
PUBLISHED IN: PROCEEDINGS OF THE WECML 2022 1

Audio Delay in Web Conference Tools
Konstantinos Tsioutas and George Xylomenos

Mobile Multimedia Laboratory, Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business

Patision 76, Athens 10434, Greece
E-mail: {ktsioutas, xgeorge}@aueb.gr

Abstract—Music collaboration over the Internet, known as
Network Music Performance (NMP), remains a challenge for
researchers and engineers, since transmission, switching and
audio processing delays hinder the synchronization of the partici-
pating musicians. Although widely available Web-based voice and
video communication tools are not designed for real-time remote
musical performances, during the pandemic many musicians
worldwide had to use them, due to the lack of widespread NMP-
oriented tools. In this paper we provide measurements for the
end-to-end audio delay of a number of Web conference tools,
using real network conditions, either in a LAN or in a WAN
setting, and compare them to the corresponding delays exhibited
by an NMP-specific tool.

I. INTRODUCTION

During the CoVid-19 pandemic, methods of real-time re-
mote collaboration have come to the forefront of computing.
Google Meet, Microsoft Teams, Zoom, Facebook, Skype and
other commercial or open-source tools were widely used for
voice and video communication due to the physical isolation
imposed by the pandemic. Network Music Performance (NMP)
though, that is, the performance of music when musicians
are connected over a network, is hampered by its need for
ultra low delay communication. Even though all human-to-
human communications have strict delay requirements, so as
to allow the participants to maintain synchronization, NMP is
an extreme case. While regular video conferencing can tolerate
up to 150 ms of one way audio delay1, in NMP delays of
more than 25-30 ms are considered problematic [1]. Some
studies have reported that actual musicians managed to cope
with higher delays during real performances [2], indicating
that the aesthetic experience of a music performance is a more
complex phenomenon. Still, delays of more than 50 ms have
been found to be problematic for NMP in all previous studies.

Keeping delay low is hard as, even when the two endpoints
are directly connected, the speed at which electrical or optical
signals travel is finite. In practical networks, the endpoints
are connected via a set of links and switches, therefore the
distances are increased, and the switches add delays due to
queueing and processing packets. In many cases, a server is
needed between the endpoints, to facilitate their connection
and the extension of a call to more than two parties. Even
the process of gathering enough samples and encapsulating
them in a packet for transmission, as well as the reverse
process of receiving a packet and playing back the samples
it contains, contributes to delay. Finally, since all Web-based

1https://www.itu.int/rec/T-REC-G.114

communication tools are designed for vocal communication,
they apply many audio processing steps like automatic gain
control, echo cancellation, noise suppression and others, which
may reduce the overall audio quality and increase the delay
experienced by the participants, making them problematic for
NMP.

Despite all these issues, during the pandemic, many musical
activities, such as musical education and rehearsals, were
conducted via such tools, even though the resulting delays
were large and real time performance was infeasible or very
hard to achieve. To clarify how far such tools are from the
ideal for NMP, this study is an attempt to measure the real
audio delay a user experiences when using some common web
conferencing tools and test if this delay exceeds the limits
reported in previous studies for NMP. For our experiments
we employed real Internet conditions, including DSL links, to
assess the delay in a realistic setting, considering both LAN
and WAN connections. We also tested an NMP-specific tool,
which was optimized specifically to reduce delays, so as to
provide a delay baseline.

The outline of the rest of the paper is as follows. In
Section II, we briefly present related work on assessing the
effects of delay on NMP. In Section III we present the
communication tools tested. Section IV describes the setup of
our experimental scenarios. In Section V we present the results
from this analysis. We summarize our findings and discuss
future work in Section VI.

II. RELATED WORK

The Mouth to Ear (M2E) delay is used in many studies,
either for the evaluation of telecommunication systems in
the case of oral communication, or to investigate the delay
impact in tempo and musical performance in NMP [3]. It is
often referred to as the one way delay, since it covers one
direction of communication. M2E delay is the time from the
moment a sound is generated from the speaker to the moment
it will be heard by the listener. Since the speaker and listener
may be separated by large physical distances, M2E delay is
difficult to measure with high accuracy, as it is difficult to
accurately synchronize the clocks of two widely separated
endpoints. Thus, in many cases, M2E is either estimated, based
on approximate clock synchronization, or the two way delay
is measured by looping back the audio signal in the one end
point. The two-way delay is often referred to as the My Mouth
to My Ear (MM2ME) [4] delay. Although MM2ME delay
can be measured very accurately, as it is measured at a single



2 PUBLISHED IN: PROCEEDINGS OF THE WECML 2022

point, it obscures any asymmetries between the two directions
of communication.

In [5], the authors conducted an extended study to measure
the delay experienced in a voice conversation with Skype,
Google Talk, Yahoo Messenger and Windows Live Messenger.
They used PlanetLab2 to route audio signals through six
Internet paths with known traffic conditions. Instead of using
impulse audio signals, they developed a human-response-
simulator software which runs at the two endpoints. The
authors report that the performance of the various systems is
comparable under ideal network conditions. However, perfor-
mance started to deviate as they introduced more delay, jitter,
and loss. These differences indicate that different trade-offs
are made by each system to overcome network impairments.
In terms of audio delay, they observed that Skype consistently
exhibited larger M2E delays, and that Google Talk generally
exhibited shorter M2E delays.

In [6], the authors calculated the M2E delay for different
web conferencing clients, including Skype, MSN, Google
Talk, Yahoo Messenger and others, using the Windows and
Linux operating systems, multiple speech codecs and two dif-
ferent Linux kernels, as well as telephone devices. They made
multiple observations regarding the M2E latency. Regarding
the audio codecs tested, the authors reported that codecs
performing well on one client seemed to perform well across
all clients (e.g. G.711 A-law) and codecs performing badly on
one client seemed to perform badly on all clients (e.g. iLBC).
The effect of the codec seemed to be a constant across all the
clients. The two kernels examined were a Fedora Core 9 stock
kernel (2.6.27.5-37.fc9) and a real-time kernel developed in
CCRMA (kernel-rt-2.6.24.7-1.rt3.2.fc9). The real-time kernel
from CCRMA performed better in terms of audio latency.
Regarding the web conferencing clients, the authors reported
that Windows Messenger exposed the smallest latency. Other
popular clients like Google Talk, Skype and Yahoo were
measured with higher latency values.

The two way, MM2ME delay, can be measured by reflecting
the signal back to the sender, and comparing the two wave-
forms; then, the MM2ME delay is halved to approximate the
M2E, one way, delay. In most cases, impulse audio signals
are used to determine these delays, as their regularity allows
them to be compared easily with a reference signal, so as to
determine delay. MATLAB provides the audio system toolbox3

to determine delay between two audio signals locally captured
by a single audio interface in one machine.

In [7] authors proposed a tool for Distributed Audio/Video
Delay Estimation (DAViDE). DAViDE is a portable embedded
device that exploits the clock precision of the Global Position-
ing System (GPS). This allows actual M2E (one way) delays
to be measured with high accuracy. They estimated end to end
audio and video delays for Skype, Discord, Google Hangouts
and ICQ4 and they reported that Skype, Discord and Google
Hangouts achieved delays on the order of 300 ms, while ICQ
delay was estimated to be higher than 400 ms.

2https://planetlab.cs.princeton.edu/
3https://www.mathworks.com/help/audio/ug/measure-audio-latency.html
4https://www.icq.com/

It should be noted that the first two studies mentioned
above took place in 2009, where the networking landscape
was different (even PlanetLab, used in the first study, has been
decommissioned), the available applications were different and
application capabilities were not the same as today. The third
study mentioned above is more recent (from 2018), but it
involves custom equipment for measurements. Our goal in this
study was to provide an updated set of measurements, but only
using easily available software and equipment.

TABLE I
AUDIO CODEC AND QUALITY CONFIGURATION.

Tool Audio Codec Audio Quality
Sonobus PCM configurable

Jitsi Opus configurable
Teams SILK, G.722 High Fidelity Opt
Zoom Opus Original Audio Opt

Facebook AAC non-conf
Skype SILK non-conf

Google Meet Proprietary non-conf

III. AUDIO EXCHANGE TOOLS

In this section, we present the tools examined in this study.
Multiple commercial platforms offer audio and/or video calls
between two or more users, operating either via a web browser,
or as standalone applications. Most of them support multi-
ple operating systems, including Windows, Linux, iOS, and
Android. In Web conferencing audio delay is important, but
the acceptable delay limit is considered to be 150 ms (M2E).
We tested every commercial tool that could be used without
charge, but only report results for tools that we could configure
in such a way so as to avoid echo cancellation, as echo
cancellation prevented us from making delay measurements
(see Section 3).

In addition to the commercial tools, we also tested an open
source Web conferencing tool, Jitsi, as it is more flexible to
configure and setup, free and purely web-based. Finally, we
tested an NMP-specific tool, Sonobus, to provide a reference
for the delay achievable in a tool specifically engineered to
minimize latency. We summarize the tools tested, the audio
codecs used and the settings used (if available) in Table I.

NMP-specific tools differ from Web conferencing ones in
two ways. First, NMP tools try to minimize their internal delay
(by using faster audio drivers, smaller sample buffers and
smaller packets), while Web conferencing tools try to avoid
making any changes to a user’s system. Second, NMP tools
accept the need to make tradeoffs due to their very stringent
delay budget, therefore they offer multiple configuration op-
tions to their users. In contrast, Web conferencing tools use
the higher delay budget of voice communication to optimize
their behavior, without asking the user to make any choices.
Essentially, Web conferencing tools strive for simplicity, while
NMP tools strive for performance.

A. Sonobus

Multiple NMP tools exist, providing the ability of real-time
musical collaboration, as they were designed for ultra low



PUBLISHED IN: PROCEEDINGS OF THE WECML 2022 3

audio delivery. Soundjack5 JackTrip6, LOLA7 and Sonobus8

are some of them; an extended overview can be found in [8].
Even though all these tools strive to minimize delays, no tool
has yet managed to offer acceptable delays for NMP in a wide
variety of networking scenarios.

Sonobus is an open source multi-platform, standalone appli-
cation for NMP purposes. It achieves ultra low delays by using
the ASIO4ALL audio drivers in a Windows environment. It
streams uncompressed audio, and uses a peer to peer archi-
tecture. It employs a mechanism for the peers to get to know
each other, obviating the need to configure port forwarding
to bypass firewalls. Sonobus is highly configurable, to allow
different audio setups, as opposed to the extremely simple,
one size-fits-all, web conferencing tools. We used Sonobus to
compare audio delays against the other, more general, Web
conference tools and extract conclusions about the sources of
delay in real network conditions. We configured Sonobus to
use a 48 kHz sampling rate and an audio buffer size of 64
samples (which is only 1.3 ms worth of samples).

B. Jitsi

WebRTC9 is an open standard architecture for Web Con-
ferencing, offering mechanisms for real-time audio and video
delivery, file-sharing, instant messaging, screen sharing and
other features, via a web browser. WebRTC allows building
conferencing clients directly inside a web browser, without
requiring browser plugins or external applications to be down-
loaded and installed by the user. Jitsi10 is an open source web
conferencing client, based on WebRTC.

Jitsi is easy to set up either locally or in a public server
and provides all the features of Web conferencing. In terms
of audio delivery, Jitsi employs the Opus codec to reduce
bandwidth consumption. Jitsi employs peer to peer commu-
nication when only two peers are connected11; with more
than two peers, it routes audio and video through the Video-
Bridge, an open source Selective Forwarding Unit (SFU), that
is, a server that only forwards (or drops) packets, without
processing them12. According to its documentation, Jitsi has
a complicated mechanism for handling users, multimedia
streams and file exchanges, and it is not clear how it deals
with audio streams in terms of ultra low delay and real-time
configurations.

For our experiments, we used a Jitsi server, which was
set up for the needs of the MusiCoLab13 project, situated
at the Hellenic Mediterranean University (HMU) in the city
of Heraklion in Crete, Greece. Since our endpoints were
located in Athens, Greece, which is around 300 km away
from Rethymnon (on a straight line), this introduced noticeable

5https://www.soundjack.eu/
6https://www.jacktrip.org/
7https://conts.it/art/lola-project/old-lola-project-web-site/lola-low-latency-

audio-visual-streaming-system
8https://www.sonobus.net/
9https://webrtc.org/
10https://jitsi.org/
11https://jitsi.org/security/
12https://jitsi.org/jitsi-videobridge/
13https://musicolab.hmu.gr/

delays; on the other hand, we knew where the server was
located, unlike in commercial tools, where the location of the
server is hidden from the user.

Jitsi provides to the user the ability to configure multiple
functions, such as enabling or disabling audio processes that
might increase audio delay. This configuration is feasible
through the URL of the service by adding the #config... script.
An example of such a configuration is shown below:

a) https://147.95.32.219/testroom
#config.analytics.disabled=true
&config.prejoinPageEnabled=true
&config.p2p.enabled=false
&config.disableAP=true
&config.disableAEC=true
&config.disableNS=true
&config.disableAGC=true
&config.disableHPF=true
&config.stereo=false
&config.opusMaxAverageBitrate=255000
&config.enableOpusRed=false
&config.enableNoAudioDetection=false
&config.enableNoisyMicDetection=false
&config.disableAudioLevels=true
&config.disableSimulcast=true
&config.enableLayerSuspension=true: As shown in the script,
we disabled all functionality that could be a source of delay.
Additionally, we set the opusMaxAverageBitrate parameter to
the value of 255 Kbps according to the documentation. As
tested, the lower the value we set, the bigger the delay that
was inserted.

C. Teams

Teams14 is Microsoft’s group collaboration tool, which
includes audio and video conferencing, among many other
features. Two of our lab members used their Teams accounts to
communicate using the Microsoft Teams desktop application
(a web version is also available). We enabled the high fidelity
audio setting, which allowed us to send and receive impulse
audio signals and measure delay; without this setting, reflect-
ing audio so as to measure its delay, was impossible, due to
echo cancellation. Teams uses either the SILK codec, a closed
source precursor of the Opus codec, or the G.722 codec, a
wideband codec adopted by the ITU to support 7 kHz audio.

D. Zoom

Zoom15 is one of the most popular conferencing tools, as it
is freely available with some limitations; commercial licenses
also exist. Zoom has the Enable Original Audio feature. With
this feature, all audio processes, like noise suppression, auto
gain control and others are disabled and looping back the audio
signal is feasible. Zoom uses the Opus codec for the audio
stream.

14https://www.microsoft.com/el-gr/microsoft-teams/
15https://zoom.us/



4 PUBLISHED IN: PROCEEDINGS OF THE WECML 2022

E. Facebook

Facebook16 has a voice and video calling feature which
has been widely used during the pandemic especially through
smartphones and 4G Networks for instant calls between users.
It has been reported by individual musicians that they could
conduct a real time musical performance using Facebook
during the pandemic. We ran Facebook in two different web
browsers on each endpoint machine, and we logged in using
four different accounts; we then connected the input and output
of the two accounts at one endpoint to achieve audio loopback.
In this way we could avoid echo cancellation and were able to
send and receive impulse audio signals so to measure delay.
Facebook uses the AAC audio codec, popularized by MPEG.

F. Skype

Skype17 is a very common tool for audio and video calls
between two or more users. It has been widely used for a long
time; after it was acquired by Microsoft, it was positioned as
an independent web conferencing tool (as opposed to Teams,
which offers extensive group collaboration functionality). It
runs as a desktop application in all operating systems. In terms
of audio delivery, Skype uses the SILK codec and a noise
cancellation process. Skype provides the feature of hosting a
room where a visitor can connect through an Internet browser
without logging in to an account. Using this feature, we signed
in to one Skype account at the first computer, and we used
two browsers in incognito mode for connecting to two different
rooms hosted in the first computer. In this way, we could send
and receive audio without any audio distortion.

G. Google Meet

Google Meet18 is Google’s web browser based conferencing
tool, which provides a room hosting feature. Similar to Teams,
it is part of a group collaboration suite. Google also offers
the Hangouts conferencing tool, which is an independent tool,
similar to Skype, but it has been discontinued, hence we did
not test it. In terms of audio quality configuration, Google
Meet’s documentation states that only Google administrator
accounts are allowed to use the option of audio device
configuration to enable or disable audio processes. We used
four different accounts to login to four corresponding different
browsers, two running at each machine, with the two accounts
connected at one machine to achieve audio loopback. Google
Meet uses a proprietary codec for audio.

IV. EXPERIMENTAL SETUP

A. Measuring Delay

The easiest way to measure audio delay in a two-way
configuration between two end points is to send audio from
one end and loop it back at the other end. Loopback can be
configured in multiple ways, from the physical layer to the
application layer. One can use the Windows 10 audio feature,

16https://www.facebook.com/
17https://www.skype.com/
18https://meet.google.com/

listen to the microphone, which loops back audio as it captures
audio samples and directly feeds them to the audio output
using a circular buffer. The smaller the audio buffer, the lower
the delay the user experiences to listen to his voice. But if
we want to take into account the audio processing delay, each
of the examined Web tools inserts to the audio chain, only
external audio loo back can be used.

External loopback can be achieved by connecting an audio
cable from the audio output to the audio input at the receiving
end, allowing the sender to hear a time-delayed version of the
signal sent. The problem with this configuration is that many
conferencing applications use echo cancellation to eliminate
echoes. The echo phenomenon occurs when a speaker hear his
or her own voice - while he or she speaks - delayed by a critical
amount of time, above which talking is impossible because
the speaker is being confused. Most conferencing tools cancel
echo by comparing the mic-in stream with the speaker-out
stream. If the two signals are similar, then cancellation is
enabled and the user cannot listen to the speaker-out stream.
This is exactly what we want to achieve with the external loop
back, though. Most of the tools examined in this study have
strong mechanisms for echo cancellation, due to their voice
orientation. As a result, we needed to modify the settings to
disable echo cancellation or, if no such setting was available,
use different connections in the forward and reverse direction
in order to loop back the audio and measure its delay.

B. Network Topology

We used two network configurations, shown in Figures 1
and 2. In both of them, the one endpoint is a computer running
Windows 10 placed in the Mobile Multimedia Laboratory19 of
the Athens University of Economics and Business, as the one
end point. In the WAN setup, shown in Figure 1, the second
endpoint was configured behind an ADSL line owned by one
of the MMLab members (also in Athens). A Dell latitude
laptop, running Windows 10, was connected via an Ethernet
cable to the ADSL router and audio was looped back using an
audio cable to connect the headphone output to the microphone
input. The laptop could be controlled remotely using the
Anydesk20 application. The WAN setup was configured using
the ADSL line, so as to experiment with real conditions and
not simulated ones. In the LAN setup, shown in Figure 2,
the second endpoint was another computer running Windows
10, also connected to the MMLab LAN, again using audio
loopback; essentially, the only difference between the two
configurations was the intervening network.

To measure the delays induced, two laptops were connected
to the endpoint on the left side of the figure: the first one
played impulse audio signals, which were fed to the com-
puter where the conferencing client was running, serving as
the audio source, and also to the other laptop, which was
configured to record two audio signals. The first signal came
from the playback laptop (direct audio, blue arrow), fed to the
left channel of the external sound interface (not shown in the
figures) of the recording laptop. The second signal was the

19https://mm.aueb.gr/
20https://anydesk.com/



PUBLISHED IN: PROCEEDINGS OF THE WECML 2022 5

Fig. 1. WAN experimental setup.

Fig. 2. LAN experimental setup.

looped back one, coming from the output of the conferencing
client and fed to the right channel of the external sound
interface (looped back audio, orange arrow). Essentially, the
recorded signal showed the original signal on the left channel,
and the looped back signal on the right channel. By looking
at the waveforms of the two channels, we could easily detect
the time shift of the impulses.

C. Delay Calculation

All recordings were made with Audacity21. The audio
routing was configured using an eight channel Mackie mixing
console. The recording laptop used an external USB audio
interface, the Focusrite Scarlett 2i2, to record the audio from
the sender (left channel) and receiver (right channel).

In each experiment, we recorded 60 sec of audio, and then
used the MIRToolbox [9] to process the audio. Specifically,
for each of the 50 audio pulses sent during the testing period,
we first calculate the delay for each pulse, by comparing the
outgoing and incoming signal, and then calculate the average
delay and its standard deviation.

V. ANALYSIS

Figure 3 shows the average MM2ME (two way) delays for
each tool, in seconds, with the blue and red bars showing the
delay in the LAN and WAN settings, respectively. Table II
shows the detailed results of our measurements: for each tool,

21https://www.audacityteam.org/

we show the average MM2ME, two way, delay measured in
milliseconds, and its standard deviation, first for the WAN and
then for the LAN setup. The last column shows the difference
between the two (WAN delay minus LAN delay).

From the results shown in Table II, we can observe that
Sonobus achieves (by far) the lowest delay values for both
configurations, as well as the lowest difference between the
WAN and LAN metrics (nearly tied with Zoom). The highest
delays in the WAN case are exhibited by Google Meet, as well
as the highest divergence between WAN and LAN; in the LAN
case, the worst delay is exhibited by Skype, which also has
the second highest difference between WAN and LAN, and
the highest variance in both scenarios.

Standard deviation is generally higher in the WAN setting,
which is as expected, since the network links are far more
unpredictable. An unexpected result is that Facebook exhibited
less latency in the WAN setup than in the LAN setup. This
is likely due to the choice of intervening server, which the
endpoints have no control over; if the server chosen is far from
the endpoints or the links to it are loaded, delays will suffer.
Since in each experiment Facebook can choose a different
server, a bad choice can make the LAN setting worse then the
WAN one.

TABLE II
AVERAGE AND STANDARD DEVIATION OF MM2ME (TWO WAY) DELAY

(MILLISECONDS).

WAN LAN Diff
Tool Avg Std Avg Std Avg

Sonobus 67 7 46 6 11
Jitsi 259 0.04 235 0.4 24

Teams 363 18 326 0.2 36
Zoom 400 0.9 388 0.3 12

Facebook 545 18 586 0.9 -40
Skype 672 61 613 10 59

Google Meet 1025 15 560 2 465

Based on our previous work [10] which showed that actual
musicians found NMP acceptable with delays of up to 80 ms
(MM2ME), it is clear that none of the Web conferencing
tools is up to the task of providing acceptable delays for
NMP sessions, in a realistic setting; even when both endpoints
are in the same room, the use of intervening servers leads
to unacceptable delays with most tools. Among the Web
conferencing tools tested, Jitsi has the lowest delay; Teams and
Zoom are one level up in delay; Facebook, Skype and Google
Meet have delays that are problematic not only for NMP, but
even for voice communications (recall that the delay tolerance
for voice calls is generally believed to be 150 ms M2E, or
300 ms MM2ME).

On the other hand, Sonobus offered acceptable delays in the
LAN scenario (23 ms M2E) and passable in the WAN scenario
(33.5 ms M2E). Even with the limitations of our study (small
data set, experiments at a single date/time), the gap between
an NMP-specific tool and the Web conferencing tools is more
than apparent.

VI. CONCLUSIONS

We provided a set of measurements of a number of popular
Web conferencing tools, as well as a dedicated NMP tool, in



6 PUBLISHED IN: PROCEEDINGS OF THE WECML 2022

Fig. 3. Average MM2ME (two way) delay (seconds).

order to assess their delay in a realistic setup, either in a LAN
or in a WAN environment. Our measurements indicate that
none of the Web conferencing tools is capable of offering the
ultra low delays needed for effective NMP sessions, unlike
the NMP-specific Sonobus which works fine over a LAN and
is borderline acceptable over a WAN. Jitsi, Teams and Zoom
were found to be acceptable for voice communication, while
Facebook, Skype and Google Meet were not even capable of
handling the requirements of good quality voice conferencing.

These results are preliminary, in that they do not reflect a
large number of test runs at different times and days, and we
did not safely determine whether each tool used an intervening
server and its approximate geographical position, although the
delay metrics, especially for the LAN setup, imply that a
server was used in most cases. We are working on gathering
additional measurements and determining the path that the
audio signals are taking in each test, so as to distinguish the
intrinsic delay of the tools from the delay induced by the
choice of servers.

ACKNOWLEDGMENTS

We would like to thank Prof. Chrisoula Aleandraki for
providing us with access the the Jitsi server maintained by
the MusiCoLab project.

REFERENCES

[1] N. Schuett, “The effects of latency on ensemble performance,” Bachelor
Thesis, CCRMA Department of Music, Stanford University, 2002.

[2] K. Tsioutas, G. Xylomenos, I. Doumanis, and C. Angelou, “Quality
of musicians experience in network music performance: A subjective
evaluation,” in Audio Engineering Society Convention 148, May 2020.

[3] C. Rottondi, C. Chafe, C. Allocchio, and A. Sarti, “An overview on
networked music performance technologies,” IEEE Access, vol. 4, pp.
8823–8843, 2016.

[4] K. Tsioutas and G. Xylomenos, “On the impact of audio characteristics
to the quality of musicians’ experience in network music performance,”
Journal of the Audio Engineering Society, vol. 69, no. 12, pp. 914–923,
2021.

[5] B. Sat and B. W. Wah, “Analyzing voice quality in popular VoIP
applications,” IEEE MultiMedia, vol. 16, no. 1, pp. 46–59, 2009.

[6] C. Agastya, D. Mechanic, and N. S. Kothari, “Mouth-to-ear latency
in popular VoIP clients,” Department of Computer Science, Columbia
University, Tech. Rep., 2009, CUCS-035-09.

[7] A. Beifuß and B. E. Wolfinger, “Measuring user-perceived end-to-
end delays in geographically distributed multimedia systems,” in 2018
10th International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops (ICUMT), 2018, pp. 1–8.

[8] C. Rottondi, M. Buccoli, M. Zanoni, D. Garao, G. Verticale, and A. Sarti,
“Feature-based analysis of the effects of packet delay on networked
musical interactions,” Journal of the Audio Engineering Society, vol. 63,
pp. 864–875, November 2015.

[9] O. Lartillot, D. Cereghetti, K. Eliard, W. J. Trost, M.-A. Rappaz, and
D. Grandjean, “Estimating tempo and metrical features by tracking the
whole metrical hierarchy,” in 3rd International Conference on Music &
Emotion, 2013.

[10] K. Tsioutas, G. Xylomenos, and I. Doumanis, “An empirical evaluation
of QoME for NMP,” in IFIP International Conference on New Tech-
nologies, Mobility and Security (NTMS), April 2021.


