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Abstract—We study the joint problem of data traffic routing

and controller placement that arises in tactical mobile Software

Defined Networks after the establishment of forwarding rules

at switches for a new, long-lasting flow. The aim is to minimize

a cost metric that includes the routing cost, and the delay

between the controller and the switches across the route. The

latter depends on the relative locations of the controller and

the switches, which in turn depends on both the routing and

the controller placement policies. A small value of controller-

to-switch delay is important for low-latency communication

between the controller and the switches, which is essential for

route adaptation. The static minimization problem is shown to

be equivalent to a minimum-cost problem in an enhanced graph.

Next, we study the online learning version of the problem, so

as to learn a joint policy that achieves sub-linear regret in the

presence of non-stationary dynamics of link costs and controller-

to-switch delays. We present low-complexity algorithms based

on the Follow-the-Perturbed-Leader (FTPL) one, which we fit to

the SDN setting for full or limited feedback after each decision.

The low complexity of these algorithms makes them suitable for

distributed dynamic tactical scenarios.

I. INTRODUCTION

Software Defined Networking (SDN) has seen several
success stories over the last decade in wire-line core networks
and at the wireless last mile of infrastructure-based networks,
e.g. Long Term Evolution (LTE) cellular, and WiFi [1].
Recently, several works advocate the use of SDN in mobile
ad-hoc networks (MANETs) [2]-[4].

In SDN, the control and data-plane functionalities are
separated. The former are placed at dedicated nodes, the
controllers, while data-plane forwarding is performed by
SDN-enabled switch nodes according to their flow tables. For
each new flow, a path needs to be found from the source to
the destination. The controller sends PACKET-OUT messages
to all switches to discover the network topology and collect
link state information. That is, it periodically queries switches
for connectivity information and for statistics such as packet
error rate (PER), packet delay for adjacent links, number of
retransmissions, or link capacity usage in terms of time slots.
It then uses (some of) these statistics as link weights and
solves a centralized minimum-cost routing problem in the
communication graph to find a route, namely a subset of
SDN switches and links that form a path from the source
to the destination. Next, the controller transmits the new

forwarding rules to these switches via shortest paths through a
communication protocol such as OpenFlow, and the rules are
installed on the switches. In the setting above, it is important
to find a minimum-cost path for data traffic routing.

However, in tactical MANETs, long-lasting flows, e.g.
live video or voice streaming sessions are common. In the
presence of dynamic network conditions during the session,
it is important to continually compute a minimum-cost route,
but also to continually select an appropriate node as controller.
This will result in low-latency communication between the
controller and each switch across the path, so as to fulfill the
requirement for fast controller reaction and route recalculation
in cases of route quality deterioration during the session.
If the controller-to-switch delays are not considered, route
adaptation will be slow. Thus, although traditionally routing
upon a new flow establishment and the controller placement
decision arise at different time scales, in the long-lasting flows
scenario above, routing and controller placement occur at the
same time scale, and they are coupled.

In this paper, we study the joint problem of routing and
controller placement in tactical MANETs, with the aim to
minimize a cost metric that comprises the routing cost,
namely the sum of costs of links on the path, and the delay
between the controller and the switches along the path. For
given link cost and controller-to-switch (C-S) delays, we
show that the joint problem becomes a minimum-cost routing
problem in an appropriately defined enhanced graph.

Next, we address the problem of online learning of the
jointly optimal routing and controller placement policy when
link costs and C-S delays are unknown and time-varying.
The first challenge is that these time variations may be
hard to characterize statistically because system parameters
vary rapidly and unpredictably with time, according to non-
stationary random processes due to node mobility and other
dynamics. Thus, wireless links have time-varying quality,
while the C-S delay through the (possibly) multi-hop C-S
control path may be unpredictable as well. Therefore, even if
we knew the instantaneous parameter values at time t, these
would change arbitrarily by the time of the next decision at
t+1. Another challenge due to the nature of the SDN protocol
is the limited received feedback after each decision. Namely,
link costs can be measured only for those links on the selected



routing path and not for all network links, while C-S delays
are measured only for the currently selected controller and not
for other candidate locations. Finally, the algorithm needs to
be lightweight and amenable to distributed implementation.

To address these challenges, we propose lightweight algo-
rithms that further develop the Follow-the-Perturbed-Leader
(FTPL) one. In our setting, the idea is at each time slot t:
(i) for the current routing and controller placement, measure
routing link cost and C-S delays, (ii) in an appropriately
defined enhanced graph, update a cumulative link cost up
to time t � 1, which captures the routing link cost and C-
S delays, (iii) perturb cumulative link cost with a random
variable, and (iv) solve a minimum-cost routing problem on
the enhanced graph with perturbed link costs to find the next
route and controller placement. The contribution to the state
of the art is as follows:

• We formulate the joint problem of traffic routing and
controller placement, and we show that it becomes
a minimum-cost routing problem in an appropriately
defined, enhanced graph.

• We formulate the online-learning version of the problem.
• We adapt the FTPL learning algorithm to the SDN set-

ting, for the cases of full or limited feedback, where the
latter is dictated by the SDN protocol. The algorithms are
computationally efficient and amenable to the distributed
tactical MANET environment.

• We show through simulations that these algorithms have
different regret performance for different scenarios of the
link cost and controller-to-switch delay dynamics.

The paper is organized as follows. In section II, we review
the state of the art. In section III we consider the static
problem, and we present the problem statement and solution.
In section IV, we solve the learning problem for full and
limited feedback. Section V presents numerical results, and
section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Online Learning

In online learning, the learner at time t chooses an action xt

in a continuous or discrete decision space X and observes the
outcome ft(xt), where ft(·) : X ! R is a loss function cho-
sen arbitrarily by the environment. The learner needs to select
a policy, namely a sequence of actions {xt}Tt=1 that mini-
mizes regret, defined as

Pt
t=1 ft(xt)�minx2X

PT
t=1 ft(x),

namely the difference between the cumulative loss of the
policy and that of the policy that always selects the best action
in hindsight. The aim is to achieve sub-linear regret in terms
of the learning horizon T .

Convex decision set and cost functions. For continuous-
valued convex X and convex loss functions, both determinis-
tic and randomized learning algorithms exist. The determinis-
tic Follow-the-Leader (FTL) algorithm at each time t selects
the policy for which the cumulative loss up to t�1 is smallest,
namely xt = argminx2X

Pt�1
s=0 fs(x). However FTL suffers

from a linear regret for certain scenarios with linear loss

functions. Follow-the-Regularized-Leader (FTRL) [5] is of
similar spirit but adds a convex regularization function to the
cumulative cost. On the other hand, randomized algorithms
such as Follow-the-Perturbed-Leader (FTPL) at each time t

select the action that minimizes the perturbed cumulative loss
up to t, where the added random perturbation is drawn from
a probability distribution such as uniform or exponential.
That is, xt = argminx2X (

Pt�1
s=0 fs(x) + nTx), where n

is a random perturbation vector. Both FTRL and FTPL
achieve O(

p
T ) regret [5], [6, Sec.5.5]. However, FTPL is

computationally more efficient than FTRL, since the latter
needs to implement a computationally expensive projection
step, while FTPL solves a convex optimization problem. The
sublinear regret property of FTRL and FTPL is also achieved
for linear loss functions [6, Sec.5.5].
d-expert selection. When X ✓ {0, 1}d or the loss func-

tions are non-convex, only randomized algorithms achieve
sublinear regret [7]. A representative problem with non-
convex decision space is d-expert selection, where each expert
incurs a loss at each time t. There, X is the set of d unit
vectors, with 1 in only one component, and 0s in others.

With full feedback, at each time t, we pick an expert at and
observe the losses of all experts. The problem is to find an
expert selection policy with sublinear regret with respect to
the best expert in hindsight. The randomized Exponentially
Weighted Average (EWA) algorithm selects at each time t

an expert with probability that is inversely proportional to an
exponential function of the cumulative loss of that expert up
to t�1 and achieves O(

p
T log d) regret. On the other hand,

FTPL subtracts a random perturbation from the cumulative
loss of each expert and chooses the one with minimum
perturbed cumulative loss [8], and it achieves regret O(

p
dT ).

In the semi-bandit feedback scenario, when the learner
picks an expert at at time t, it gets to see only the loss
`
t
at

associated with the selected expert and cannot observe
the full vector of losses `t of all experts. For adversarial
losses, the EXP3 algorithm achieves O(

p
2Td log d) regret

[20]. EXP3 is based on EWA and selects at each time t an
expert at with probability p

t
at

that is inversely proportional to
an exponential function of the cumulative loss of the expert
up to t. However, there are two differences compared to
EWA. First, an unbiased estimate of the loss vector is formed,
through vector ˜̀t with components equal to ˜̀t

j = `
t
j/p

t
j , if

j = at, and 0 otherwise. This is an unbiased estimate of the
incurred loss at time t, since for each j,

E[˜̀tj |pt] = p
t
j ·

`
t
j

ptj

+ (1� p
t
j) · 0 = `

t
j . (1)

Second, the cumulative cost of only the selected expert is
updated each time with the loss estimate above.

Online Combinatorial optimization. An important prob-
lem with a combinatorial decision set X that gives rise to
the thread of online combinatorial optimization is the online
shortest path one in a directed acyclic graph G(V,E). Given
a graph with arbitrarily time-varying link costs, the goal is to
find a path selection policy with sub-linear regret with respect



to the best fixed route in hindsight. At each time t, the learner
selects a path, namely a subset of links, denoted by vector
xt 2 {0, 1}d, where d = |E|, and vector entries are 1 or 0
respectively for links that are or are not in the path, subject
to
Pd

i=1 xt,i  m, namely at most m links are selected.
With full feedback, the link cost vector `t 2 [0, 1]d

is revealed, and the learner suffers a total cost xT
t `t. In

FTPL, the learner at each time t observes each link cost,
it updates the cumulative link cost, and it perturbs it with
a random quantity. Then, it computes the minimum-cost
path with perturbed link costs [9]. On the other hand, in
EWA, we cannot consider each path as an expert due to
the large number of paths. Instead, the path can be formed
by selecting links one by one based on a probabilistic rule,
while ensuring that a chain of links exists after each link
selection. However, the entire set of paths between two nodes
is needed when doing random link selection. While a regret of
O(m3/2

p
T log(d/m)) is achieved by EWA [10] and FTPL

[11], FTPL is more efficient and straightforward to implement
as it solves a linear optimization problem, and it avoids the
d-dimensional categorical distribution and the enumeration of
the set of paths.

With semi-bandit feedback, only the costs of the links on
the current path are revealed to the learner. Bandit algorithms
use some form of loss estimate to handle limited feedback.
However, while in EXP3 the selection probabilities required
for loss estimates are available, this is not the case for FTPL,
hence some method is needed to estimate these probabilities,
and one method is called Geometric Resampling (GR) [11].

The idea in GR is to estimate the probability of inclusion
of a link in the minimum-cost path by measuring the re-
occurrence time of the link on minimum-cost paths. This
emerges from the fact that for a binary event with occurrence
probability p, the expected number of trials between two
successive occurrences of the event is 1/p. Suppose that at
time t for a link (i, j) in the min-cost path, we see cost cti,j .
Let pti,j be the unknown probability of selecting link (i, j) in
a min-cost path. Suppose we perform multiple trials, and in
each trial we perturb each link cost with a random variable
and compute the min-cost path. If N t

i,j is the random number
of trials until the link appears again in a min-cost path, we
can use c̃

t
i,j = c

t
i,jN

t
i,j as a link cost estimate at time t. This

is an unbiased estimate of the link cost since,

E[c̃ti,j ]=
X

e2E
p
t
eE[c̃ti,j | It = e] = p

t
i,jE[cti,jN t

i,j | It = (i, j)]

= p
t
i,jc

t
i,jE[N t

i,j | It = (i, j)] = p
t
i,jc

t
i,j

1
pt
i,j

= c
t
i,j ,

where It is the selected link at t. FTPL with GR achieves a
regret of O(m

p
dT log d) [11].

B. SDN routing and controller placement
SDN routing. SDN routing is equivalent to the multi-

commodity flow problem. For given flow demands, the prob-
lem to find paths for different commodities (flows) so as
to either minimize the maximum link utilization, essentially
balancing the load on different links, or to minimize the total

cost of transporting each flow from source to destination. A
taxonomy of SDN routing algorithms is presented in [12].
The authors distinguish between algorithms that use a static
link cost (e.g. hop count, distance, link capacity), a dynamic
link cost (e.g. link utilization, available link capacity), or
metrics that reduce inter-flow interference. The impact of
imperfect network state information due to periodic querying
of switches is discussed. In [13], the authors extend the multi-
commodity flow problem for hybrid SDN, where some nodes
are SDN switches, while others are ordinary nodes that run
shortest-path routing protocols. Several Machine Learning
(ML) approaches have been proposed in SDN routing, mainly
based on supervised or reinforcement learning. We refer the
reader to [14] for a taxonomy.

Controller placement. Many works study the static ver-
sion of the controller placement problem. The work [15] finds
the number of required controllers and their locations so as to:
(i) minimize the average C-S latency over switches (assuming
that each switch connects to its associated controller through
a shortest path), which is the k-median problem; (ii) minimize
the maximum C-S latency over all switches, which is the k-
center problem; (iii) minimize the number of switches with
C-S delays that are bigger than a value. The paper concludes
that for medium-sized networks, one controller is enough to
achieve good latency.In [16], the authors find the controller
placement and switch association so as to minimize the maxi-
mum delay to the associated controller, subject to a maximum
controller load. In [17], the authors formulate the problem
of controller placement so as to minimize a weighted sum
of delay and message overhead cost for C-S and controller
communication. Models are inspired by measurements on the
OpenDaylight and ONOS SDN platforms.

Learning approaches for controller placement are much
fewer. The work [18] casts the problem of learning the con-
troller placement as a multiarmed bandit, where each arm is a
different option for controller placement, and the performance
metric is C-S round-trip time (RTT). The cases of stationary
and non-stationary RTT random processes are studied through
stochastic and adversarial bandits respectively. In [19], Deep
Reinforcement Learning is used for placing a certain number
of controllers. The state of a switch is the set of flows
addressed to each controller, while the action is the switch
assignment to a controller, and the reward is the sum of
average latency and load variance at each controller.

To the best of our knowledge, the joint problem of SDN
routing and controller placement has not been studied to date,
neither in its static version nor in the online learning one.
Supervised learning techniques require labeled datasets which
are not easy to create, especially in a tactical MANET setting
with various limitations. On the other hand, reinforcement
learning is known for requiring a significant amount of data,
compute resources, and training time to train models. On
the contrary, in this work we adhere to computationally
lightweight online learning techniques which learn to adapt
the policy based on simple observation feedback, and they
have regret performance that renders them quite practical.



III. JOINT SDN ROUTING AND CONTROLLER
PLACEMENT: STATIC VERSION

A. Model and problem statement

1) Model: Consider a MANET depicted as a graph G =
(V,E), with a set of nodes (SDN switches) V and a set of
links E . A link (i, j) between switches i and j means that i
and j can directly communicate. Time is slotted. Without loss
of generality, we consider only one long-lasting session from
a source s to a destination d. We assume that the network
size is such that a single SDN controller suffices.

First, we present the model for the static problem, where
parameters are known and fixed. This version applies either
when we take a system snapshot, in which case the parame-
ters’ instantaneous values are known, or when we study the
system in an average sense, so that parameter values stand
for averages.

Let ci,j denote the cost of link (i, j). This may stand for
packet delay, packet error rate, number of packet retransmis-
sions, or number of time slots consumed for transmission on
link (i, j). Let c denote the vector of link costs of the graph.

We assume single-path routing from s to d. A sequence of
nodes {i0, i1 . . . , in} with i0 = s and in = d is a path from s

to d, if (i0, i1), (i1, i2), . . . , (in�1, in) 2 E . Consider the links
indexed in some way. Let variable x = (xi,j : (i, j) 2 E) be
a binary vector of size |E|, with a component equal to 1,
if the corresponding link is on the path from s to d, and 0
otherwise. The set of all such paths is denoted by P; it is
the set of all binary vectors x whose components satisfy the
constraints

P
i xi,d = 1,

P
i xs,i = 1, and for each i 2 V ,

the flow conservation constraint
P

j xi,j �
P

k xk,i = 0.
For x 2 P , let n(x) be the binary vector of size |V| ⇥ 1.

The components of n(x) that are 1 denote those switches
along the path whose adjacent links are in x.

Let L denote the set of L possible locations for placing
the SDN controller. In general, these locations may or may
not be nodes of the graph. Let y be the binary L ⇥ 1 unit
vector where a component yk = 1 if the controller is placed
at location k 2 L, while all others are 0. Let Y be the set of L
unit vectors. For each possible controller placement location
k 2 L and switch i 2 V , let di,k denote the delay between
switch i and location k. This is the time required for a control
message to be passed from the controller at location k to
switch i via the control channel. Let D be the |V|⇥L matrix
whose (i, k)-th element is di,k.

2) Problem statement: During a long-lasting flow, both
the traffic routing cost and the controller-to-switch (C-S)
delays should be minimized. On the one hand, one should
find the SDN data routing policy that minimizes traffic
routing cost from s to d. On the other hand, the controller
placement should be selected appropriately, since it affects
the controller-to-switch delays (C-S delays) along the path.
In fact, C-S delays are also affected by routing, thus routing
and controller placement are interrelated in what concerns
C-S delays. A certain route traverses a subset of switches,
and thus it affects the placement of the controller, since the

s
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B
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Figure 1. Example graph G and enhanced graph G0 for L = 2 candidate
controller locations 1,2. For visibility, these locations are taken to be outside
of graph G. Graph G0 consists of one replica for each controller location.
There also exist auxiliary nodes s0 and d0, and appropriately defined link
costs. For example, if the solution to the joint problem is path s ! B ! d
in G and controller location 1, this solution corresponds to path s0 ! s1 !
B1 ! d1 ! d0 in G0.

controller location should have small delays to these switches.
Also, placing the controller at a certain location affects SDN
routing, in the sense that the selected path should traverse
switches with small C-S delays. If C-S delays are not taken
into account, the controller will receive delayed and outdated
network state information from switches and will not react
in a timely manner to a potential link deterioration so as to
initiate route recalculation.

Thus, in the static problem version where the link cost
vector c and delay matrix D are assumed to be known and
fixed, the joint routing and controller placement problem is
formulated as follows:

min
x2P,y2Y

g(x,y) = hc,xi+ � hn(x),Dyi (2)

where ha,bi is the inner product of vectors a and b, and
� > 0 is an importance weight.

B. Solution of the static problem version
We construct an extended graph G

0 = (V 0
, E 0) out of

G = (V, E). First, we define two auxiliary nodes s
0 and d

0.
Next, for each candidate controller location k = 1, . . . , L, we
construct a replica G

k = (Vk
, Ek) of graph G. Let (ik, jk)

denote link (i, j) in replica G
k. Also denote by s

k, dk the
source and destination node in replica G

k.
Next, we draw an edge (s0, sk) from s0 to each node s

k,
k = 1, . . . , L, and we assign zero cost to it. Similarly, we
draw a link (dk, d0) from each node d

k, k = 1, . . . , L, to d
0,



again of zero cost. Finally, to each edge (ik, jk) of replica
G

k, we assign cost:

w(ik, jk) = ci,j + �di,k (3)

An example graph G and its expanded graph G
0 are depicted

in Fig. 1.

Proposition 1. A solution (x⇤
,y⇤) to the joint SDN routing

and controller placement problem (2) in graph G from s to
d is a minimum-cost path from s

0 to d
0 in graph G

0.

Therefore, in order to solve the joint problem (2) in the
original graph G, it suffices to find a minimum-cost path
from s

0 to d
0 in graph G

0. The first link in that path is
one of links (s0, s1), (s0, s2), . . . , (s0, sL), and the last link
is one of (d1, d0), (d2, d0), . . . (dL, d0). Besides these first
and last links, the minimum-cost path in G

0 will traverse
links (ik0 , i

k
1), (i

k
1 , i

k
2), . . . , (i

k
n�1, i

k
n) of one replica G

k. This
means that the solution to the joint problem is the path
i0 ! i1 ! . . .! in and controller location is k.

IV. ONLINE LEARNING PROBLEM

A. Problem statement
We now consider the online learning problem, where the

link cost vector ct and delay matrix Dt vary according to ar-
bitrary, non-stationary random processes. The non-stationarity
assumption is motivated by mobility and other network dy-
namics. A single long-lasting flow is again assumed between
s and d.

At each time t, a location k
t is selected to host the

controller; namely vector yt 2 Y is selected, with y
t
kt

= 1
and y

t
j = 0 for j 6= kt. Also, a routing path xt 2 P is

selected. Let Rt ⇢ E be the subset of links on the path at
time t. Following the choices above, data traffic flows on the
path, and the link cost and C-S delay feedback from switches
on the path is received by the learner. The learner is a node
that runs the learning algorithm, and as we will see in the
sequel, this node may change during the learning process. In
fact, the learner can be the selected controller each time.

Given a time horizon T , the problem is to find a policy,
i.e. a sequence of routing and controller placement actions
zt = {(xt

,yt)}t=1,...,T , so as to minimize the average regret,

R̄T (z)=
1

T
RT (z)=

1

T

 
E
⇥ TX

t=1

G
t(zt)

⇤
� min
x2P,y2Y

TX

t=1

G
t(z)

!

(4)
where G

t(zt) = G
t(xt

,yt) = hct,xti + � hn(xt),Dtyti,
and the expectation is with respect to the randomness of the
distribution of selecting a path and a controller location at
time t. The average regret measures the average performance
difference over the horizon between the total cost of our
policy and the cost of the optimal fixed policy in hindsight.

B. Solution of the learning problem
With Proposition 1, the online learning version of the joint

controller placement and SDN routing becomes an online
shortest-path (minimum-cost) routing problem. We consider

two cases of feedback to the learner, namely full and limited
feedback.

1) Full feedback: First, we consider the case where, af-
ter controller placement and route selection at time t, it
is possible through specially designed control signaling to
collect the link costs from all links in the network, and to
measure C-S delays between all possible controller locations
and all switches. Thus, after decision (xt

,yt), the full link
cost vector ct = (cti,j : (i, j) 2 E) and delay matrix
Dt = (dti,k : i 2 V, k 2 L) are available to the learner.

For each time t, define the link cumulative cost vector
ĉt =

Pt
r=0 c

r = ĉt�1 + ct, and the cumulative delay
matrix D̂t =

Pt
r=0 D

r = D̂t�1 + Dt.Also, for each link
(ik, jk) in replica G

k, let ŵt(ik, jk) =
Pt

r=0 w
r(ik, jk) be

the cumulative link cost up to t, with ŵ
t(ik, jk) = ĉ

t
i,j+�d̂

t
i,k.

Let ŵt = (wt(ik, jk) : (i, j) 2 E , k = 1, . . . , L) be the vector
of cumulative costs of links (ik, jk) in all replicas.

We need to solve an online minimum-cost path learning
problem on graph G

0. This problem has a combinatorial deci-
sion set and a linear loss function. We start from the Follow-
the-Perturbed-Leader (FTPL) algorithm which is known to
achieve sublinear regret. At each time t, FTPL selects the
action that minimizes the perturbed cumulative loss up to t,
where a random perturbation is added to the cumulative loss,
based on a uniform or exponential probability distribution.
For our setting, we develop the following algorithm to run
on G

0, whose steps at each time t are as follows:
• STEP 0: t = 0; initialize link costs c0 = 0 and C-

S delays D0 = 0. For each link (ik, jk) of G
0, set

w
0(ik, jk) = 0, ŵ0(ik, jk) = 0.

• STEP 1: For each link (ik, jk), generate an independent
exponentially distributed random variable Z

t(ik, jk),
which acts as the perturbation. Set the cumulative cost
of link (ik, jk) to ŵ

t(ik, jk)� Z
t(ik, jk).

• STEP 2: Find the min-cost path on G
0, and from that

find the next path Rt (or xt), and controller location k
t

(controller location vector yt).
• STEP 3: If t � 1 and the new controller location is

different than the current one, i.e. if k
t 6= k

t�1, the
current controller kt�1 transfers to next controller kt the
current vector ĉt�1 and current delay matrix D̂t�1.

• STEP 4: Set k
t, Rt as current controller and current

path. Traffic is then routed through that path.
• STEP 5: The current controller kt receives as feedback

the link costs from links (i, j) 2 E . It then updates the
link cumulative cost vector ĉt.

• STEP 6: The current controller kt receives as feedback
the delay measurements between switches i 2 V and all
possible controller locations k 2 L. It then updates the
cumulative delay matrix D̂t.

• STEP 7: For each edge (ik, jk) in G
k, update the

cumulative cost: ŵt(ik, jk) = ĉ
t
i,j + �D̂

t
i,k.

• STEP 8: Set t t+ 1. Go to STEP 1.
2) Limited feedback: We now consider the case where at

each time slot, after the controller placement and routing



decision, the learner receives as as feedback only the costs
of the links along the selected path and only the delays from
the current controller to the switches along the path. Such
a model is more practical and it arises under state-of-the-art
SDN control protocols that issue messages only between the
current controller and the switches and collect feedback only
from the links along the selected path.

This case of limited feedback is the semi-bandit case, and
it is an intermediate scenario between the full-feedback case,
in which the learner receives all link costs and C-S delays
from all possible controller locations to all switches, and the
bandit-feedback case, in which the learner receives only the
total value of loss, but not individual cost and delay values.

Let M be a hyper-parameter for the maximum number of
trials. The FTPL-based algorithm steps for the semi-bandit
feedback case are:

• STEP 0: t = 0; initialize c0 = 0 and D0 = 0. For links
(ik, jk) of Gk, set w0(ik, jk) = 0, ŵ0(ik, jk) = 0.

• STEP 1: For each link (ik, jk), generate an independent
exponentially distributed random variable Z

t(ik, jk),
and set link cost to ŵ

t(ik, jk)� Z
t(ik, jk).

• STEP 2: Find the min-cost path in G
0 and thus the next

path Rt (or xt) and next controller location vector yt.
Set kt 2 {1, . . .L} as the next controller, i.e. ytkt

= 1.
• STEP 3: For each link (ik, jk) in G

k, draw M in-
dependent exponential random variables {Zm(ik, jk)},
m = 1, . . . ,M . For each m, set cost to (ik, jk) to
ŵ

t(ik, jk) � Zm(ik, jk), and compute min-cost path in
G

0, call it Rt
m.

• STEP 4: For each link e = (ik, jk), (i, j) 2 Rt, and for
k = k

t, record the earliest instance when e belongs in a
min-cost path, m⇤

e = min{m : e 2 Rt
m}. If 1  m

⇤
e 

M , link e was found in a min-cost path; set N t
e = m

⇤
e .

Else, set N t
e = M .

• STEP 5: If t � 1 and k
t 6= k

t�1, the current controller
k
t�1 transfers to next controller kt the vector ŵt�1.

• STEP 6: Set current controller to k
t and path to xt.

Traffic is routed through that path.
• STEP 7: Controller kt receives link costs from links on

the path and delays from k
t to switches on the path.

• STEP 8: For those links e = (ik, jk) in replica G
k, such

that (i, j) 2 Rt and k = k
t, update cumulative cost as:

ŵ
t(ik, jk) ŵ

t(ik, jk) +N
t
m⇤

e
w

t(ik, jk).
• STEP 9: Set t t+ 1. Go to STEP 1.
For L controller locations, graph G

0 has L(|E|+ 2) links,
and this is the dimension of the decision set. If P denotes
the maximum path length in G, the maximum path length
in G

0 is P + 2. Following the findings from [11], FTPL

achieves a regret of O
✓
(P + 2)3/2

q
T log (|E|+2)L

P+2

◆
for full

feedback and O

⇣
(P + 2)

p
TL(E + 2) log(L(E + 2))

⌘
for

limited (semi-bandit) feedback.

V. NUMERICAL RESULTS

We consider the toy graph of Fig. 1 with two paths from s

to d, i.e. P = {s! A! d, s! B ! d}, and two possible

controller locations, L = {L1, L2}. This leads to enhanced
graph G

0 in Fig. 1 with four options for joint routing and
controller placement, each of which corresponds to a path
from s0 to d0.

We study the scenario of full feedback and compare the
Follow-the-Leader (FTL) and Follow-the-Perturbed-Leader
(FTPL) algorithms with respect to the following performance
metrics:

• Regret per time slot (or time-average regret) RT , over
the horizon T , given by (4).

• Cumulative regret over T , RT .
• Percentage of time instants PT , in which the best option

(path in G
0) is selected over time horizon T . If KT is the

number of times over horizon T when the best option is
selected, then PT = KT /T .

We simulate 2 cases for non-stationary link costs and
delays to the controller:

• Case A: Link costs and C-S delays at time t for each
option j = 1, 2, 3, 4 are given as rj · | cos t|+3j · r0j · r00j ,
where rj , r0j , r00j are uniformly distributed in (0, 1).

• Case B: This corresponds to an intelligent adversary that
attempts to disrupt the learning process, by observing at
each time t the selection of the learner, and by setting
the cost of this option to 10 in the next slot.

Results are averaged over 100 experiments. In Figures 2
and 3, we show the Cumulative Regret and Average Regret
respectively for the FTL and FTPL algorithms for Cases A
and B. For Case A, both Cumulative Regrets stabilize, and
in fact FTL achieves a little lower Cumulative and Average
Regret than FTPL. However, for Case B, FTL suffers a linear
Cumulative regret with time, while FTPL achieves sublinear
regret (Fig. 2). Equivalently, in case B, the time-average regret
for FTL is constant, while for FTPL it is decreasing with
time (Fig 3). Thus, FTPL turns out to be superior to FTL
in handling adversarial scenarios. Finally, in Figure 4 we
depict the percentage of correct option selection for FTL and
FTPL. While in the first 100 iterations FTL is slightly better
than FTPL, eventually both algorithms reach almost the same
percentage.

VI. CONCLUSION

We studied the joint problem of routing and controller
placement in mobile SDN networks in its static version and
its online learning version. We showed that the joint problem
becomes one of minimum-cost routing on an appropriately
defined graph. Subsequently, we identified the online learning
problem as an online combinatorial optimization one, and
we developed low-complexity algorithms based on the FTPL
approach for the cases of full and limited feedback. The
former case requires a modification to the SDN control sig-
naling protocol, while the latter applies for the current SDN
control messaging protocols. These algorithms are simple
to implement in a distributed tactical MANET environment,
where scalability is required.

There exist several directions for future work. First, the
problem can be extended to one with multiple flows, and
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Figure 2. Cumul. Regret for FTL and FTPL. Left: Case A; right: Case B.
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Figure 3. Average Regret for FTL and FTPL. Left: Case A; right: Case B.

also multiple controllers. Second, in this work, we used an
additive delay metric from the controller to switches, which
facilitated the definition of link costs in the enhanced graph.
If the delay metric becomes nonlinear, e.g. the maximum of
the delays from the controller to all switches, this additive
relation does not exist any more, and a new approach is
needed. Another extension is to include switching costs for
controller location and routing path changes. Finally, from
the simulations, it seems that the relative performance of
FTL and FTPL depends on the nature of the non-stationary
cost process. FTPL is better in terms of regret when the
cost process is more “adversarial”, while FTL is better in
handling ordinary’ non-stationary processes. It would be thus
interesting to devise an algorithm that progressively learns the
regime, adversarial or not, under which the network operates,
so that the best learning algorithm is applied.
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