
Decentralized Interledger Gateway Architectures in
Authorization Scenarios with Multiple Ledgers

Vasilios A. Siris, Michalis Tsenos, Dimitrios Dimopoulos, Nikos Fotiou, George C. Polyzos

Mobile Multimedia Laboratory, Department of Informatics
School of Information Sciences & Technology

Athens University of Economics and Business, Greece

Abstract—Combining multiple Distributed Ledger Technolo-
gies (DLTs) that include public and private/permissioned ledgers
can allow different tradeoffs in terms of performance, cost,
privacy, and transparency. However, multiple DLTs must be
interconnected in a way that securely binds transactions on differ-
ent ledgers and allows reliable and trusted transfer of information
across the ledgers. We present decentralized interledger gateway
architectures for IoT authorization scenarios that include the
interconnection of two ledgers: an authorization ledger and
a payment ledger. The proposed architectures differ in their
complexity, transaction cost, and ability to handle transactions
involving multiple ledgers.

I. INTRODUCTION

Different types of blockchains or Distributed Ledger Tech-
nologies (DLTs) have different transaction cost, performance
(transaction delay and throughput), trust, and privacy prop-
erties. Specifically, public blockchains such as Bitcoin and
Ethereum are permissionless (anyone can participate as
a blockchain node) and provide wide-scale decentralized
trust and transparency. However, the public nature of these
blockchains comes at the expense of high computation costs,
hence high transaction fees, and high transaction delays. On
the other hand, permissioned DLTs such as Hyperledger Fabric
operate with a restricted set of peers, hence provide a lower de-
gree of decentralized trust compared to public blockchains, but
incur a smaller cost and delay. Moreover, permissioned DLTs
can support different levels of write and read access, hence
can be adapted to different privacy requirements. Combining
multiple DLTs can allow different tradeoffs in terms of cost,
performance, privacy, and transparency. However, multiple
DLTs must be interconnected in a way that securely binds
transactions on different ledgers and allows reliable and trusted
transfer of information across the ledgers.

One use case where two types of DLTs can be combined is
the payment and authorization for accessing IoT resources.
One DLT can be the payment ledger where payments for
resource access are performed. The second DLT can be an au-
thorization ledger where authorization rules and decisions are
recorded. The interledger functionality would be responsible
for linking transactions on the two ledgers in a cryptograph-
ically secure way, and for transferring information from one

This research was supported by the EU funded Horizon 2020 project
SOFIE (Secure Open Federation for Internet Everywhere), under agreement
No. 779984.

ledger to another in a reliable and trustworthy manner [1].
The above use case that combines two ledgers, a payment
ledger and an authorization ledger, is general and can be
applied to any scenario where a payment is exchanged for
accessing any type of service. The goal of the paper is to
present decentralized architectures for an interledger gateway
(ILG) system that ensures that the interledger operations are
performed in a reliable and trusted manner. The contributions
of the paper are the following:

• We present three decentralized interledger gateway archi-
tectures that have different features and involve different
coordination of the interledger gateways.

• We present a preliminary evaluation that illustrates the
reliability and performance of the proposed solutions.

Unlike the current paper, our previous work in [1] considered
only a single interledger gateway system.

The remainder of the paper is structured as follows: In
Section II we present the architecture involving a single in-
terledger gateway. In Section III we present three decentralized
interledger gateway architectures and in Section IV we present
a preliminary evaluation of the proposed architectures. Finally,
in Section V we present related work and in Section VI we
conclude the paper and present ongoing work.

II. SINGLE INTERLEDGER GATEWAY ARCHITECTURE

In a single interledger gateway architecture, Figure 1, a
single interledger gateway (ILG) is responsible for perform-
ing the interledger functions. The simplest function involves
copying data from one ledger to the other. If the data that
is copied involves secrets to hash-locks on the two ledgers,
then transactions on the two ledgers can be cryptographically
linked in a dependence relation.

A hash-lock is a cryptographic lock that can be unlocked
by revealing a secret s whose hash H(s) is equal to the
lock’s value h. Unlocking a hash-lock can be one of the
conditions for performing a transaction or for executing a
smart contract function. Hash-locks can be used on two or
more blockchains that support the same hash function, to
link a transaction on one chain to one on the other chain:
if the two transactions have hash-locks with the same value,
then unlocking one would reveal the secret that unlocks the
other; hence, the two transactions are cryptographically linked
through a dependence relation. Time-locks are locks on a



InterLedger Gateway

ILG
transaction

verification

event

Ledger A Ledger B

Fig. 1. In a single interledger gateway architecture an event notification from
ledger A triggers the ILG to submit a transaction to ledger B. The ILG is a
single point of failure, hence this architecture has low reliability.

blockchain that can be unlocked only after an interval has
elapsed. The time interval can be measured in absolute time
or in the number of blocks mined after a specific block.
Contracts that include both hash and time-locks are referred
to as hashed time-lock contracts (HTLCs) [2]. HTLCs can be
implemented in blockchains with simple scripting capabilities,
such as the Bitcoin blockchain, without requiring the advanced
functionality of smart contracts.

The ILG, Figure 1, is responsible for i) listening to events
generated on ledger A and ii) submitting transactions to ledger
B. An event on ledger A can be generated when the secret to a
hash-lock is submitted on this ledger. When the event on ledger
A is generated, the gateway can obtain the secret and submit it
to ledger B. Submission of the secret to ledger B is performed
as a transaction using the account that the ILG has on ledger
B. The verification that the gateway receives from ledger B
can be a confirmation that the transaction was added to the
transaction pool or a confirmation that the transaction was
included in a mined block. In the later case, the verification
can be received by having the ILG listen to an event on ledger
B that is generated when the block containing the submitted
transaction is mined.

Figure 2 shows the sequence of events in the payment and
authorization for IoT resource access use case. An event on the
authorization ledger is generated when the secret to the hash-
lock is submitted on this ledger by an Authorization Server
(AS). When the event on the authorization ledger is generated,
the gateway can obtain the secret and submit it to the payment
ledger, which triggers the transfer of the deposit made by the
client to the IoT resource owner’s account.

AS
Authorization 

Ledger

Payment 

Ledger
Client ILG

H(s), price

H(s), price

Deposit

H(s), price

H(s), price

Deposit
Amount deposited

Amount deposited

s

s

s

A
u

th
o

ri
za

ti
o

n
 

o
ff

e
r

A
u

th
o

ri
za

ti
o

n
 

a
cc

e
p

t
A

u
th

o
ri

za
ti

o
n

 

g
ra

n
te

d

s

Fig. 2. Sequence diagram in the payment and authorization for IoT resource
access use case. The ILG is responsible for listening to events generated on
one ledger and submitting transactions to the other ledger. This includes the
event triggered by the submission of the hash-lock secret to the authorization
ledger and the submission of the secret to the payment ledger.

III. DECENTRALIZED INTERLEDGER GATEWAY
ARCHITECTURES

In this section we present three decentralized interledger
gateway architectures. The first involves multiple ILGs that
are operated by the same organization and the ILGs use the
same account for submitting transactions to a ledger. The
second architecture involves multiple ILGs that are operated
by different organizations and the ILGs use different accounts
for submitting transactions to a ledger. Finally, the third
architecture utilizes a Hyperledger Fabric permissioned ledger
for coordinating the interledger functions.

A. Multiple interledger gateways operated by the same orga-
nization

In this model, multiple ILGs that are operated by the same
organization, Figure 3, perform the interledger functions that
include the following:

• Listen to events on ledger A indicating that the secret for
a hash-lock is recorded on ledger A. These events will
trigger the interledger operations.

• All ILGs submit transactions to ledger B using the same
account.

• All ILGs listen to an event on ledger B to confirm that
the transaction has been successfully performed.

Every transaction in Ethereum has a nonce, which corresponds
to the number of transactions that are sent from a given
account. Each time a transaction is submitted, the nonce value
increases by one. Furthermore, transactions from the same
account must be ordered according to their nonce values and
nonce values cannot be skipped. Because the same account is
used by all ILGs for submitting transactions to ledger B, if
ledger B is an Ethereum blockchain, synchronization of the
nonce values is necessary to satisfy the above rules. Specif-
ically, the ILGs need to use the same nonce in transactions
that correspond to the same event (e.g. recording of the same
secret) on ledger A. Synchronization of the nonce values can
be achieved in a centralized manner by the organization man-
aging the ILGs. Because the ILGs use the same account, even
though N transactions are submitted to ledger B, only one will
be included in the mined block; hence, the transaction fee will
be incurred once. Based on the above, this solution provides
decentralization of the interledger operations, but does not
provide decentralization at the organization level since the
ILGs are managed by a single organization. The architecture
presented in the Section III-B provides decentralization of both
the interledger functions and the management of the ILGs.

1) Management of ILGs: The management of ILGs is
performed by a single organization and includes managing
the nonce value that the ILGs include in the transactions they
submit to ledger B using the same account. The organization
managing the ILGs must be trusted in order to achieve reliable
interledger gateway operation. Note, however, that in the
authorization scenario discussed in this paper the interledger
operation involves copying a secret from ledger A to ledger
B. Copying the correct secret is ensured since ledger B will



ILG N

SignPK(tx(secret))

verification

event

Ledger A Ledger B

ILG 1

…

SignPK(tx(secret))

Fig. 3. Decentralized interledger gateway architecture when the ILGs are
operated by the same organization. When they receive an event notification
from ledger A, all ILGs submit a transaction to ledger B using the same
account (which corresponds to a public key PK).

check that the submitted secret’s hash is equal to the hash of
the hash-lock in the smart contract on ledger B.

Instead of using the same account on ledger B, each ILG can
use a different account. With this approach, synchronization
of the nonce values if ledger B is an Ethereum network is not
necessary. Moreover, only one (or a few) ILGs can be selected
in a centralized manner to submit transactions to ledger B,
making this scheme more efficient from this perspective.

2) Reliability: Reliability is achieved by having all ILGs
submit a transaction to ledger B, once they receive an event
notification from ledger A. Moreover, after they submit a
transaction to ledger B, all ILGs listen to an event on ledger
B that confirms that the transaction with the hash-lock’s secret
is included in a mined block of ledger B. In this way, ILGs
can verify that the transaction is successfully submitted to
ledger B. If the ILGs do not receive an event verifying
the submission of the transaction until some timeout, they
resubmit the transaction to ledger B.

B. Multiple interledger gateways operated by different orga-
nizations

The decentralized interledger gateway architecture when
the ILGs are operated by different organizations is shown in
Figure 4. In this architecture, the interledger functions that
need to be supported include the following:

• Listen to events on ledger A indicating that the secret for
a hash-lock is recorded on ledger A. These events will
trigger the interledger operations.

• Selection of one (or more) ILG(s) that will submit
transaction(s) to ledger B. These transactions contain the
secret copied from ledger A.

• The selected ILG (or ILGs) submits the transaction to
ledger B.

• The ILGs verify that the transaction was successfully
submitted to ledger B. If the submission is not verified
after some timeout, a new ILG (or ILGs) is selected to
submit the transaction.

In this model, N ILGs listen for an event on ledger A indicating
that the hash-lock’s secret has been submitted, Figure 4. The
ILGs are operated by different organizations and use different
accounts to submit transactions to ledger B. Because the ILGs
use different accounts, synchronization of the nonce values if
ledger B is an Ethereum network is not necessary.

Once the event notification is received by the ILGs, one of
them (ILG k in Figure 4) is selected to submit a transaction
to ledger B containing the secret recorded on ledger A. The
selection can be made by taking the modulo N of the last or

ILG N

verification

event

Ledger A Ledger B

ILG k

ILG 1

…
…

SignPK_k(tx(secret))

Fig. 4. Decentralized interledger gateway architecture where the ILGs are
operated by different organizations. One of the N ILGs (ILG k in the figure)
is selected to submit the transaction to ledger B. The selection is based on
the hash of the last or the next block mined on ledger B. ILGs use different
accounts to submit transactions to ledger B.

the next block on ledger B. Specifically, each of the N ILG is
assigned a unique identifier from 0 to N-1 and the result of the
ledger B’s block hash modulo N operation determines the ILG
that is responsible for submitting the transaction to ledger B.
The hash of ledger B’s block must be used because ledger B
must also verify that the correct ILG submitted the transaction.
In Section III-B1 we discuss alternatives for managing the
bindings of ILGs to unique identifiers.

Next we discuss the implications from using the hash of
the last or the next mined block of ledger B for determining
the ILG that is responsible for submitting the transaction to
ledger B. If the hash of the last block is used, then anyone
can know which of the ILGs is responsible for submitting the
transaction to ledger B that corresponds to the next event on
ledger A. This allows the possibility of a DoS attack to the
ILG responsible for sending the transaction before the event
on ledger A occurs. On the other hand, if the ILG selection
uses the hash of the next block that is mined, then the ILG
that is responsible for submitting the transaction on ledger B
is known after the next block on ledger B is mined. Assuming
that the selected ILG submits a transaction immediately after
the next block is mined, the window for conducting a DoS
attack on this ILG can be very small. Finally, we note that
the generation of new blocks is determined by miners based
on the PoW in blockchains such as Ethereum and Bitcoin. As
long as the fees for interledger services is much lower than
the block mining fees, the approach described above is not
susceptible to attacks by miners withholding new blocks.1

Because the N ILGs are operated by different organizations,
their trustworthy operation must be ensured, i.e. the system
must ensure that an ILG must not submit a transaction to
ledger B if it is not entitled to do so. Two observations can be
made regarding this issue: First, even if more than one ILGs
submit transactions with the hash-lock secret to ledger B, the
interledger operation is still executed correctly. Moreover, if
ledger B is a public blockchain such as Ethereum, multiple
transactions would incur an execution cost for the ILGs that
submit the transactions. Second, checking that the transaction
is submitted by the ILG that is entitled to do so is necessary
if the ILGs receive some compensation for their services. To

1The requirement that the economic gains from withholding blocks is
lower than the mining fees does not hold for high-stake lottery applications,
hence mined block hash approaches for generating random numbers are not
appropriate in such applications.



achieve this, the smart contract on ledger B must verify that
the ILG submitting the transaction is the one that was entitled
to do so; the smart contract can perform this verification based
on the hash of the last block mined on ledger B and the
ILG’s ID. Moreover, once the smart contract verifies that the
transaction was submitted by the correct ILG, it can proceed to
automatically reimburse that ILG for its interledger services.

1) Management of ILGs: Next we discuss how the ILGs
that perform the interledger transactions can be managed. In
the scenario described in the introduction that includes linking
payments to authorizations for accessing IoT resources, the
two parties involved are the client (buyer) and the IoT resource
owner (seller). The scenario requires that smart contracts
containing hash-locks and time-locks are created on the two
ledgers: the payment ledger and the authorization ledger.
The interledger services for obtaining authorization to an IoT
resource can be managed by the IoT resource owner, which
is the interledger services client. This IoT resource owner can
determine the ILGs that can provide interledger services. One
approach to achieve this is to submit to the smart contract
on ledger B the list of ILGs that can submit transactions
for interledger services related to the owner’s IoT resource.
Alternatively, the ILGs can obtain a signed credential from
the owner that allows them to submit transactions to the smart
contract on ledger B. Such credentials can be based on the
Verifiable Credentials Model developed by W3C’s Credentials
Community Group [3]. The credential can be submitted inside
each transaction and the smart contract on ledger B can verify
the IoT resource owner’s signature to ensure that the ILG
submitting the transaction has authorization from the owner.
The two options for determining the set of ILGs that can
submit interledger transactions differ in terms of privacy and
the operations and cost for performing revocation. Namely,
recording the set of legitimate ILGs in the smart contract
allows all entities that have read access on the ledger, which
in the case of public ledgers is anyone, to know the ILGs
that provide interledger services for a particular IoT resource.
Revocation, i.e. removing an ILG from the list of ILGs,
would incur the cost of a transaction to update the list in
the smart contract. On the other hand, using credentials has
higher privacy, since in this case the smart contract does
not contain the list of ILGs. However, the credential-based
approach requires different actions to perform revocation. One
approach is to have credential with fixed time validity, which
implies that they must be periodically renewed for an ILG to
continue to provide interledger services.

An additional management task is the assignment of unique
numbers 0 to N-1, which is necessary for the ILG selection
discussed above. The assignment needs be known, in a reliable
manner, by the smart contract running on ledger B. This can
be achieved by including the number assigned to each ILG in
the list maintained by the smart contract or include the number
in the credential that the interledger services client provides
to each ILG.

2) Reliability: Next we discuss how this architecture
achieves reliability. After an event is generated on ledger

A, all ILGs, including the ILG that was selected to submit
the transaction to ledger B, listen to an event on ledger B
that verifies that the transaction with the hash-lock’s secret is
included in a mined block of ledger B. In this way, ILGs can
verify that the transaction is successfully submitted to ledger
B. If the ILGs do not receive an event verifying the submission
of the transaction until some timeout, then a new ILG can be
selected, using the same procedure as the one described above,
which will (re)submit the transaction to ledger B.

Above we have assumed that one ILG is selected for
submitting the transaction to ledger B. Alternatively, more
than one ILGs can be selected and submit transactions from
their accounts. Such an approach can yield a smaller delay
for completing the interledger operations, if the probability of
faulty or misbehaving ILGs is high. The tradeoff is that if more
than one ILGs are selected then, in the case of the Ethereum
blockchain, the total transaction cost would increase with the
number of submitted transactions. One way to reduce this cost
in Ethereum is for the smart contract to use Solidity’s Revert
call, with which duplicate transactions incur only the cost (gas)
of the transaction invocation.

C. Use of Hyperledger Fabric in the interledger gateway
system

Next we discuss the use of Hyperledger Fabric, which is
a permissioned distributed ledger that is part of Linux Foun-
dation’s open-source Hyperledger project [4], for coordinating
the interledger operations. The advantages of using a permis-
sioned ledger for interledger operations are the following:

• A permissioned ledger can implement elaborate con-
sensus logic and rules that can jointly consider events
from different ledgers. This is necessary if the interledger
operations involve more than copying a hash-lock secret
between two ledgers.

• A permissioned ledger can record, in a reliable and
immutable manner, transactions across different ledgers.

• Even though some of the logic can be implemented in
ledger B (provided it supports smart contracts), the execu-
tion cost when the logic is implemented in a permissioned
ledger will be significantly lower compared to the cost if
ledger B is a public ledger.

The aforementioned advantages allow a permissioned ledger
such as Hyperledger Fabric to serve as a hub for interledger
services among multiple ledgers. The above advantages are
achieved with a higher complexity compared to the two
previous architectures, since Fabric is used for coordinating
the functionality of the interledger mechanisms.

Figure 5 shows the architecture for an interledger system
that is based on Hyperledger Fabric. Observe that the function-
ality of the interledger gateways of the first two architectures
shown in Figures 3 and 4 has been separated. The architecture
shown in Figure 5 has two types of interledger gateways:
level 1 interledger gateways listen to events on Ledger A and
level 2 interledger gateways submit transactions to ledger B.
Hyperledger Fabric can implement elaborate consensus rules
that can include selecting one or more level 2 ILGs that are



event
Ledger A Ledger B

Level 1 

ILG 1…

Level 1 

ILG m

Level 1 

ILG N1

Level 2 

ILG 1

Level 2 

ILG k

Level 2 

ILG N2

…

…
…

Hyperledger Fabric 

with M peers
duplicate 

transactions

…

M requests

verification

SignPK_k(tx(secret))

Tx hash

M responses 

with Tx hash

Check for valid Tx hash

Fig. 5. Use of Hyperledger Fabric in the interledger gateway system.
Compared to the architectures in Figures 3 and 4, the interledger functionality
is now split: Level 1 ILGs listen to events on ledger A and level 2 ILGs submit
transactions to ledger B.

responsible for submitting transactions to ledger B. From an
implementation perspective, level 2 ILGs can run on the same
nodes where Fabric peers reside. Similarly, level 1 ILGs can
also reside on Fabric peer nodes.

1) Management of ILGs: In this architecture the manage-
ment of ILGs can be performed as discussed in Section III-B1.
A difference compared to the architecture in Section III-B is
that the Fabric peers now select the level 2 ILG that will be
responsible for submitting the transaction to ledger B. In this
step we utilize the capability of Fabric peers that all execute
the same smart contract (called chaincode in Fabric) to call
an external API. Hence, in Figure 5 the selected level 2 ILG
receives a call from all M Fabric peer nodes.

2) Reliability: The reliability of the functionality of level 1
ILGs, namely of sending a transaction to the Fabric network
when an event occurs on ledger A, is ensured by having all
level 1 ILGs send a transaction to Fabric (duplicate trans-
actions in Figure 5). Fabric can handle multiple concurrent
transactions, but cannot handle concurrent transactions that
affect the same key in the ledger. Hence, only one transaction
from Level 1 ILGs will eventually be valid and the other will
cause a Multi Version Concurrency Control (MVCC) failure.
Nevertheless, only one valid transaction is necessary for the
interledger functionality to operate correctly, hence the above
behavior is sufficient. Note that, since this paper focuses on
interledger functions that involve copying hash-lock secrets
from one ledger to another, it is not necessary for the Fabric
network to verify the transaction on ledger A that reveals the
hash-lock secret; if the secret was not revealed on ledger A,
then the corresponding transaction on ledger B would fail.

The reliability of submitting transactions to ledger B is
achieved different than the way discussed in Section III-B2,
since in this model the Fabric peers select the ILG that will
submit the transaction to ledger B. Specifically, recall that
all Fabric peers select the same level 2 ILG to submit the
transaction to ledger B, hence the selected level 2 ILG receives
a call from all M Fabric peer nodes. Once this level 2 ILG
submits the transaction to ledger B, it returns the transaction
hash (Tx hash in Figure 5) to the Fabric peer nodes. The Fabric
peer nodes check ledger B to verify that a valid transaction
with the transaction hash (Tx hash) has indeed appeared in a
mined block. If the transaction is not verified, then the Fabric
peer nodes select a new level 2 ILG to submit the transaction.

0

10

20

30

40

50

60

0% 20% 50%

D
e

la
y

 (
se

co
n

d
s)

Error percentage

Fig. 6. Interledger delay for the architecture in Figure 4 with three ILGs.

The Fabric peer nodes also select a new level 2 ILG to submit
the transaction to ledger B if the original level 2 ILG does not
respond after some timeout.

Finally, as discussed in Section III-B2, more than one level 2
ILGs can be selected for transmitted transactions to ledger B.
This can increase the reliability and reduce the delay, at the
expense of a higher transaction cost on ledger B.

IV. EVALUATION

The evaluation results presented in this section consider the
architecture shown in Figure 4. The evaluation setup consisted
of the Rinkeby public Ethereum testnet2 that was ledger B
in Figure 4. We used the Infura Ethereum node cluster3

for submitting transactions to the Rinkeby. For ledger A in
Figure 4 we used Hyperledger Fabric.

We consider the case of 3 ILGs and investigate the reliability
of the interledger functionality that the architecture shown
in Figure 4 can support in the presence of ILG errors.
Figure 6 shows the interledger delay for different ILG error
percentages. The results are the average from 20 executions.
Also shown are the 95% confidence intervals. The interledger
delay is the time interval from the point an event on ledger
A (Hyperledger Fabric) is generated until the time that a
transaction is successfully submitted to ledger B (Ethereum).
Since ledger B is an Ethereum network, the interledger delay is
determined by the Ethereum transaction delay, which depends
on the Ethereum block mining time. Hence, for zero errors,
Figure 6 shows that the delay is approximately 15 seconds,
which is the average time for mining a new Ethereum block. In
the presence of errors, Figure 6 shows that the delay increases
by approximately 70% and 270% when the percentage of ILG
errors is 20% and 50%, respectively. The transaction delay in
the presence of ILG errors can be reduced by having more
than one ILGs submit interledger transactions to ledger B.

The delay results shown in Figure 6 also pertain to the archi-
tecture in Figure 3, since the interledger delay is determined
by the transaction delay on ledger B and the differences of
the interledger operations in Figure 3 and Figure 4 do not
influence this delay.

Table I shows the gas, which quantifies the amount of EVM
(Ethereum Virtual Machine) resources, for the transaction on
ledger B (Ethereum testnet) that the ILG submits for three

2https://www.rinkeby.io/
3https://infura.io



TABLE I
LEDGER B (ETHEREUM) TRANSACTION COST (GAS)

Transaction Gas
Architecture in Figure 3 64 425
Architecture in Figure 4 66 968

Architecture in Figure 4 with revert 27 132

cases: i) the architecture in Figure 3, ii) the architecture in
Figure 4, and iii) the architecture in Figure 4 when a revert is
called in the transaction. The transactions are submitted with
gas price 2.5 Gwei. The results show that the transaction cost
for the architecture in Figure 4 is higher than the architecture
in Figure 3. This occurs because of the additional checks in the
latter architecture that is necessary to ensure that the correct
ILG has submitted the transaction. Specifically, we assume
that the smart contract has a table containing the address of
the ILGs that can submit an interledger transaction and their
corresponding identifiers. The specific ILG that should submit
the transaction is selected as described in Section III-B, and
is based on the modulo 4 (since the number of ILGs is 3)
of the hash of the last block on ledger B. Table I shows
that the transaction cost with a revert is less than 40% of
the transaction cost without a revert (for the architecture in
Figure 4). The revert can be used when more than one ILGs
are selected to submit transactions to ledger B, in order to
increase the reliability and reduce the delay of the interledger
operation.

V. RELATED WORK

Next we present a brief overview of related proposals for
interconnecting two (or more) blockchains. A more extended
discussion can be found in [5]. Blocknet supports the decen-
tralized exchange of cryptocurrency between blockchains [6].
The interledger services are implemented by nodes inter-
connected through a DHT-based peer-to-peer network. Trust
among the nodes is achived through a Proof-of-Stake consen-
sus algorithm. ARK provides interledger bridging functionality
similar to Blocknet [7]. In addition to the exchange of tokens,
ARK also supports the execution of service contracts, which
can include the transfer of data, the creation of smart contracts,
and the execution of code on different blockchain platforms.
The nodes of the ARK network implement a Delegated Proof-
of-Stake (DPoS) consensus algorithm.

BTC Relay4, which was initiated by the Ethereum Founda-
tion, is a smart contract on Ethereum that can read the Bitcoin
chain and verify Bitcoin transactions. This allows using Bit-
coin payments for executing Ethereum smart contracts. BTC
Relay uses Bitcoin block headers to build a “mini-version”
of the Bitcoin blockchain. When an application processes a
Bitcoin payment, it uses a header to verify that the payment
is legitimate. Relayers are those who submit block headers to
BTC Relay. When any transaction is verified in the block, or
the header is retrieved, relayers are rewarded with a fee.

The POA Network5 utilizes Proof-of-Authority (PoA) as
its consensus mechanism and is another attempt for devel-

4http://btc-relay.readthedocs.io
5https://poa.network

oping a cross-chain bridge solution for connecting Ethereum-
compatible blockchains. Aion is a proposal that has common
features to the proposals discussed above. Namely, inter-chain
transactions are performed by bridges, which implement a
lightweight BFT-based consensus algorithm and receive inter-
chain transaction fees.

Polkadot [8] proposes a scalable heterogeneous “multi-
chain”, upon which a large number of so-called parachains
can be built. A relay-chain is responsible for finalizing all the
transactions between parachains. Cosmos is similar in structure
to Polkadot and proposes a Hub as the main blockchain that
interconnects many other independent parallel blockchains,
called zones [9]. The Cosmos hub and zones can implement
a classical BFT consensus algorithm.

The primary focus of all the above proposals is the inter-
connection of different blockchains to allow the exchange of
tokens. On the other hand, the work in this paper focuses on
the interconnection of transactions on different blockchains to
link payment and IoT resource access authorization transac-
tions. In this direction, we investigate solutions, namely the
first two architectures shown in Figures 3 and 4, which are
simpler than the proposals discussed above.

VI. CONCLUSIONS AND FUTURE WORK

We have presented decentralized interledger gateway ar-
chitectures for IoT authorization scenarios that include the
interconnection of two ledgers. The proposed architectures
differ in their complexity, transaction cost, and ability in han-
dling transactions involving multiple ledgers. Ongoing work
focuses on further evaluating the proposed architectures, and in
particular on quantifying the tradeoffs between reduced delay
and increased transaction cost when multiple ILGs submit
interledger transactions.

REFERENCES

[1] V. A. Siris, D. Dimopoulos, N. Fotiou, S. Voulgaris, and G. C. Polyzos,
“Decentralized authorization in constrained IoT environments exploiting
interledger mechanisms,” Computer Communications, no. 152, pp. 243–
251, 02 2020.

[2] Bitcoin Wiki, “Hashed Timelock Contracts (HTLC),”
https://en.bitcoinwiki.org/wiki/Hashed Timelock Contracts.

[3] M. Sporny et al., “Verifiable Credentials Data Model 1.0: Expressing
verifiable information on the Web,” Draft Community Group Report,
W3C, September 05, 2019.

[4] E. Androulaki et al., “Hyperledger fabric: A distributed operating system
for permissioned blockchains,” in Proc. of ACM EuroSys Conference,
2018.

[5] V. A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, and G. C.
Polyzos, “Interledger Approaches,” IEEE Access, vol. 7, pp. 89 948–
89 966, 2019.

[6] A. Culwick and D. Metcalf, “The Blocknet design
specification.” [Online]. Available: https://www.blocknet.co/wp-
content/uploads/2018/04/whitepaper.pdf

[7] ARK, “ARK Ecosystem Whitepaper. Version 2.0.0,” April 1, 2019.
[Online]. Available: https://ark.io/Whitepaper.pdf

[8] L. Wood, “Polkadot: Vision for a heterogenous multi-chain
framework, white paper,” November 2016. [Online]. Available:
https://polkadot.network/PolkaDotPaper.pdf

[9] Cosmos Whitepaper. [Online]. Available:
https://cosmos.network/resources/whitepaper


