and integrat-
ing that information to a variety of platforms and devices used
during the simulation. In the literature we find two different
modeling approaches. At a “higher ontological level,” creators
aim to represent the real world as accurately as possible. At
a “lower ontological level,” creators focus on data processing,
linking and standardizing the data involved in a formal and
well-defined way. Due to the inevitable limitations introduced
by the nature of mobile phones, which we intend to use as
the main platform for gathering data, exchanging data and
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Fig. 3. Digitization of the same forestry area by different users.
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running simulations, we adopt a low-level approach, focusing
on simplicity and reusability of data.

While choosing a standardized format (RDF / stRDF)
to store and process geospatial data (utilizing SPARQL /
stSPARQL queries) is the preferred approach in the litera-
ture [15], we argue that a less resource-intensive approach
will be more appropriate for our scenario. We propose instead
a GeoJSON representation of the ontologies as the simplest,
most resource-inexpensive and easy to implement approach.
Although the most obvious solution would be to use a topo-
logical structure holding the required ontologies, we claim
that a spaghetti vector model is a more appropriate way
to incorporate the uncertainty introduced by human inputs.
Specifically, in a typical vector model representation, a poly-
gon depicting a forestry area is described by the same edges as
adjacent polygons. On the other hand, the same polygons in a
spaghetti vector model, even if they share the same edges, will
have them listed twice. While this requires more storage and
processing, it allows diverging user inputs for each area, which
can then be aggregated, leveraging the introduced uncertainly.

C. Managing ambiguous data

As mentioned before, the proposed implementations in the
literature assume that one or a few stakeholders map the
real world to the corresponding ontologies. We introduce
instead a decentralized architecture, in which any user can
contribute and distribute new knowledge to other users. As a
consequence, we expect that the same ontology (let us assume
a forestry area with a given type of vegetation) will be modeled
by different users with different experience, knowledge and
even under different time frames. Hence, user inputs will prob-
ably be ambiguous, but not necessarily incorrect. That also
introduces an additional problem to deal with: we cannot map
the same ontology 1-to-1 to all users involved. Poor human
judgment, poor GPS accuracy and fast changing conditions
may all lead to different representations of the same area.

Let us examine the case where two users (e.g., firefighters)
deployed in the field submit, by drawing polygons on a mobile
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Fig. 4. Wildfire behavior factors, adapted from: [16]

map, two forestry areas with different fuel types, to feed
the simulation engine. Chances are that the final polygons
submitted will not be the same, leading to conflicts. For
example, Figure 3 shows the first user observation (red line)
on the left side; the second user observation (blue line) is
added on the right side, leading to some unclear areas (silver
polygons). The final representation of the area will be an
aggregation of the two inputs, which will lead to a more
accurate modeling of border areas, with no clear classification
and boundaries. As more user observations are collected, the
model will become more accurate. Assuming that most users
submit correct data, good quality inputs will outvote poor ones
by aggregating and interpolating the resulting dataset.

Since different observations of the same area can be sub-
mitted by users, we must determine if two observations refer
to the same object or a different one; if they refer to the
same object, we must decide which object parameters will be
used in the simulation, therefore an efficient and lightweight
(due to the use of mobile devices) method of interpolation is
needed. We have recently proposed ant colony optimization
based algorithm that normalizes the fuzziness of user’s inputs
and generates the geospatial primitives required for the simu-
lation [4]. Our algorithm also takes into account the recency
of each observation, since in an evolving phenomenon like a
wildfire, objects are bound to change over time (for example,
the fireline moves and areas are burnt).

D. A minimal ontology

An in-depth analysis of the literature was required in order
to understand the mechanism and the environmental conditions
responsible for the behavior of the wildfire. The factors
involved in the wildfire spreading mechanism can be seen
in Figure 4 [16]. However, the minimum set of parameters,
measurements and observation required is heavily dependent
on the wildfire simulation model used, with each model being
applicable to certain conditions (wind tolerance, fuel types,
crown fire behavior, etc.). That mutual dependency between
measurements and applicable models raises the need to collect

as much data as possible, starting with a limited subset and
re-running the simulation when more data are available.
After reviewing the corresponding literature, we assembled
a set of variables that are required for the majority of the
simulation models. It should be understood that perfect knowl-
edge of all variables in the required timeframe is unlikely, but
chances are that most of them can be acquired from a variety
of sources like weather forecasts, macroscopic observations,
historical data, in field measurements, etc. A mapping of
the involving ontologies and their corresponding properties
is presented in Table II. It is easy to see that while data
referring to the topography of the area can be acquired before
the ignition of the wildfire (e.g., from satellites) due to their
negligible time variation, the majority of the remaining factors
are highly time-variant and their accurate prediction without
access to in field data is at least challenging; updating the
model with new observations and re-running the simulation is
the best way to always have the most accurate predictions.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a standardized ontology for wildfires,
intended to drive dynamic simulations combining pre-existing
knowledge with observations gathered in the field, which may
be inconsistent and time-dependent. Building a standardized
collection of observations for an active wildfire provides a
significant edge to the simulation: not only does it hold the
most accurate and updated information, it can also provide
a common framework in terms of phraseology and measure-
ments units. For example, it is common for wildfire spread
models developed in North America to use imperial rather than
metric units; a standardized ontology allows for automated
conversions to each user’s locale. Finally, gathering data in a
standardized format allows post-processing them to improve
the static models of the affected area.

Our future work focuses on completing our decentralized
mobile platform for wildfire simulation, based on our previous
work [17]. The objective is not to implement the best simula-
tion model-the literature abounds with wildfire simulators—but
to adapt the simulation to incorporate user-submitted content,
while distributing locally obtained knowledge to nearby nodes
for further local simulation. Our work in this area is at the
prototyping stage: we have built a quick simulation engine
that is updated as new observations are entered.
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