
Secure, Mass Web of Things Actuation Using
Smart Contracts-Based Digital Twins

Iakovos Pittaras, Nikos Fotiou, Christos Karapapas, Vasilios A. Siris, George C. Polyzos
Mobile Multimedia Laboratory

Department of Informatics, School of Information Sciences and Technology
Athens University of Economics and Business, Greece
{pittaras,fotiou,karapapas,vsiris,polyzos}@aueb.gr

Abstract—The proliferation of Internet of Things (IoT) devices
and applications that need to cooperate unattended highlights
the need for seamless interoperability and intrinsic security. We
argue that Distributed Ledger Technologies (DLTs), due to their
decentralized nature, transparent operations, immutability, and
availability, can enhance the security, reliability, and interop-
erability of such IoT systems. In this paper, we advance the
integration of W3C’s Web of Things (WoT) standards with DLTs
and smart contracts, introducing smart contracts as “Digital
Twins” of (physical) devices, or whole Cyber-Physical subsystems.
Namely, we introduce a DLT-based architecture for controlling
devices across federated IoT systems, securely, reliably, and with
full auditability. The proposed architecture provides mass actua-
tion and service composition with notable security properties,
such as full auditability, transparency, and high availability.
Specifically, a single request, with multiple action parameters
and conditions, can trigger the reliable and secure actuation of
a large number of possibly physically dispersed actuators.

Index Terms—Digital Twins, DLTs, Blockchain, IoT, WoT,
Ethereum, Interoperability, Auditability, Availability

I. INTRODUCTION

The Internet of Things (IoT) is envisioned to be an ecosys-
tem of interconnected devices that can collect, share, and act
on data. The continuously increasing number of IoT devices
creates opportunities for new applications, which merge the
cyber with the physical world. However, developing such
applications is not a trivial task, mainly due to different
(and often competing) protocols and standards. This diversity,
combined with business logic, and various policy requirements
and regulations, results in IoT systems being mostly isolated
and fragmented. In order to deal with these challenges, the
Web of Things (WoT) W3C working group [1] leverages
Web technologies to implement an interoperable IoT archi-
tecture. The WoT architecture builds on widely used Web
standards and technologies, and enables IoT devices discovery
and access using REST APIs, over popular application layer
protocols (such as HTTP(s)).

The environment in which IoT devices need to operate is
often unpredictable and continuously changing, and since the
real world can be directly impacted, security and safety are
a serious concern. Often, auditability is desired and can even
be the last resort for recovering from a security incident. One
approach for coping with the insecurity of IoT devices is the
use of digital twins [2], i.e., a virtual representation of the IoT
device stored in a more powerful and secure network location

(e.g., a Web server); users instead of interacting with the actual
device are interacting with its digital twin. All (valid) state
modifications of the virtual twin are securely transmitted to
the actual device.

Many companies, such as Amazon1 and Microsoft,2 are
already providing such Cloud-based services. Nevertheless,
these solutions are vendor specific and result in “vendor lock-
in” situations. Additionally, these services lack transparency:
given the pervasiveness of IoT systems and their access to
sensitive information, security and privacy concerns arise.
Furthermore, these systems may occasionally suffer from
outages making IoT devices inaccessible [3], [4]. To address
these issues, we explore how Distributed Ledger Technologies
(DLTs) can be used for building secure and reliable digital
twins that offer transparency, availability, and auditability.

Our solution uses the Ethereum blockchain [5] and leverages
smart contracts to provide an event-based system for coordi-
nated IoT operations, a medium for exchanging “tokens” that
grant access to IoT devices, as well as a logging service of
user actions. With the proposed system, we are making the
following contributions:

• We enable smart contract-based digital twins of WoT
“virtual entities”, i.e., entities that integrate one or more
IoT devices, and we allow “consumers” to execute “ac-
tions” on these devices.

• We facilitate IoT device management, mass actuation, and
service orchestration by making consumers oblivious to
the actual IoT devices.

• We allow device “owners” to define a cost for each
provided action. This cost is measured in owner-specific
Ethereum tokens, which can be sold (including offline
using fiat currency), enabling novel business models.

• We design, develop, and evaluate our proposed system in
a proof of concept implementation.

Compared to existing approaches, our solution improves
interoperability by adopting the WoT architecture, enhances
security by removing the need for a trusted entity that “hosts”
the digital twin, and increases system availability by imple-
menting its core functionality in a smart contract. In addition,
by leveraging the event-driven communication provided by

1https://aws.amazon.com/iot-core/?c=i&sec=srv
2https://azure.microsoft.com/en-us/services/digital-twins

978-1-6654-9792-3/22/$31.00 ©2022 IEEE

Ethereum, our solution enables mass actuation, in the sense
that a user can interact with multiple IoT devices by sending
just a single transaction, and it facilitates service composition.
Namely, one action can trigger the secure actuation of multiple
smaller and diverse actions. Furthermore, users are IoT device
vendor-agnostic, since they communicate with the digital twin
and not the actual devices. Finally, by using custom Ethereum
tokens as a means for paying for the provided services, not
only we enable novel business models, but we also allow using
our system in a private Ethereum deployment.3

A. Usage Scenarios

As the IoT becomes more and more popular, we observe
a new usage pattern, in which IoT devices and systems
are deployed in multi-tenant environments, e.g., a business
environment, where many different and untrusted parties in-
teract with them. Our proposed system is focused on securing
distributed IoT devices and services that are accessed by many
untrusted parties. For illustration, we will use a smart building
as a usage scenario.

Consider a smart building, owned and managed by a com-
pany, referred to here as the building manager. The building is
composed of multiple floors, with portions of each floor leased
out to tenants by the building manager. The building manager
is the owner of the resources (IoT devices) deployed on the
shared areas of the smart building. The building manager could
allow tenants to interact with the IoT devices of the building,
under a defined cost. The building manager could also grant
ephemeral permissions to guests. This could depict a real-life
scenario occurring in many cases, such as: (a) in smart homes,
where the homeowner installs IoT devices and he/she should
allow to the rest of the family or to guests to interact with
them, or (b) in big business buildings, where employees or
users from different organizations need to interact with IoT
devices that are common for all the tenants of the building.

II. RELATED WORK

Blockchain technology has been included in or considered
for many IoT-based systems, e.g., for the energy sector [6],
supply chains [7], and gaming [8], among others. Earlier work
by two of the authors [9] discusses how blockchains and DLTs
can provide novel security mechanisms for the IoT. They
also claim that the use of smart contracts can automate the
interaction with IoT devices. All these efforts highlight the
advantages of using blockchains in IoT systems, in particular
in “verticals” and they use a “clean-slate” approach. In our
work, we integrate blockchain technology with a standardized
technology, W3C’s WoT, targeting interoperability and “hori-
zontal” applications.

Digital twins are getting more and more attention. There
are several research efforts that try to integrate digital twins in
IoT applications and use cases. Chevallier et al. [10] present a
reference architecture for creating and managing digital twins
for smart buildings. The proposed digital twin and its data,

3Other DLTs supporting smart contracts or equivalent constructs could
obviously be used instead.

stored in a database, are used for managing and monitoring
the building. Liu et al. [11] propose a framework for an indoor
safety management system that is based on digital twins.
Authors, using the Building Information Modelling (BIM) and
data collected by IoT sensors, develop a digital twin, which
is used by a Support Vector Machine (SVM) to automatically
obtain the types and levels of danger. Furthermore, Mohamadi
et al. [12] propose a smart city digital twin paradigm. The
digital twin is progressively updated with real time data by
the smart city’s systems in order to become “smarter” and
able to predict the city’s performance and growth. Simillarly,
White et al. [13] design a digital twin for smart cities. The
proposed digital twin is composed of 6 layers. The final layer,
which is the digital twin, is built on the data that is produced
from all the other layers. Then, authors use the digital twin
to conduct various simulations (flooding simulation, crowd
simulation, etc.) in order to extract information about the city.
These efforts design and implement digital twins in order
to use them as monitoring tools and for performing various
simulations, which cannot be performed in the actual cyber-
physical systems. However, in our work, we are using the
digital twin as an indirection of the actual IoT devices. We
are using them to perform real actions on the IoT devices,
instead of extracting information about them.

Other recent research efforts try to combine digital twins
with DLT–some such efforts are briefly discussed next. Yaqoob
et al. [14] present some possible use cases and applications,
architectures, and tool sets that can enhance digital twins to
be more effective in real-life industrial problems; to this end,
they propose the integration of the blockchain technology into
digital twins by suggesting that it can be used as a storage
place for the digital twin’s data. Huang et al. [15] propose a
system based on a blockchain to address the data management
problems of digital twins used in product lifecycle manage-
ment. The authors exploit the peer-to-peer network of the
blockchain to connect all the interested parties. The network
is also used to share the data securely among the participants.
Furthermore, the authors use the blockchain to store all the
data along with a timestamp, e.g., all the actions of the digital
twins, in blocks. Lee et al. [16] propose a framework that
exploits digital twins and blockchains for traceable data com-
munication in construction projects. The framework selectively
stores, in the blockchain, and share important project-related
information traceably. Shen et al. [17] propose a blockchain-
based framework for secure sharing of big digital twin data.
The authors use Cloud storage to store the encrypted big
digital twin data, while the hash of the big data is stored
on the blockchain. Nielsen et al. [18] developed a prototype
digital twin, which is connected with the Ethereum blockchain.
In particular, they have implemented Non-Fungible Tokens
(NFTs) in Ethereum, in order to represent physical devices
in the blockchain. Then, each token is configured with data
from the actual device by the corresponding digital twin. All
these efforts use blockchain technology for providing auxiliary
functionality, such as data storage, or as a means for data
sharing, whereas our proposed architecture realizes the actual

Owner

Blockchain network

IoT Devices

IoT Gateways

Consumer

actionName parameters price

http://gw1.iot/lamp1/t
oggle

[bit] 3

http://gw1.iot/tempera
tureController/modify

[int] 5

actionsList

http://gw1.iot
http://gw2.iot

http://gw1.iot

IoT device action

lamp1 toggle

temperatureController read

temperatureController modify

Fig. 1. System overview.

digital twin on the blockchain as a smart contract to achieve
its goals, really integrating DLT and digital twin functionality.
While the goal of previous proposals in the abovementioned
works is to secure the data generated by the devices, our
goal is to secure the actual IoT devices, ensuring their correct
functioning and availability.

III. SYSTEM OVERVIEW

In this section, we present an overview of our solution. Our
proposed system is composed of the following entities (see
also Figure 1):

• IoT gateways and IoT devices
• The smart contract-based digital twin of a “virtual entity”
• A smart contract that manages the owner’s specific tokens
• An owner (building manager) that administrates the gate-

ways and the IoT devices
• Consumers (tenants) that interact with the IoT devices
All gateways together compose a WoT “virtual entity”. A

virtual entity is the composition of one or more IoT devices,
e.g., a room consisting of several IoT devices. The “virtual
entity” provides a single WoT Thing Description (TD) [19]
that contains the capabilities of all IoT devices. As IoT devices,
we consider actuators, although sensors can easily be handled
by our system as well.

Consumers do not access IoT gateways/devices directly,
instead they interact with the digital twin of the virtual
entity implemented as a smart contract and deployed on
the Ethereum blockchain. Thus, consumers should own a
public/private key pair used for signing transactions sent to
the blockchain. On the contrary, the owner can access and
configure her IoT devices and the corresponding gateways
directly.

From a high level perspective, the entities in our sys-
tem interact with each other as follows. Initially, the owner
physically deploys the IoT devices and pairs them with a
gateway. Then, she creates the digital twin of the virtual entity,
composed of all IoT devices, and she configures the smart
contract accordingly. The virtual entity includes actions that
can be implemented by a single IoT device or by orchestrating

multiple IoT devices. Similarly, an action may correspond to
multiple interactions with an IoT device. For example, an
action “turn on all the lights of the floor” of a virtual entity,
may result in instructing multiple light bulbs to be switched
on. A gateway is responsible for mapping an action of the
virtual entity to the corresponding action(s) of the real IoT
device(s).

A consumer can gain access to a virtual entity, hence
to (specific) IoT devices, by obtaining some owner-specific
Ethereum tokens. When a consumer wants to perform an
actuation operation, he deposits some tokens to the smart
contract, which are held as escrow, and he sends a transaction
that includes the action, and the appropriate parameters. The
consumer can read the blockchain, with zero cost, to learn the
available actions and the corresponding parameters. The smart
contract verifies the transaction; if it is valid and if the amount
of tokens held in escrow is sufficient, it generates an event.
The IoT gateway is configured to “watch” the blockchain for
events emitted by the smart contract, thus, the event that was
triggered by the transaction results in gateway executing the
corresponding actuation process. The communication between
the gateway and the IoT devices is specified by the device
vendor (out of the scope of this paper).

At the end of this process, an amount of tokens is transferred
from the escrow to the owner. The amount of tokens required
per operation is written in the blockchain. Thus, a consumer
knows beforehand the amount of tokens required to execute an
operation. The cost of an operation, measured in tokens, is the
same for all consumers. However, the owner can sell tokens,
off chain, to consumers at different prices. This allows to keep
consumers-owners business relationships private.

IV. SYSTEM DESIGN

The lifecycle of our system includes the following phases.
1) Setup: Initially, the owner deploys the IoT devices and

two gateways (WoT servients, a software stack that imple-
ments the WoT-specific functionality of an IoT device). The
first WoT servient includes the TD of the virtual entity, and
it exposes all the operations of the virtual entity. The second
servient acts as a client. From now on, we will refer to the first
servient as server servient, and to the second as client servient.
IoT devices are identified by URIs that can be used for
performing actuations. In our system, the URIs are composed
of the URL of the server servient plus the name of the IoT
device (see Figure 1). Moreover, the owner creates a smart
contract that represents the digital twin of the virtual entity
and she deploys it on the blockchain. The smart contract’s
address on the blockchain is considered well-known. Then,
she configures the client servient to “watch” the blockchain
for the events.

Each action of the virtual entity is stored in a data structure
in the smart contract, which is referred to as the actionsList
(see Figure 1). The actions are represented in the smart
contract as structs (solidity’s way to allow users to create their
own data types), which contain (a) an action name, (b) the
input parameters (the type and the number of parameters),

and (c) the defined price expressed in ERC-20 tokens. The
parameters field is essentially the dataschema that describes
the data format of the actions, properties, and events of a TD4.
Furthermore, the owner should also create and deploy a smart
contract, which creates and manages the owner-specific tokens,
implementing the ERC-20 token standard [20].

A consumer contacts the owner, in order to come to an
agreement on the price of a token. Then, he has to pay the
agreed amount of money to the owner, in fiat currency. When
the payment is completed, the owner transfers the agreed
amount of the blockchain-based tokens to the consumer’s wal-
let (Ethereum address) and, if necessary, configures the gate-
way to include a mapping between the consumer’s blockchain
address to some consumer-specific information. This process
takes place off-line and off-chain, in order to keep consumers-
owner business relationship private.

Finally, in order for the consumers to learn all the available
actions, the appropriate parameters, and the cost for each
action, they can call a view function of the smart contract,
called getActions, if they want to learn about all the available
actions, or getAction to learn about a specific action.

2) IoT device access: From this point on, a consumer
can perform an IoT device actuation request. To do so, he
sends a transaction to the smart contract that includes the de-
sired action and the appropriate action parameters. The smart
contract verifies that the transaction is correct, in the sense
that the action exists in the actionsList and the parameters
are correct. In addition, it verifies that the address of the
consumer has the required number of tokens. In order to
perform the latter verifications, the smart contract interacts
with the smart contract that handles the tokens, and calls
its balanceOf function. Then, these tokens are deposited to
the smart contract’s address. If all the requirements are met,
an event, named PerformActuation is triggered. The event
includes the action name, the parameters, and the address of
the consumer. The address of the consumer is needed, in order
to send the tokens back to the consumer, if the actuation will
not be completed successfully.

The event is eventually “caught” by the client servient. This
servient finds out which device is available at that moment
to best serve the request. Subsequently, the gateway forwards
the request to the appropriate devices, which perform the
actuation. For example, if the consumer wants to interact
with the smart elevator, the servient finds out which of the
elevators is available at that moment and forwards the request
to the appropriate one. When the action is completed, the
client servient, configured with owner’s blockchain wallet,
sends a transaction to the blockchain. In particular, it calls
the endOfActuation function to transfer the tokens from the
smart contract’s address to the owner’s address, if the action
was completed successfully, otherwise it transfers the tokens
back to the consumer’s wallet.

In the case that a consumer has not spent all the tokens
and he does not want to use the provided services anymore,

4https://www.w3.org/TR/wot-thing-description/#dataschema

he has two options. The first option is to give back the
remaining tokens to the owner and receive back fiat currency.
Alternatively, he can sell his tokens to other consumers. The
latter allows the creation of a meta-market and enables new
business structures. For example, consumers can form ‘aliases’
and buy a big amount of tokens, potentially achieving a
discount.

3) IoT device management: The smart contract-based dig-
ital twin includes the actionsList, which contains all the
properties and actions of the virtual entity. This actions list
can only be modified by the owner. In particular, the owner
can add a new entry, as well as modify, or delete an existing
one. This operation does not require any communication with
the consumer. Additionally, an owner can replace a physical
IoT device; since the consumer interacts with the virtual entity,
which is device independent, this replacement affects only the
configuration of the corresponding gateway.

4) Ephemeral interactions and revocation: There might are
cases, where the owner should grant ephemeral permissions to
guests. In such cases, the guest should come to an agreement
with the owner for the price of tokens and the period that they
need them. Then, the owner sends to him the agreed amount
of tokens and adds the guest to a list, called guestsList, along
with the corresponding period. This list exists in the server
servient. From now on, the guest can interact with the IoT
devices, as any other consumer. The difference is that when
the agreed period is up, the owner calls the withdraw function
from the smart contract that handles the tokens, to take back
the tokens from the guest. This function can only be invoked
by the owner, and in essence, it resets the token balance of
a user, returning all the tokens back to the owner. Thus, this
function can be used also in cases of security breaches. So,
the withdraw function acts as a revocation mechanism too. The
consumers, whose tokens are revoked, can no longer access
the IoT devices and perform any actuation, thus the revocation
is instantaneous.

V. EVALUATION

A. Cost evaluation

To evaluate our solution, we developed a proof of concept
implementation of the presented system. Our two servients
are based on Eclipse’s Thingweb5, which is a Node.js imple-
mentation of the WoT model that is under standardization.
For our evaluation, we emulated two IoT devices, one smart
lamp and one smart coffee machine. The smart contracts of
the system6 are implemented using Solidity, and the piece of
code that interacts with the blockchain in order to “catch”
events generated by the smart contracts is implemented using
the web3.js library.

All actions performed in our system involve the invocation
of a function implemented in a smart contract, which incurs a
transaction cost that in Ethereum is expressed as the cost of gas
for executing transactions on the EVM. In order to measure the

5http://www.thingweb.io/
6https://github.com/mmlab-aueb/DLT-DigitalTwins

cost required by our smart contracts, we deployed the smart
contracts on the Rinkeby Ethereum test network. The cost,
measured in gas units, for each one of the functions is shown
in Table I.

Smart contract Operation Cost measured in gas

Digital twin

contract deployment 2341723
performActuation 52329
endOfActuation 43628

addAction 119934
modifyAction 41064
removeAction 46632

getActions -
getAction -

ERC-20

contract deployment 805618
balanceOf -

transfer 33664
mintTokens 34786
withdraw 29450

TABLE I
EVM EXECUTION COST OF OUR CONSTRUCTION BUILDING BLOCKS.

The functions that only read the blockchain and they do
not write anything to it, they introduce zero cost. As we
observe from the above table, the cost introduced by all
functions is not completely negligible. The most expensive
actions are those required for deploying the smart contracts on
the blockchain (≈ $126.78 and $43.62 respectively)7, which
however takes place only once. The most expensive function
is the function responsible for adding a new action in the
actionsList. The addAction function costs $6.49, while the
performActuation function, which is the function that
clients will invoke, costs around $2.83.

The price of the actions expressed in fiat currency is not
standard, since it depends heavily on the price of Ethereum,
which fluctuates highly. So, right now, given the price of
Ethereum, the cost may be prohibitive for some use cases,
like the case of a smart home. In use cases like that, it would
be better to deploy our proposed system in a private instance
of Ethereum, where no cost is introduced. On the other hand,
on use cases, such as a university campus or a big business
building, the cost may be acceptable.

In addition to gas, the use of the public Ethereum blockchain
incurs a transaction delay, which depends on the block mining
time. The average time required by an operation to be executed
on Ethereum is ≈ 15 seconds. On the other hand, read requests
and actions (view functions) on the blockchain do not need
to send a transaction to the network. So, performing read
operations incurs no transaction delay at all.

B. Qualitative and security evaluation

Our system has several advantages compared to legacy IoT
systems and architectures. First, the use of the DLT as an
event-based communication channel, enables mass actuation,
namely actuation of multiple IoT devices simultaneously. This
can be achieved, because the client servient in our system
is “watching” the blockchain for events, thus with a single

7As measured on 13 March 2021.

transaction, an action can be performed by many IoT devices.
Along the same lines, our system facilitates service compo-
sition. Specifically, with just a single transaction, including
multiple and appropriate parameters, a consumer can perform
multiple different actions. Furthermore, new IoT devices can
be seamlessly added in the system, since the owner has only to
update the servients and the actionsList, without the need for
redeploying the smart contract or the consumer’s application.
Similarly, the owner can add easily new servients that expose
new TDs, without the need of changing anything to the under-
lay system. Moreover, with our solution, consumers are IoT
gateway/device vendor-agnostic, since they communicate with
the IoT devices and the corresponding gateway(s) through the
blockchain infrastructure. They just have to send a transaction
to the digital twin smart contract, for any device of any vendor.

In the Ethereum network, all blocks are broadcasted to all
nodes, and since events are part of the blocks, they are received
by all nodes as well. This way, the digital twin residing
within the DLT acts as an indirection mechanism between
the consumer and the IoT gateway, hence the location of the
gateway does not have to be known to the consumers: the
gateway can even be unreachable through the Internet, and
disconnected from the outside world. In addition, DLTs offer
reliability, robustness, and increased availability by design,
since transactions are replicated in all miners participating
in the network, therefore, there is no single point of failure,
and the data is always available to the consumers. So, by
implementing the digital twin of the virtual entity in a smart
contract, we guarantee that the digital twin will always be
live and it will not depend on trusted third parties. However,
even if the gateways are secured, network outages may happen,
leading to servients being unavailable and miss some events. In
such cases, servients can be configured to read the blockchain,
once a day or once a week depending on the use case, to see
if they have missed an event and act accordingly (perform
the actuation delayed or write to the blockchain that the
corresponding actuation was not completed successfully).

Regarding the auditability feature, there are two different
types of functions a smart contract can provide, view only
functions, which read the state of the smart contract, and
write functions, which modify it. The latter are invoked using
Ethereum transactions, consequently every function invocation
is recorded in a block appended immutably to the ledger. The
aforementioned property enhances our system with high au-
ditability in the sense that every interaction with an IoT device
is recorded and thus it can be revisited at any time, by anyone.
Hence, in case of security incidents or in case of disputes,
blockchains can provide undeniable auditing information. Fur-
thermore, in our design, if the actuation was not completed
successfully, this is recorded on the blockchain acting as a
proof of completed action, provided full auditability.

In addition, the design of our proposed system enables a
form of access control. Only the users that have acquired
the owner-specific tokens can invoke the available actions.
Thus, these tokens except for enabling new business models
act as Access Control Tokens (ACTs) too. This property is

very interesting, since blockchain-based tokens offer numerous
advantages [21]. Furthermore, with our design, our system
offers effective revocation. We guarantee, through the smart
contract that only the owner can revoke the tokens, and once
she revokes them from a consumer, the revocation will have
immediate effect. However, the consumer once acquired the
tokens, he can transfer them to anyone he wants. If we want
to avoid situations like that, depending on the use case, we
can configure the transfer function of the smart contract
that manages the ERC-20 tokens to allow the consumers to
transfer their tokens only to the owner’s address.

Finally, since Ethereum is a public blockchain, anybody
can inspect it and read its state and its past blocks. This
property constitutes a privacy risk, since a third party can read
the blockchain and deduce information about the users, such
as who perform which actions, when, etc. Thus, a malicious
user can link an Ethereum address with specific actions and
deduce some patterns about that address. In our use case, this
is not crucial, since our proposed system is responsible for the
IoT devices deployed on the shared rooms and floors of the
building. However, if we do not want anyone to learn anything,
then this can trivially be addressed by using a private instance
of Ethereum instead of the public Ethereum.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an architecture for implementing
digital twins for IoT devices, using the WoT and DLTs. In par-
ticular, we leveraged the Ethereum blockchain and its support
for smart contracts in order to build the digital twin of a WoT
“virtual entity.” Our proposed architecture enables consumers
to perform actuation operations that eventually end up in one
or more IoT devices. Our solution takes advantage of the event
broadcast capabilities of Ethereum, the immutability of the
transactions, and the transparency of the smart contracts, to
provide secure and reliable services. In particular, our solution
enables mass actuation, service composition, protection of the
real gateways and devices, easier management of the underlay
IoT network, improved auditability, increased availability and
reliability, and novel business models.

In our work, we used the Ethereum blockchain, which
however introduces monetary costs and non negligible delays.
For this reason, we are currently experimenting with the use
of Hyperldeger Fabric, i.e., a permissioned, private blockchain
technology, which supports distributed applications. Fabric
smart contracts, as opposed to Ethereum’s smart contracts,
can interact with the external world, e.g., they can read a
value out of an IoT device using HTTP(s). Therefore, using
Fabric our solution not only will become faster and cheaper,
but it will also allow consumers to perform other operations
in addition to actuation. Furthermore, using Fabric, it will
be possible to use the actual TD in the smart contract, as
opposed to its stripped down version, i.e., the actionsList.
Moreover, an interesting extension to our system involves
multiple DLT-based digital twins interacting with each other,
allowing this way service composition at the blockchain level.
Similarly, these twins could be implemented using different

blockchain technologies and their interaction could take place
using interledger technologies [22].

ACKNOWLEDGMENT

This work has originated with H2020 project SOFIE (Secure
Open Federation for Internet Everywhere, Grant # 779984) and
has since been supported in part by the Research Center of the
Athens University of Economics and Business.

REFERENCES

[1] W3C. (2017) Web of Things. https://www.w3.org/WoT/.
[2] M. Grieves, and J. Vickers, Digital Twin: Mitigating Unpredictable,

Undesirable Emergent Behavior in Complex Systems. Cham: Springer
International Publishing, 2017.

[3] BBC. (2020) AWS: Amazon web outage breaks vacuums and doorbells.
[Online]. Available: https://www.bbc.com/news/technology-55087054

[4] The Verge. (2021) An Amazon server outage caused problems
for Alexa, Ring, Disney Plus, and deliveries. [Online]. Avail-
able: https://www.theverge.com/2021/12/7/22822332/amazon-server-
aws-down-disney-plus-ring-outage

[5] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[6] M. Andoni and V. Robu and D. Flynn and S. Abram and D. Geach and
D. Jenkins and P. McCallum and A. Peacock, “Blockchain technology in
the energy sector: A systematic review of challenges and opportunities,”
Renewable and Sustainable Energy Reviews, vol. 100, 2019.

[7] K. Korpela, J. Hallikas, and T. Dahlberg, “Digital supply chain trans-
formation toward blockchain integration,” in Proceedings of the 50th
Hawaii International Conference on System Sciences, 2017.

[8] I. Pittaras, N. Fotiou, V. A. Siris, and G. C. Polyzos, “Beacons and
blockchains in the mobile gaming ecosystem: A feasibility analysis,”
Sensors, vol. 21, 2021.

[9] N. Fotiou and G. C. Polyzos, “Smart contracts for the internet of
things: Opportunities and challenges,” in 2018 European Conference
on Networks and Communications (EuCNC), 2018.

[10] Z. Chevallier, B. Finance, and B. C. Boulakia, “A reference architecture
for smart building digital twin,” in 2020 International Workshop on
Semantic Digital Twins, SeDiT 2020, vol. 2615, France, 2020.

[11] Z. Liu, A. Zhang, and W. Wang, “A framework for an indoor safety
management system based on digital twin,” Sensors, vol. 20, 2020.

[12] N. Mohammadi and J. E. Taylor, “Smart city digital twins,” in 2017
IEEE Symposium Series on Computational Intelligence (SSCI), 2017.

[13] G. White, A. Zink, L. Codecá, and S. Clarke, “A digital twin smart city
for citizen feedback,” Cities, vol. 110, 2021.

[14] I. Yaqoob, K. Salah, M. Uddin, R. Jayaraman, M. Omar, and M. Imran,
“Blockchain for digital twins: Recent advances and future research
challenges,” IEEE Network, vol. 34, no. 5, 2020.

[15] S. Huang, G. Wang, Y. Yan, and X. Fang, “Blockchain-based data
management for digital twin of product,” Journal of Manufacturing
Systems, vol. 54, 2020.

[16] D. Lee, S. H. Lee, N. Masoud, M. S. Krishnan, and V. C. Li, “Integrated
digital twin and blockchain framework to support accountable informa-
tion sharing in construction projects,” Automation in Construction, vol.
127, 2021.

[17] W. Shen, T. Hu, C. Zhang, and S. Ma, “Secure sharing of big digital
twin data for smart manufacturing based on blockchain,” Journal of
Manufacturing Systems, vol. 61, 2021.

[18] C. P. Nielsen, E. R. da Silva, and F. Yu, “Digital twins and blockchain
– proof of concept,” Procedia CIRP, vol. 93, 2020.

[19] S. Kaebish and T. kamiya and M. McCool and V. Charpenay and
M. Kovatsch. (2020) Web of Things Thing Description. [Online].
Available: https://www.w3.org/TR/wot-thing-description/

[20] F. Vaogelsteller and V. Buterin. (2015) EIP-20: Token Standard.
[Online]. Available: https://eips.ethereum.org/EIPS/eip-20

[21] N. Fotiou, I. Pittaras, V. A. Siris, S. Voulgaris and G. C. Polyzos,
“Oauth 2.0 authorization using blockchain-based tokens,” in Proceedings
of the NDSS 2020 Workshop on Decentralized IoT Systems and Security
(DISS), 2020.

[22] V. A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, and G. C.
Polyzos, “Interledger approaches,” IEEE Access, vol. 7, 2019.

