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Abstract—We propose a self-sovereign and decentralized nam-
ing scheme for Information-Centric Networking (ICN) architec-
tures that makes content items self-verifiable. Our scheme is
based on Decentralized Identifiers (DIDs), an emerging identi-
fication scheme under standardization by the W3C. With our
solution, DIDs are used as content name prefixes and act as
the root of trust for the corresponding namespaces. A content
item in our scheme includes tamper-proof metadata that can
be used to verify its authenticity and integrity based only on
the content’s name, without relying on a trusted third party.
The owner of a DID can authorize content providers to publish
items under a sub-space of its namespace, or even fully delegate
the management of a sub-space of its namespace to a controlling
entity. We implement our scheme for the Named Data Networking
(NDN) architecture and show that it removes the need for trusted
third parties, enables hassle-free key rotation, and allows joint
namespace ownership and namespace management delegation,
with negligible computational and space overhead.

Index Terms—ICN, DID, NDN

I. INTRODUCTION

Content naming is the focus of many research efforts,
especially in the context of Information-Centric Networking
(ICN) [1], where content is directly identified by the network.
An important issue in any ICN architecture is how to securely
bind a content item to its name, in other words, how the
authenticity of an item can be verified. Content authenticity
verification is of particular importance, as ICN-based architec-
tures are susceptible to content poisoning attacks [2], where
malicious users pollute the network with fake content. This
kind of attack is further amplified due to the native support
of caching by ICN: if fake content is cached, it cannot be
easily evicted from caches [3]. Traditionally, this challenge is
handled with trust anchors, such as the digital certificates used
in legacy Internet systems, or the keyLocator scheme [4] of
the Named-Data Networking (NDN) architecture [5]. These
trust anchors, however, rely on the existence of trusted third
parties (TTPs).

In this paper we propose a content naming scheme which
is self-certifying, in the sense that the authenticity and the
integrity of a content item can be verified based solely on the
content name and the content item’s metadata, decentralized,
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in the sense that it does not depend on any third party service
for functioning, and self-sovereign, in the sense that users, in-
dependently and autonomously, can generate and name content
items in their namespace, authorize others to do so, or even
delegate control of (part of) their namespace to others, without
any need for TTPs. Content name prefixes in our scheme are
256 bit thumbprints of public keys, generated by the content
owner; therefore, prefixes are statistically unique and content
name collisions across different content owners are impossible,
without requiring a “name registration service” (e.g., see [6],
[7]), at the cost of making name prefixes non human-readable.

We achieve these goals by leveraging Decentralized Iden-
tifiers (DIDs). A DID is a new type of self-administered,
globally unique identifier, which is resolvable and crypto-
graphically verifiable [8]. These properties are achieved by
associating a DID with a DID document, which includes
public keys and auxiliary information that can be used to
securely link the DID to its owner. DID documents are
usually stored in a registry [9], which is trusted to implement
proper access control and DID document resolution. Our
scheme adapts a DID method of our own design, known
as did:self [10] (see Section III-C), which is compatible
with the W3C specifications but does not rely on a trusted
DID registry, having instead DID owners disseminate DID
documents by themselves. We take advantage of this property
to include the DID documents in the metadata of the content
items, thus making the content items self-verifiable.

In our scheme, DIDs are used as content name prefixes;
any content items under that prefix belong to a protected
namespace controlled by the owner of the DID. In this manner,
the binding between a content name and the public key of its
owner can be achieved without a TTP; this binding is essential
for achieving content authenticity [11]. Each protected content
item is accompanied by some metadata, which include a DID
document that corresponds to the DID of the content owner
and an attestation, i.e., information for verifying the item’s
integrity and authenticity. The attestation is protected by a
digital signature, which can be validated using a public key
specified in the included DID document. By leveraging the
properties of did:self, any entity can verify the correct-
ness of the DID document associated with a content item,
extract the appropriate public key, and verify the attestation’s
signature. Furthermore, the owner of a DID can authorize a
third party to sign attestations under a part of its namespace, or
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even to fully manage subsets of its namespace. These features
enable secure and controlled management of the namespace
(see Section III-C).

Our metadata-based approach has significant advantages
compared to existing solutions that rely solely on content
names to achieve the same properties, e.g., the InterPlanetary
File System (IPFS) [12] which uses content hashes as names to
bind each content item to its name. Those solutions, although
simpler, have many drawbacks when it comes to mutable
content items, since every time an item is modified its hash,
and therefore its name, changes completely. We discuss these
issues in more detail in Section II.

Compared to public key-based solutions, our DID-based
approach facilitates key management, ownership transfer, and
joint ownership. For example, in an IoT installation our
scheme allows each IoT device to rotate its keys, without
affecting the rest of the system; in contrast, in a system based
on digital certificates, an IoT device would require an updated
certificate for the new key.

Last but not least, in our system content names are location
independent, which is significant in architectures such as ICN,
where content should not be tied to a network endpoint.

Overall, our paper makes the following contributions:
• We present and analyze our did:self DID method for

building self-certifiable content items, i.e., content items
whose authenticity can be verified based solely on their
DID-based name prefix.

• We leverage the properties of DIDs to enable content
owners to authorize third parties to vouch for the authen-
ticity of content items published under a specific sub-
space of their DID-based namespace.

• We allow content owners to delegate the management
of specific sub-spaces of their DID-based namespace
to third parties, while retaining the authority to modify
authorizations and delegations.

• We implement our scheme for the NDN ICN architecture
and integrate it with NDN’s prototype implementation.

The remainder of this paper is organized as follows. We
discuss related work in this area in Section II. In Section III
we provide an introduction to NDN, present a reference
scenario to motivate the goals of our scheme and describe
the did:self DID method. In Section IV we present the
design of our scheme and how it meets our goals. We discuss
the implementation of our scheme in Section V and evaluate
its performance and security aspects in Section VI. Finally, we
outline future work in Section VII.

II. RELATED WORK

The most straightforward approach to implement self-
verifiable content items is to include a hash of the content
in the content’s name. This approach has been widely studied
even beyond the context of ICN. For example, Fu et al. [13]
propose a file system for read-only data where the hash of the
content name is also part of the file name. RFC 6920 [14]
defines how the hash of a content item can be used as a
name. Kuhn et al. [15] define a URI type that includes a
cryptographic hash of the content. The InterPlanetary File

System (IPFS), which is a global-scale p2p network used for
file storage and sharing, also uses content names derived from
hashing content items [12]. It is no surprise that the same ap-
proach has also been considered by many ICN-related efforts.
Baugher et al. [16] propose a self-verifying name solution
for the Content-Centric Networking (CCN) architecture, that
uses a content hash as the content’s name for read-only data.
Similarly, Won and Nikander [17] propose a naming solution
for ICN where content names include the content hash. Safdar
et al. [18] propose a naming scheme for vehicular networks
based on CCN where the content hash is part of the content
name, whereas Arshad et al. [19] propose a similar approach
for an ICN-based IoT architecture.

Using a content item’s hash as its name is problematic for
content items which are often modified, for example, the index
page of a website, since whenever an item is modified, it must
also be renamed. This has a dual impact: first, a resolution
system is needed to allow users to look up the name of the
latest version of an item and, second, evicting the old versions
of content items from caches and replication points is slow,
since from the network’s perspective, a new version of an item
is just another item. Our system relies on the content item’s
name prefix and some metadata embedded in the content item
to achieve its security properties. Therefore, existing name-
based solutions for managing versions of the same item can
still be used (e.g., [20]). By allowing these solutions, there is
no need for a lookup service to provide the name of the current
version of an item, while in-network storage elements can
distinguish among various versions of an item and implement
smarter eviction mechanisms. Both hash-based approaches and
our solution result in non human-readable content names.
However, in our solution only a content owner-specific prefix
in non-readable: the remainder of the name can be human-
readable.

Another approach for implementing self-verifiable content
items is to include the public key of the content owner in
the content name, and then use this key to sign metadata
that ensures content integrity and authenticity. This is an
approach with considerable history: back in 1998, Mazieres
and Kaashoek proposed a decentralized file system where
filenames are prefixed by the hash of a public key controlled
by the “host” of the file [21].

The DONA architecture was a significant early effort to use
self-certified names in ICN [22]. In DONA each content item
is identified by a pair of labels, P and L, where P corresponds
to the public key of the content owner, and L to a data label.
Each content item in DONA includes in its header a digital
signature generated using P . A similar approach is followed
by Ghodsi et al. [23]. The drawback of these approaches is
that the content (and key) owner is the only entity that can sign
the metadata, therefore, in order to delegate storage of mutable
items to third party entities (e.g., a CDN provider), owners
have to share their signing key with them. Our solution does
not have this limitation, allowing content owners to authorize
third parties to publish data in a secure and controllable way.

The naming scheme of the NetInf architecture is very close
to our system [24]. NetInf uses as part of the content name the
hash of a public key P . The private key that corresponds to P
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is used to sign a metadata field that includes, among others,
the hash of the content item, verifying this way its authenticity
and integrity. Furthermore, using a chain of certificates rooted
at P , other keys can be authorized to sign the metadata field.
Our solution uses the emerging standard of DIDs, instead of
the custom certificates of NetInf, and it offers some additional
security features, e.g., it allows a delegee to rotate its key
without having to receive a new “authorization”.

Other similar approaches use alternatives to public keys, in
order to combine human readable names with content-based
security. For example, Zhang et al. [25] leverage Identity-
Based Encryption (IBE) to build an ICN system where human
readable names are also public keys. A similar approach is
proposed by Hamdane et al. [26]. IBE suffers from the so-
called key escrow problem where a centralized trusted entity
(the key generator) must know all private keys. In our solution,
all private keys are secret. Similarly, Ramani et al. [27] use
Attribute-Based Encryption (ABE) to sign content metadata.
An advantage of their approach is that it adds a level of privacy,
since it is possible to prevent the correlation of two digital
signatures, as many entities may share the same attribute. On
the other hand, such solutions are not scalable, since all entities
must agree on a common set of attributes and trust the same
attribute issuing entity. Our solution does not rely on third
parties that would limit its scalability.

Many schemes achieve the same goals as our system by
using trust anchoring instead of self-certifying names. For ex-
ample, Yu’s solution [7] implements a PKI-like approach that
relies on trusted Certificate Authorities (CAs). Other solutions
try to improve this scheme by introducing alternatives to CAs,
e.g., “neighbor-based trust” [28], or a blockchain [29]. Nev-
ertheless, the security of these solutions depends on the trust
anchoring service. Moreover, these approaches are inflexible
when it comes to defining trust relationships. Motivated by the
latter limitation and inspired by the work of Blaze et al. [30],
Yu et al. [31] proposed the use of “trust schemata” that allow
each entity to define “rules” for managing trust relationships.
Our solution is similar to [31] but it shifts trust management
to the content producer. With our solution, a content producer
can define trust management rules, akin to [31], and securely
embed them in the content items themselves.

III. BACKGROUND AND SYSTEM OVERVIEW

In this section we provide an introduction to NDN, we
outline a reference scenario that is later used to explain our
solution’s operations and illustrate its capabilities, and, finally,
present DIDs and the did:self method.

A. An NDN Primer

NDN is probably the most popular ICN architecture, with
an active research community, an evolving prototype imple-
mentation, and a large network testbed for experimentation.
In NDN, everything revolves around content items. Content
consumers issue Interest messages to request items, which
content producers return using Data messages; all messages
carry the name of a content item. NDN names are hierarchical,
but not necessarily human-readable.

All NDN nodes (routers and hosts), maintain three data
structures. The Forwarding Information Base (FIB) maps
content name prefixes to the output port(s), also called face(s)
in NDN parlance, that should be used to forward Interests to-
wards appropriate data sources; note that faces can lead to both
network interfaces (when the Interest must be forwarded to
another node) and local applications (when the application can
provide the content item). The Pending Interest Table (PIT)
records the face(s) from which active Interest messages have
arrived, i.e., those Interests for which Data messages are
still expected; PIT entries are consumed by returning Data
messages. Finally, the Content Store (CS) is a local cache for
content items.

When an Interest is received by an NDN node, the node
extracts the content name and checks if the requested content
item has been cached in the CS or is locally hosted; if so,
the content item is returned in a Data message through the
incoming face and the Interest is discarded. Otherwise, the FIB
is checked in order to decide where to forward the Interest.
If a matching entry is found in the FIB, the Interest is sent
through the appropriate face and its incoming face is added
to the PIT. Data messages are routed back to the consumers
hop-by-hop, using the pointers stored by the Interests in the
PITs; when a Data message is received, we look up in the PIT
where the corresponding Interest came from, forward the Data
through that face, and delete the PIT entry.

NDN supports the cryptographic binding of names to con-
tent items, by including in each Data message a signature,
covering both the name and the content, as well as a pointer to
the key used for signing. Any NDN node can therefore verify
the binding between the name and the content item included
in a message. However, to verify that the information comes
from an authorized source, a node must trust the owner of the
public key used for signing.

B. Reference scenario and requirements

To illustrate the goals of our solution, we consider the
smart city platform depicted in Figure 1, which uses NDN’s
hierarchical naming scheme. The platform includes a number
of IoT devices, each producing content items whose names
start with a platform-specific prefix, e.g. “<platform>”. An
important requirement in this scenario is that the platform
owner should be able to authorize an IoT device to publish
information under a sub-space of the “<platform>” names-
pace. For example, the drone on the bottom of the figure could
be allowed to publish information, but only under the prefix
“<platform>/roadB23/traffic”. Each device should vouch for
the authenticity of the items it produces by signing them with
its own private key.

In order to further decentralize management, the platform
owner should also be able to delegate the administration of
sub-spaces of the root namespace to third parties. For example,
the “<platform>/smart-building1” sub-space, could be dele-
gated to a building administrator; the building administrator
could then authorize an energy provider to publish information
related to the energy consumption/production of the building,
a health service to publish health related alerts, and a building
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<platform>

/smart-building1

/roadB23

/noise /traffic /constructions

<platform>/roadB23/traffic

/panel1 /covid /lights

Fig. 1. A smart city platform.

management service to publish information about the status
of the building lights. Even though a sub-space has been
delegated, the platform owner should retain the right to modify
delegations and authorization.

Both publication authorization and delegation of namespace
management should fulfill the following additional require-
ments:

• Content consumers should be able to verify the authentic-
ity of the published content solely by knowing the prefix
used by the platform; in other words, that prefix is the
trust anchor.

• Authorized content producers should be able to rotate
their signing keys without having to “re-new” their au-
thorization. This is important in the smart city scenario,
where the producers can be IoT devices with intermittent
network connectivity.

C. Decentralized Identifiers and did:self

DID-based decentralized identification system associate a
DID with a DID document. The DID is used as a globally
unique identifier of the DID owner, whereas the DID document
includes information that can be used for interacting securely
with the DID owner. More specifically, a DID document
includes verification methods, usually public keys, as well as
verification relationships that define the purpose of a verifica-
tion method, e.g., a public key may be used to authenticate a
DID owner, or to verify a digital signature generated by the
DID owner. The W3C recommendation for DIDs encourages
the specification of DID methods by third parties. Each DID
method defines its own DID format (which must be in the
form of a URI, prefixed with “did:” and followed by the DID
method name), as well as how DID documents are resolved.
In this paper we use our own did:self method, which is
included in the W3C registry of DID methods.1

1https://w3c.github.io/did-spec-registries/#did-methods

did:self:3rdYsl79x51…AqeElI

{
[…]

}

DID Document

{
"alg": "ES256",
"jwk": {

"kty": "EC",
"crv": "P-256",
"x": "5y9L_pOE…-oFsRNJk",
"y": "lxDZv…WtJazcUCRw"

}
}

Proof

{
"iat": 1662734955,
"exp": 1662736155,
"s256": "1SxLFIJCm…DckIR6nc"

}

Signature

H
ea

d
er

Pa
yl

o
ad

SHA-256

Thumbprint

Verifies

Fig. 2. Components of did:self. A did:self DID is the thumbprint of a public
key. The corresponding private key is used to sign a proof that includes the
hash of the DID document.

In did:self a DID is a thumbprint of a JSON Web
Key (JWK) [32] prefixed with “did:self:”. This key is
owned and managed by the DID owner. A DID document
is encoded using JSON and may include any of the DID
“properties” included in the DID specifications. The binding
between a did:self DID and a DID document is achieved
using a proof, which is a “compact serialization” of a JSON
Web Signature (JWS) (section 3.1 of [33]) generated by the
DID owner. The header of such a proof includes the following
claims:

• alg: The algorithm used to generate the signature of the
proof (a list of supported algorithms is defined in Section
3 of RFC 7518).

• jwk: The public key that corresponds to the private key
used to generate the signature of the proof. This key is
expressed as a JWK and its thumbprint must match the
did:self identifier.

The payload of the proof includes the following claims:

• iat: The proof’s generation time.
• exp: The proof’s expiration time.
• s256: A SHA-256 hash of the DID document, encoded

in the base64url format.

Given a did:self identifier, a DID document and its
proof, one can verify that the DID document is a valid
document for the given identifier as follows:

1) Check that the did:self identifier is equal to the
thumbprint of the public key in the jwk field in the
proof’s header.

2) Verify that the proof is still valid using the exp and
iat fields.

3) Calculate the SHA-256 hash of the DID document and
verify that it is equal to the s256 field of the proof.

4) Verify the signature of the proof using the jwk in the
proof’s header.

The components of did:self (the DID, the DID Docu-
ment and the proof), and their relationships are illustrated in
Figure 2.
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IV. SYSTEM DESIGN

In this section we explain how our scheme operates in detail,
outlining its component entities, the operations on them and
the rationale for our design.

A. System entities

Our system design includes content producers that pub-
lish and advertise content items, and content consumers that
express interest in content items. The names of the content
items are hierarchical and unique: two items with the same
name must be the same item. Namespaces for “self-verifiable”
content items are rooted at a did:self DID, that is, the DID
is the prefix of the namespace; therefore, it is impossible to
have naming conflicts across namespaces. These namespaces
are owned by the owner of the corresponding DID. An owner
can publish content items under its namespace, can authorize
other producers to publish content items under a specific sub-
space of its namespace, and can delegate the administration
of a specific sub-space of the namespace to a third party
controller. A self-verifiable item includes some metadata:
using only these metadata, the integrity of the content item
and its authenticity can be verified. Furthermore, if a self-
verifiable item has been published by an entity other that the
content owner, it can be verified whether this entity has been
authorized by the content owner.

B. DID document properties

In order to achieve the desired functionality, a DID docu-
ment in our system includes the following standard fields and
properties (see also Figure 3):

• id: The did:self DID which the document corre-
sponds to (line 2 in Figure 3).

• verificationMethod: A list of public keys ex-
pressed using the “JsonWebKey2020” encoding [9]. Each
entry in the list includes an id property, which, pre-
fixed with the DID itself, is used as a unique identifier
for this verification method (i.e., for this key). Each
entry also includes a publicKeyJwk property, which
contains the actual public key expressed as a JSON
Web Key (JWK) [34]. In the example of Figure 3,
the verificationMethod is included in lines 3–
14. Lines 4–12 define a single public key, identified by
“#key1”.

• assertion: An identifier of a public key defined in a
DID document; note that this public key may be defined
in another DID document. The corresponding private
key is used for signing content attestations (see the
following sub-section). In the example of Figure 3, the
assertion in line 15 indicates that “#key1”, defined
in the same document, will be used for verifying content
attestations. Note that we use different keys to sign
content attestations (the assertion key) and DID document
proofs (the key corresponding to the DID itself).

Our system also introduces a new DID document prop-
erty named caveats. This property includes an array of
content names, which is used to restrict the scope of the

1. {
2. "id": "did:self:3rdYsl...9cs0iUfNAqeElI",
3. "verificationMethod": [
4. {
5. "id": "#key1",
6. "type": "JsonWebKey2020",
7. "publicKeyJwk": {
8. "kty": "EC",
9. "crv": "P-256",
10. "x": "5y9L_pOEye...oFsRNJk",
11. "y": "lxDZvayjRU...JazcUCRw"
12. }
13. }
14. ],
15. "assertion":"did:self:3rdYsl...9cs0iUfNAqeElI#key1",
16. "caveats" :[
17. "photos/"
18. ]
19. }

Fig. 3. A DID document used in our system.

corresponding DID document, i.e., the DID document can
be used to validate only content items prefixed by a name
included in the caveats property. In the example of Figure 3,
the caveats property in lines 16–18 indicates that the DID
document can only be used to validate content items prefixed
by the did:self identifier, followed by the word “photos/”
(line 17). Finally a DID document, instead of the assertion
property, may include the standard property controller
(not shown in Figure 3), whose value must be a did:self
DID: the DID document corresponding to the controller
will then include the appropriate assertion properties.

C. Operations

In the remainder of this section, we assume that all op-
erations take place under a protected namespace rooted at a
did:self DID, referred to as DIDroot. We will refer to the
owner of DIDroot as Ownerroot.

1) Self-verifiable item creation: A content item becomes
self-verifiable by adding to it some metadata that include a
did:self header and a signed attestation. The did:self
header is a sequence of DID documents and proofs that (se-
curely) lead to a public key, which is used in an assertion
verification relationship. This key, referred to as the assertion
key, is used to verify the signature of the attestation. An
attestation is a compact serialization of a JWS that securely
binds the content to its name. The payload of an attestation
includes the content’s name and a base64url encoded hash of
the content item calculated using SHA-256. This payload may
also include other auxilliary information.

Figure 4 provides an example of a self-verifiable content
item. The did:self header of this item includes a DID
document for DIDroot and the corresponding document proof
(omitted for clarity reasons). As the figure shows, the in-
cluded DID document defines a public key and uses it in the
assertion verification relationship: this key, therefore, is
used to verify the signature of the attestation.

2) Producer authorization: Consider now a producer P
that owns a public key PubP , for example, the drone in
Figure 1. Ownerroot can authorize P to create self-verifiable
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did:self header Attestation Data

{
“id”: “<DIDroot>”,
“verificationMethod” :[{

“id”: “#key1”, 
…

}],
“assertion”:     

“<DIDroot>#key1”
}

{
“name”: “<DIDroot>/sensor1/noise/#2345”,
“sha-256”: “<hash(Data)>”

}
<signature> […]

Fig. 4. A self-verifiable content item, generated by Ownerroot. The arrows
show which key can be used to verify each signature.

did:self header Attestation Data

{
“id”: “<DIDroot>”,
“assertion”:     

“<DIDP>#key1”,
“caveats”:[

“ScopeP”
] 

}

{
“id”: “<DIDP>”,
“verificationMethod” :[{

“id”: “#key1”, 
…

}]
}

{
…

}
<signature>

[…]

Fig. 5. A self-verifiable content item, generated by an authorized producer.
Note that the assertion property of DIDroot includes the identifier of a key
defined in the DID document of DIDP .

content items under DIDroot/ScopeP /, where ScopeP can
be any valid prefix. The simplest way to achieve this is by
creating a DID document for DIDroot that includes ScopeP /
in its caveats, PubP in a verification method, and the id
of PubP in the assertion verification relationship. Then,
Ownerroot transmits that document and its proof to P , and
P uses them in the did:self header of its self-verifiable
items. The metadata of such an item will be similar to those
in Figure 4; the only difference is that the secret key belongs
to P and not to Ownerroot. Note that P cannot modify the
DID document, as only Ownerroot can generate a proof for
it, therefore P cannot change its signing key.

As an alternative, consider a producer P that owns a
did:self identifier DIDP and defines in its DID document
a public key with identifier DIDP#key. Ownerroot can then
authorize P to create self-verifiable content items under sub-
space DIDroot/ScopeP / by creating a DID document that
includes DIDP#key in the assertion property. To make con-
tent items self-verifiable, P has to include in their did:self
header the DID document generated by Ownerroot, as well
as the DID document that corresponds to DIDP (and the
corresponding proofs), as shown in Figure 5. The first DID
document, generated by Ownerroot, includes in its assertion
property a key, which is defined in the second DID document,
generated by P .

Although both approaches authorize P to create self-
verifiable content items under a sub-space of the Ownerroot
namespace, the former approach authorizes a specific key
owned by P , while the latter approach allows P to change
the public key that corresponds to DIDP#key. Indeed, P
can simply generate a new DID document with the new key
(but the same identifier) and include that document (and its
proof) in the did:self header. As a result, P can rotate its
signing keys without involving Ownerroot.

did:self header Attestation Data

{
“id”: “<DIDroot>”,
“controller”: “<DIDC>”,
“caveats”:[

“ScopeC”
] 

}

{
“id”: “<DIDC>”,
“assertion”:     

“<DIDP>#key1”,
}

{
“id”: “<DIDP>”,
“verificationMethod” :[{

“id”: “#key1”, 
…

}]
}

{
…

}
<signature>

[…]

Fig. 6. The did:self header of a self-verifiable content item, generated by
a producer, authorized by a controller. The owner’s DID document indicates
the controller, while the controller’s DID document points at an assertion key
defined in the producer’s DID document.

3) Sub-namespace management delegation: Finally, con-
sider an entity C that owns a did:self identifier DIDC ,
for example, the manager of smart-building1 in Figure 1.
Ownerroot can allow C to become a controller of a sub-space
DIDroot/ScopeC/, where ScopeC can be any valid prefix.
This is achieved by including the controller property in
the DID document of Ownerroot and setting its value equal
to DIDC . A controller can create self-verifiable content items
under DIDroot/ScopeC/, similar to an authorized producer.
More importantly, though, C can also authorize other produc-
ers to create such items under this sub-space or a subset of
it.

Controller C can then generate valid DID documents for
its delegated sub-space under DIDroot and include them in
the did:self header of the metadata. Figure 6 provides an
example of a did:self header created by a producer P
authorized by a controller C. Controller C has defined in its
DID document an assertion property that refers to a public
key defined in the DID document of producer P .

4) Content verification: Upon receiving a self-verifiable
content item identified by DIDroot/suffix, a consumer can
assess its validity by verifying the attestation included in the
item’s metadata. This is achieved by executing the following
steps:

1) Verify that the name and sha-256 fields of the attes-
tation include the correct values.

2) Validate the DID document of DIDroot using the pro-
cedure of Section III-C.

3) If the DID document of DIDroot includes the
caveats property, verify that suffix is covered by
it.

4) If the DID document of DIDroot includes the
controller property, locate the controller’s DID doc-
ument in the did:self header and validate it.

5) Extract the assertion property included in the DID
document of DIDroot (or in the DID document of the
controller).

6) If the public key referenced by the assertion prop-
erty is included in another DID document, locate that
document in the did:self header and validate it.

7) Verify the signature of the attestation using the public
key referenced by the assertion property.
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Fig. 7. The NFD daemon and its links with other processes (for a Linux-based
node).

V. IMPLEMENTATION

We have implemented a proof of concept of our solution
using our Python3-based implementation of did:self.2 As a
verification method we are using Ed22519 cryptographic keys.
Attestations are signed are serialized using the JWS format
by using the JWCrypto library,3 while the SHA-256 hashes
included in the various proofs use Python’s hashlib library.
We also created a Python3 application that receives as input a
content item, the appropriate DID documents and proofs, and
the corresponding secret keys, producing as output a “self-
verifiable content item.” The same application can also verify
such items.4 We next explain how this implementation can be
integrated into NDN.

A. Integration with the NDN prototype

The Named Data Networking Forwarding Daemon (NFD)
is a prototype implementation of the NDN protocol suite,
which incorporates the complete content-based functionality of
a router [35]. The core element of NFD is the nfd-daemon,
a process running in the background that listens to prede-
fined sockets for packets originating from local or remote
applications. The nfd-daemon is controlled by a command
line configuration tool, named nfdc. The NDN applications
generate data plane packets, while nfdc sends control plane
packets to configure the router’s functionality, as shown in
Figure 7.

In general, NDN data plane packet handling is defined
through forwarding strategies; these are sets of rules that
govern the selection of the faces (network interfaces or local
applications), to push a received packet to. Strategies allow
the implementation of diverse content delivery patterns, such
as multipath (by forwarding the packet over multiple faces),
shortest path routing (by forwarding the packet over the face
that reported the minimum latency) and more.

In the context of this work, we focus on the handling of
NDN Data packets that include self-verifiable content items.
When packets are sent by applications, they also carry some
metadata, as an authentication block. By having the first
on-path router audit the metadata, we can enforce security
early on. The metadata audit mechanism can be implemented

2https://github.com/mmlab-aueb/did-self-py
3https://jwcrypto.readthedocs.io/en/latest/
4https://github.com/mmlab-aueb/did-self-svci.

through a new forwarding strategy for NDN Data packets,
defined as follows:

1) Check if the current node is the first on-path router; if
not, then the node forwards the Data packet according
to the default forwarding policy.

2) Parse the metadata from the header and check if it is
valid for the content name of the Data packet.

a) If it is not valid, then discard the packet and send a
Negative Acknowledgement (NACK) packet to the
consumer. The NACK notifies the consumer that
the Data packet was not valid, and consumes the
PIT state on the preceding on-path routers.

b) If it is valid, then sign the packet with the router’s
unique certificate to mark the packet as success-
fully audited, and forward it according to the
default forwarding policy.

NACKs can open the door to simple Denial of Service (DoS)
attacks, if malicious users are allowed to inject NACKs for
Interests that traverse their node. This is a trivial way to
censor content considered subversive or simply undesirable.
Therefore, we assume that NACKs are secured according to
the design proposed in [36], where NACKs are signed by the
producers or, in our case, the in-network routers.

Although this is a straightforward implementation, it con-
flicts with two design tenets of NFD. First, NFD defines
forwarding strategies at the content name level and introduces
an 1-to-1 mapping between the forwarding strategy and the
content name at each node; different on-path routers can use
different forwarding policies for the same content name. If the
audit mechanism is implemented as a forwarding strategy, then
the auditing nodes will no longer be able to select alternative
forwarding strategies. Second, in NFD, a forwarding strategy
can postpone the delivery of a Data packet (by delaying its
forwarding), but is not meant to permanently drop a Data
packet, since this operation breaks the 1-to-1 Interest-to-
Data packet matching. NDN does not endorse dropping Data
packets; it suggests that Interest packets should be discarded
instead.

To support the utilization of different forwarding strategies
in parallel with our solution, we propose implementing it as
a module of the core forwarding functionality, thus making it
independent from the forwarding strategy. In this approach, the
audit algorithm is engaged regardless of the strategy mapped to
the name, which only deals with the selection of the outgoing
face for the Data packet or the NACK. There are two open
issues that remain to be resolved: the definition of the name
space that the metadata auditing will be enabled for and the
implementation of the metadata check module.

Regarding the application scope of our mechanism, we
restrict it to a designated name prefix, namely, DIDCHECK.
This is critical for the transparent operation of our module
in the core of NFD, since the control plane of NFD also
follows the Interest-Data communication pattern; without this,
Data packets that do not carry a DID, such as control plane
packets, would be erroneously rejected. Therefore, each time a
Data packet is received, its name is checked; if the designated
prefix matches, only then the metadata are audited.
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TABLE I
CRYPTOGRAPHIC OPERATIONS REQUIRED BY OUR SOLUTION AND THEIR

PROCESSING OVERHEAD.

Operation Time (ms)
Generation of a key pair 46

Generation of a DID document and its proof 2.7
Calculation and serialization of a content attestation 0.7 + 7*(size of item in MB)

Verification of a DID document 1.5
Verification of a content attestation 0.2

Regarding the implementation of the metadata audit module,
we consider it too generic to be included in NFD, hence
we exploit the Python3 implementation discussed above. The
communication of the C++ implementation of NFD and the
Python process is based on the popen (process open) com-
mand5 offered by the Linux kernel, which allows a C++
process to invoke a Python process and read the output of
the latter through a pipe stream. This approach allows a
seamless integration with the NFD code, in that only minor
modifications are required, and offers sufficient performance,
at least in the context of our design.

VI. EVALUATION

We evaluate the performance of our solution using the im-
plementation presented in the previous section and a machine
running Ubuntu 18.04 with a 3.1GHz Intel i5 CPU and 2GB
of RAM. For our performance evaluation we are considering
three scenarios:

• Scenario A: The content owner generates the metadata.
• Scenario B: A producer authorized by the content owner

generates the metadata.
• Scenario C: A producer authorized by a controller gen-

erates the metadata.

A. Computational overhead

All scenarios involve the creation of (at least) a DID, the
corresponding DID document and its proof. In our implemen-
tation, DID creation requires the generation of an Ed22519 key
pair, while proof generation requires an EdDSA signature. All
scenarios also involve the generation of an attestation for the
content. Finally, all scenarios require the verification of (at
least) a DID document and an attestation. Table I shows the
time required (in ms) to perform the operations of our system.
We see that most operations are executed in less than 3 ms; the
exception is key pair generation which is only rarely needed.
The only variable performance metric is the time required to
create an attestation, since this involves the calculation of the
SHA-256 hash of the file. In our evaluation machine, using
the sha256sum command, this requires ≈ 7 ms per MB.

When it comes to the verification of a content item, in
Scenario A, a consumer has to verify one DID document
and one attestation, in Scenario B, two DID documents and
one attestation, and in Scenario C, three DID documents and
one attestation. Table II shows the time required (in ms) for
a consumer to verify a content item. In terms of verifica-
tion overhead, the existing, trust schemata-based approach of

5https://linux.die.net/man/3/popen

TABLE II
TIME REQUIRED TO VERIFY A CONTENT ITEM.

Scenario Time (ms)
Scenario A 1.7 + 7*(size of item in MB)
Scenario A 3.2 + 7*(size of item in MB)
Scenario C 4.7 +7*(size of item in MB)

TABLE III
SIZE (IN BYTES) OF THE DID:SELF HEADER.

Scenario Size (bytes)
Scenario A 713
Scenario A 1209
Scenario C 1701

NDN [31], has the same overhead as Scenario A, since it
requires the verification of a digital certificate, the calculation
of the hash of the content item, and the verification of a digital
signature.

A content producer has to perform the following tasks:
generate an attestation signing key and the corresponding DID
document once, regardless of the number (and size) of content
items, and then, for each content item calculate its SHA-
256 hash and sign its attestation. Additionally, every time the
generated DID document expires, the producer has to generate
a new DID document and generate a fresh proof. The producer
does not have to change the attestation signing key whenever
a new DID document is created. When the attestation signing
key needs to be updated, all signed attestations must be
updated as well, without re-calculating the SHA-256 hashes of
the content items. In terms of content production overhead, the
existing, trust schemata-based approach of NDN [31] has the
same overhead as our solution, since it requires the generation
of a single digital certificate, the calculation of the SHA-256
hash of each item and the creation of a digital signature per
item.

B. Communication overhead

We now calculate the communication overhead introduced
by our solution. We only consider the did:self header,
since NDN already includes a data structure similar to the
attestation. For our calculations, we assume that the DID doc-
ument of the content owner includes the caveats property
and its value is a single 10 byte string. Table III shows the
size of the did:self header for each scenario. We see that
the maximum size of the did:self header is 1701 bytes.

The existing, trust schemata-based approach of NDN, uses
smaller packets than our solution, but it requires more mes-
sages to verify a content item. Rather than embedding the
verification metadata in the content, as in our solution, NDN
includes a name in the content that can be used to retrieve a
certificate from the network, relying on caching to decrease
the communication overhead. In order to better understand
the trade-offs, we consider an alternative to our solution,
which is closer to the solution currently used by NDN. In
this alternative, rather than including DID documents in a
content item’s metadata, we treat the did:self header itself
as a content item, that can be fetched from the corresponding
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Fig. 8. Content retrieval when the did:self header is embedded in the content
item (A), or provided as a standalone item (B). Dotted lines indicate Interest
packets and solid lines indicate Data packets.

Producer. Moreover, we assume that the did:self header
required for validating an item is retrieved using a well-known
content identifier of the form <content name>/did-document.

We compare these two options over the NDN testbed,6

a global shared resource created for research purposes that
relies on software routers at several participating institutions,
application host nodes, and other devices. We allocated two
testbed nodes, one provided by the Athens University of
Economics and Business (mmlab-1), and another provided
by the University of Memphis (UoFM). Node UoFM acts as
an authorized content producer. We assume that a consumer
application connects to mmlab-1 and requests a content item.
Moreover, for the second option, we assume that the content
item that corresponds to the did:self header has already
been cached by mmlab-1.

Content retrieval using our original solution is illustrated
in Figure 8.A. The Interest for the content item (dotted line)
arrives to UoFM; the latter node responds with the content
item itself (solid line), which can be immediately verified.
Content retrieval using the alternative approach is illustrated
in Figure 8.B. In this case, the received content item does
not include the did:self header; the consumer application
sends a second Interest message and receives a cached version
from mmlab-1. With the alternative approach we can save
713–1701 bytes (see Table III) per content item in the link
between mmlab-1 and UoFM, at the cost of an additional
roundtrip between the consumer and mmlab-1.

C. Security evaluation

Our solution considers the threat model of [31]. In partic-
ular, we consider that threats to data authenticity verification
include failed authentication of a legitimate signing key, at-
tackers trying to impersonate content owners or authorized
producers, as well as malicious keys. Additionally. we consider
adversaries based on the Dolev-Yao model [37], i.e., adver-
saries that tamper with network packets but cannot break the
security of the used cryptographic primitives. Assuming that a
consumer knows the DID used as the prefix of a content item’s
name, our solution achieves the following security goals in this
threat model.

6https://named-data.net/ndn-testbed/

Content producers are always properly authenticated.
Content owners in our solution are authenticated using a public
key which is part of the content name. Our solution, therefore,
does not depend on any trusted entity to verify the owner’s
identity. Similarly, authorized producers are authenticated us-
ing information included in the content item’s metadata. This
limits the chance of implementation errors that would result
in failing to authenticate an authorized producer.

Attackers cannot impersonate content owners or autho-
rized producers. Assuming that the private key that corre-
sponds to the DID of a content owner or authorized producer is
properly secured, then an attacker cannot impersonate them. If
an attacker gains access to the private key of a content owner,
then the corresponding DID must be changed, which means
that content consumers must learn a new content name prefix.
On the other hand, updating the DID of an authorized producer
(e.g., due to a private key breach) requires only the issuance
of new DID documents. Furthermore, old DID documents
(e.g., included in cached items) can be invalidated using DID
document revocation. We have adapted a revocation scheme
designed for Verifiable Credentials (VCs), presented in [38];
a similar approach has been proven to be scalable and privacy
preserving at an Internet-wide scale [39]. In our scheme, each
DID owner maintains a revocation list for all DID documents
that it has issued, until they expire, in the form of a bit
string. Each DID document issued by the owner corresponds
to a position in this list. Revoking a DID document requires
setting the corresponding bit in the revocation list to 1. Each
DID document includes in its document proof the property
“revocationListIndex” which specifies its bit position in the
revocation list, and the property “revocationListCredential”
that includes a did:self DID used as a prefix of the
revocation list name. The latest version of a revocation list
can be retrieved using a synchronization protocol, such as
ChronoSync [20].

Our solution is resilient to malicious keys. A DID
document included in the metadata of a content item enforces
a mapping between signing keys and content name prefixes
(akin to the mapping implemented by trust schemata [31]).
Therefore, attackers can provide valid attestation signatures
only if they have access to a valid signing key. Our solu-
tion protects signing keys by allowing content owners and
authorized producers to easily rotate them. In particular, when
it comes to authorized producers, by using an assertion key
included in a producer’s DID document, the owner allows the
producer to freely replace that key with a new one without the
owner issuing a new DID document. This is in stark contrast
to a certificate-based solution, where a new key certificate
must be issued whenever a key is replaced. This is particularly
useful in use cases such as the smart city scenario presented
in Section III-B, where “rotating a key” may be translated
in the physical world to “rotating a device.” For example,
due to the limited lifetime of the battery of a drone, multiple
drones can be used one after another to provide the same type
of information (e.g., information prefixed with “<smart city
DID >/roadB23/traffic”); these drones do not have to share the
same assertion key, they only have to be configured with the
appropriate DID document. Additionally, using the same key
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identifier for the newly generated key allows for the revocation
of old ones included, e.g., in cached items; this is achieved by
following a simple rule: if two verification methods, belonging
to the same DID, have the same identifier, then the verification
method defined in the newest DID document replaces the
other. Finally, by using caveats our solution restricts signing
keys to specific portions of the namespace, thus achieving the
“least privilege” principle.

Our solution is resilient to active attackers. A digest of
the content item’s data is recorded in the attestation part of
the metadata, therefore an attacker cannot replace or modify
the transmitted item without invalidating its attestation. The
inclusion of the content name in an attestation prevents an
attacker from sending an Interest for a different item under the
same prefix, and then using this (valid) response to replace an
item requested by another consumer. Furthermore, a malicious
but authorized producer cannot generate responses for content
names other than those for which it has been authorized.

D. Discussion

Comparison to TTP and trust schemata approaches. In
our solution content name prefixes are used as trust anchors:
there is an explicit binding between a content item (via
its name) and its trust anchor. Alternative solutions rely on
Trusted Third Parties (TTPs) or on endpoint configuration
using trust schemata [31] to provide this binding.

A TTP-based solution requires all participating entities to
agree on a (set of) TTPs, which in many cases may be cum-
bersome, or even involve non-negligible monetary cost. This
is a problem when security verifications must be performed
by in-network nodes, such as routers, as they are harder
to configure and update than applications. TTPs are also a
significant security threat since they can generate certificates
for any prefix; a compromised TTP can generate an unlimited
number of valid certificates. Finally, in TTP-based solutions
it is hard to manage cases where a TTP must rotate its keys.
If rotation means that old keys are revoked, then all issued
certificates must be re-issued. Additionally, all verification
points must be configured with the new keys of the TTP, which
may require significant effort, especially if in-network devices
must be reconfigured.

Using trust schemata and self-generated certificates, security
properties similar to our solution can be achieved. However, a
schemata-based solution requires that either all content name
prefixes are known, in order for the appropriate rules to be
configured, or that a TTP can be used as a trust anchor for
prefixes not covered by a rule. Therefore, in scenarios where
content names are “discovered” (e.g., in Web-like, or search
applications) a schemata-based solution behaves similarly to a
TTP-based solution.

The impact of content owner DID loss. In our system, if
the private key which is associated with a prefix is breached
or lost, then this prefix must change. We recognize that
this creates a security concern, but it also has an interesting
side-effect: it allows the creation of long-lasting, immutable,
archival item collections. In particular, an entity can generate
a DID-based prefix, use the private key corresponding to

the DID to sign attestations, and then permanently delete
it: as long as the signing algorithm remains secure, it will
be impossible to modify the generated self-verifiable content
items.

Non human-memorable names. The DIDs used in our
scheme are neither human-readable, nor human-memorable.
Although this limits the usability of our system, we postulate
that it improves its security. Firstly, security solutions that
rely on memorable content names are susceptible to phishing
attacks: there is considerable empirical evidence that users
can easily confuse carefully crafted fake URLs with real
ones. Secondly, since prefixes are cryptographic public keys
randomly generated by users, our solution achieves uniqueness
of content names with very high probability, without requiring
a content name management system, which would add both
overhead and security risks.

VII. CONCLUSIONS AND FUTURE WORK

We presented a self-certifying naming scheme based on
the paradigm of Decentralized Identifiers (DIDs). Our scheme
supports fast integrity and authenticity verification of content
items that use DID-based content name prefixes. The veri-
fication processes of our system do not require interaction
with third parties; instead all necessary input is prepended in
the content items’ data in a secure and verifiable way. This
approach not only makes our approach fast and lightweight,
it also facilitates its deployment.

The DID method leveraged by our system removes the
need for a DID document “registry,” remaining at the same
time compatible with the evolving DID specification. Our
solution is also interoperable with other DID systems, in-
cluding registry-based ones. DIDs are considered in many
applications, ranging from IoT deployments to integration with
real world identities and credentials. Furthermore, ongoing
standardization efforts aim at adding support for DID-based
procedures in web browsers, mobile devices, hardware tokens,
and other popular systems. Therefore, in an environment where
DIDs are widely used, we anticipate that our approach can fuel
novel and exciting applications.

Our solution does not limit the type of cryptographic
keys used for protecting content authenticity. Similarly, DIDs
specifications allow alternative “verification methods” and
support many types of proofs. This creates opportunities for
combining our solution with contemporary cryptographic sys-
tems, including Attribute/Identity-Based encryption, for using
other forms of verification methods, which can be linked to
the physical world, e.g., biometrics, and for applying zero-
knowledge proofs, e.g., for hiding parts of a content item from
unauthorized users.

Our solution uses DIDs to protect transmitted data. Nev-
ertheless, a similar approach can be used to filter “adver-
tisements” of content name prefixes. On-going work in this
area involves the application of our scheme to edge routers,
allowing them to only forward towards the core those routing
advertisements originating from authorized producers [40].

Another concept closely related to DIDs is that of Verifiable
Credentials [41] (VCs). VCs allow an issuer to assert one or
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more claims about a subject. A VC includes a set of claims
that can be securely verified by a verifier. In particular, a
verifier can request from the VC holder to create a verifiable
presentation of its credentials that prove certain claims. We
envision that such proof requests can be embedded into a
DID document, allowing content owners to “express” access
control policies that should control the dissemination of their
content. These policies can then be evaluated and enforced by
third party storage nodes. Additionally, by including VCs in
Interest messages, we can limit the impact of “interest flooding
attacks,” as each router will be able to verify if a consumer is
authorized to express interest for a specific content item.
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