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Abstract—Caching decisions typically seek to cache content that satisfies the maximum possible demand aggregated over all users.
Recommendation systems, on the contrary, focus on individual users and recommend to them appealing content in order to elicit
further content consumption. In our paper, we explore how these, phenomenally conflicting, objectives can be jointly addressed. First,
we formulate an optimization problem for the joint caching and recommendation decisions, aiming to maximize the cache hit ratio under
minimal controllable distortion of the inherent user content preferences by the issued recommendations. Then, we prove that the
problem is NP-complete and that its objective function lacks those monotonicity and submodularity properties that would guarantee its
approximability. Hence, we proceed to introduce a simpler heuristic algorithm that essentially serves as a form of lightweight control
over recommendations so that they are both appealing to end-users and friendly to network resources. Finally, we draw on both
analysis and simulations with real and synthetic datasets to evaluate the performance of the algorithm. We point out its fundamental
properties, provide bounds for the achieved cache hit ratio, and study its sensitivity to its own as well as system-level parameters.

Index Terms—content caching, recommender systems, small cells, algorithmic design, wireless networks

1 INTRODUCTION

C ONTENT caching has been experiencing revived interest
in recent years within the context of current and next
generation wireless cellular networks. The soaring demand
for mobile video services pushes caching functionality
towards the wireless network edge [2]. Storing popular con-
tent at caches close to the user results in enhanced Quality
of Experience (QoE) for the end users and smaller footprints
of the bandwidth-demanding mobile video traffic within
the wireless network.

On the other hand, recommender systems have become
integral components of content provision sites. Their mis-
sion is to make personalized recommendations for movies,
video clips, music songs or other content items that best
match the interests and preferences of individual users.
This, in turn, improves the users’ satisfaction and boosts
their engagement in the sense that it increases the number
of content downloads. For instance, the recommender sys-
tem used by Netflix is considered responsible for about
80 percent of the hours streamed at Netflix [3], whereas the
Related Video recommendations generate about 30 percent
of the overall views on YouTube [4].

Typically, the recommendation engine and the caches at
the wireless network are owned and managed by different
entities. Recommender systems are controlled by content
providers through apps that interact with users, whereas
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the caching infrastructure is typically possessed and con-
trolled by the wireless network operator. Content providers
often insert, through their own or third-party Content
Delivery Networks (CDNs), servers storing content within
other networks. In the case of cellular networks, these serv-
ers tend to be placed at their egress nodes rather than at
their edge.

However, a persistent trend is that players with originally
distinct roles in the business value chain, such as access
network operators and content providers, tend to deploy
their own content delivery solutions, albeit for different rea-
sons. Content providers seek to acquire better control of the
network access infrastructure so as to improve the Quality of
Experience delivered to their subscribers. Netflix Open Con-
nect' and Google Global Cache” are two widely known
examples of CDN solutions owned by content providers.
Access network operators, on the other hand, primarily seek
to minimize costs related to the delivery of video traffic
through external networks. At the same time, by having stor-
age servers closer to the end- users, telco CDNs can provide
their subscribers with faster content access.

In the case of wireless networks, these trends motivate
novel content provisioning scenarios, whereby the coordi-
nation of (at least) three different mechanisms is deemed
feasible towards optimizing user- and network-centric per-
formance measures. First, content replication at the caches of
different (small) cells can be used to maximize the locally-
served demand and optimize the access delays experienced
by users, hence their QoE. At the same time, caching
reduces the traffic at the backhaul links and maximizes the
cache hit ratio. Second, dynamically routing user content

1. openconnect.netflix.com/en/
2. peering.google.com/
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Fig. 1. lllustration of the system model and toy example. Caches are co-
located with small cells and serve users with content of their preference.
The example shows three users with their content preference distribu-
tions (2nd column) over six items A-F (1st column). The three items (A,
C, and D) that attract the highest aggregate preference from all users
are locally cached, yielding an expected cache hit ratio of 0.58. Consider
a recommender system issuing content recommendations to users and
a naive model for their impact: When an item is recommended to a user
the preference (demand) for that item is boosted by 0.03. On contrary,
when an item is not recommended to a user, the preference of that user
for this item decreases by 0.03. When recommendations are issued for
the top-3 items in users’ preferences (3rd column), the cache hit ratio
drops to 0.55. When recommendations are issued for items that are
both cached and of adequate interest to users, yet not necessarily within
the top-3 set (4th column), the cache hit ratio increases to 0.67.

requests to different cell caches, it can balance the request
load across caches, again improving user QoE but also the
network resource usage. Finally, recommender systems can be
carefully used to nudge users towards more network-
friendly content request patterns, i.e., they can shape content
demand for the benefit of the caching mechanism.

Motivation. This last mechanism appears to have interest-
ing repercussions for the design of caching algorithms. It is,
in fact, the coupling between these two mechanisms, content
caching and recommender systems, that serves as the main
motivation for this work. Consider, for example, a cell cache
serving the users who are associated with the cell. The rough
idea is that the recommender system does not necessarily
issue recommendations for content that ranks as the top
most relevant according to the recommendation algorithm;
instead, it could recommend to individual users cached con-
tent that still matches adequately with their preferences and, at
the same time, attracts strong demand from many other users.
Hence, anticipating that its recommendations affect the con-
tent access patterns of users, the recommender system seeks to
gently blunt some of the heterogeneity in users’ demands, thus aim-
ing at higher caching efficiency and better users” QoE (Fig. 1).

The possibility to dynamically route content requests
through different (small) cells within reach of the user adds
further degrees of freedom to the problem. Besides which
content to store, the caching decisions concern where to store
it. Hence, a joint caching and recommendation algorithm
could cache and recommend to a user content items that
rank second, third, or lower in his/her preferences, as long
as these items are in great demand in at least one of the cells
that lie within the coverage of the user. It would instead
avoid caching and recommending an item that, say, ranks
first in the user interests but is not popular among other
users in any of the cells the user can associate with.

Our Contributions. The main novelty of our work is that
we take a different viewpoint to recommender systems. We
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approach them as an additional traffic engineering mecha-
nism that can also help improve performance measures on
the wireless network side. As a result:

e We define a system model in Section 2 that captures
the coupling between caching decisions and issued
recommendations. Our viewpoint to recommender
systems raises some concerns, not least ethical ones.
Hence, we introduce a measure called preference dis-
tortion tolerance, to quantify how much the engi-
neered recommendations distort the original user
content preferences.

e We formulate an optimization problem for the joint
task of caching and recommending content to each
user in Section 3. The objective of the Joint Caching
and Recommendations Problem (JCRP) is to maxi-
mize the cache hit ratio under controlled preference
distortion tolerance. We prove that the JCRP is NP-
complete and that its objective function lacks those
monotonicity and submodularity properties that
would guarantee its approximability.

e We devise a low-complexity practical heuristic algo-
rithm that solves efficiently the JCRP in Section 4.
The algorithm is essentially a form of lightweight
control over user recommendations, so that the rec-
ommended content is both appealing to the end-user
and more friendly to the caching system and the net-
work resources.

e Finally, in Sections 5 and 6, we thoroughly evaluate
the proposed algorithm. The evaluation is carried out
both analytically and through simulations with real
and synthetic datasets and establishes main proper-
ties and performance bounds of the algorithm. A
number of propositions are stated here and some of
them are discussed briefly. The reader may refer to
[5] for more propositions and their detailed proofs.

2 SYSTEM MODEL

2.1 Caches, Content, and Users
Our model involves a set of caches C, a catalogue of content
items (e.g., video clips), Z, and a set of users, ¢ (Fig. 1).

2.1.1 Caches

Caches are co-located with wireless network microcells that
typically have a range in the order of a few hundred meters.
Each cache z € C has limited storage, C'., which is measured
in normalized file size units. At any point in time, it stores a
finite set of files, referred to as the cache placement P,. An
additional cache is installed on a backend server, e.g., in the
cloud. This “cache” is assumed to have enough capacity to
store copies of the entire catalogue.

2.1.2 Content

Content items are relevant to one or more of a set of M
thematic categories. The detail and resolution of this cate-
gorical separation may vary. Such information may be
stored in content metadata in the form of (hierarchical) tags.
(e.g., “soccer” might be a distinct category, but it may also
be further split into English/French/Spanish soccer). Such
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TABLE 1
Notation Table
Notation Context
C. Storage capacity of cache z
M Number of thematic categories
L; Normalized length of item ¢
£(5) Feature vector value of content item ¢ in feature j
£.(5) Feature vector value of user v in feature j
prret Inherent content preference distribution of user u
i Similarity of user v and item ¢
e Probability distribution due to recommendation
J Content item request probability distribution of user v
(recommended items)
J Content item request probability distribution of user v
(non-recommended items)
R Number of recommended items
W, Recommendation window of user u
K, Length of W,
Tq Preference distortion tolerance
H, Cache hit ratio under scheme s
RC" Provisional set of recommended items to u
P Cache placement
RC! Final set of recommended items to u
ZD Zero-distortion scheme
UD Unbounded-distortion scheme
CawR Caching-aware recommendations scheme

information may be stored in content metadata in the form
of (hierarchical) tags.

The M thematic categories serve as the feature set that
describes items. Namely, each item i € Z of finite normal-
ized size L, is represented by a feature vector f', whose jth
element f'(j), j € [1,.., M] denotes the score of item 7 in fea-
ture j, i.e,, how relevant is item ¢ to thematic category j.
These relevance scores assume values in [0,1] and are nor-
malized so that Zj\il f'(j) = 1, Vi € Z. Replicas of each con-
tent item may be stored in any set of the small cell caches,
besides the backend cache, depending on the actual caching
decisions.

2.1.3 Users

At any point in time, each user u € U is located within range
of a different subset of the network (micro)cells. Theoreti-
cally, the user might access different content items through
different caches, each time dynamically changing his/her
association depending on the requested content.’ In this
paper, we assume that users do not change their association
point in the network dynamically in response to content
requests. Users are rather statically associated with certain
cells, depending on the quality of radio signals and the load
of the radio network, in line with user association practices
in current wireless networks. A direct consequence of this
assumption is that the caching decisions are made indepen-
dently in each cache-enabled small cell.

Users are described by similar feature vectors f, € [0, 1]M
as the content items. Each vector element f,(j),j € [1, .., M]
expresses how much user u is interested in content classi-
fied under thematic category j. We normalize these values
aswell,ie, > £,(j) = 1, Vu e U.

3. The combination of caching with dynamic user associations and
content routing has been investigated in literature, e.g., see [6].

Practically, content provision sites draw on the history of
users’ content downloads, and more broadly their interac-
tions with the site, to infer these vectors. We elaborate on
this in Section 6.1.

2.2 Content Preferences of Users

The demand for content items is time-varying. It grows for
some finite time after the content item first becomes avail-
able for download, and then it gradually fades out [7], [8].
Our work concerns time scales over which the demand for
each item can be considered “fixed”, in the order of a few
hours within a day [9], [10]. Namely, content demand pre-
dictions and caching decisions are made once every such an
interval, and user content request patterns change slowly
over that interval.

On the user side, we distinguish between inherent con-
tent preferences of users and the eventually issued content
requests by them. Hence, each user u can be described
by a content preference distribution, p"*/(i),i € Z, with
iz P24 (i) = 1, which captures his/her original preferen-
ces over all items. The preference of user u for item i,
p?"/ (i), can be inferred from the feature vectors f, and f. In
this paper, we use for this purpose the cosine similarity
index, ay;, of vectors f, and £ [11],* defined as

M

qu@ Zf%j)

Normalizing these index values over all items yields the
content preference distribution p?/

Qo =

(1)

However, the content that users eventually request also
depends on the recommendations issued to them, so that
the probability with which user u requests item ¢, p;?(7), dif-

fers from p?¢/ (7). We describe our modeling approach to the
recommendations’ impact in the next paragraph.

2.3 The Impact of Recommendations on User
Content Requests

The system recommendations affect the relative user dema-
nd for all content items. In principle, they boost the demand
for the recommended items and at the same time propor-
tionately decrease the demand for remaining items. It is less
clear how recommender systems quantitatively modulate the
a priori preferences of a user p?/ so as to yield the ultimate
content request distribution p;?. Modeling in literature
tends to be both intuition- and evidence-driven. In [13], for
example, the recommendations are mapped to a new distri-
bution p!*“ over the content items and p/“(7) is taken to be

u

equal to max{p?”“/(i),p*(i)}. On the other hand, there is

u

strong experimental evidence that both the number of

4. Measures of similarity between distributions such as the Propor-
tional Similarity, the Kullback-Leibler distance, and the Hellinger coef-
ficient could also be used in this respect [12].
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Fig. 2. Impact of recommendations on user requests. The content items
are ranked in decreasing order of user preference and only items within
the recommendation window are recommended. A priori content prefer-
ence distribution for arbitrary user u, its recommendation window W, of
size K, (black), and the resulting content request probability after rec-
ommendations (red).

recommended items and their order within the recommen-
dation list have a high impact on the a posteriori distribu-
tion of the users’ demand. For instance, the “Related Video”
recommendation lists of YouTube is shown to be the main
source of requests for its content, since items ranked higher
up in a list of recommended items attract more user interest
than items at lower positions (e.g., [4], [14]). This finding
is more relevant for users that access content through
small form-factor devices such as mobile phones, in which
case it is less convenient to scroll down the whole recom-
mendation list.

Hence, in modeling the impact of recommendations, we
make two assumptions:

Assumption 2.1. The impact of a recommendation for item i on
the demand that is eventually expressed by a user u for this
item is a non-increasing function f(.) of both item’s i position
in the recommendation list, rnkE (i) € [1, R], and the number
of recommended items, R.

In Section 6.1 we consider specific instances of p]“ that
satisfy this assumption. For a more detailed discussion
please refer to 6.1 in [5].

Assumption 2.2. The content request distribution is a convex

combination of the two distributions, p?"*/ and p'* and is given by

(i) = wl, - p°(i) + (1 —wy) - iyl (i) )

for each of the R items that are recommended to u, and by

) = (1= wy) - ply (0) ®3)

for each one of the (|Z| — R) items not recommended to user .
The recommendation weights w! in Equations (2) and (3)
express the importance user w attaches to recommendations.

req

p'l/.

Equations (2) and (3) capture the way recommendations
shape content requests that are ultimately issued by user u.
The request probabilities are boosted when compared to the
initial ones for recommended items, and they decrease for
non-recommended ones, so that the resulting content
request distribution remains a probability distribution
(see Fig. 2).

2.4 Engineering the User Recommendations

This capability of recommender systems to shape user
demand for content renders them a powerful tool for con-
tent demand shaping. This way, recommender systems
could be actively used to optimize network-centric
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performance objectives, in what marks a departure from
their nominal user-oriented mission. Our approach to this is
summarized in Fig. 2 and described in what follows.

Assume that the recommender system seeks to recom-
mend R new items to each user u, where R may range
from 1 up to a few (e.g., 5-10) items. Instead of issuing
recommendations for the top R items in u’s content pref-
erence distribution pﬁ”"f , the system selects R items
among the ones residing within a recommendation window
W, that is defined by the top K, items, where K, > R, as
shown in Fig. 2. Namely, the recommender system artifi-
cially inflates the set of candidate items for recommenda-
tion for each user u by a user-specific factor K,/R. When
doing so, the system preserves two properties addressing
the ethical concerns described in Section 1 regarding the
manipulation of recommendations:

o It preserves the rank of recommended items in the original
user content preferences. If an item i is recommended
at higher rank than item j, it holds necessarily that
P ) = el ()

e It controllably bounds the distortion that its recommenda-
tions introduce to the original user content preferences.

In the worst case, the system will end up recommending
items that are ranked in positions {K,, — R+ 1, K, — R+ 2,
..., K,} in decreasing order of user content preferences (ref.
Fig. 2), instead of the items in top-R positions {1,2,... R}.
We define the worst-case user preference distortion measure,

A, to be
>

Jirnky(§)€
(Ku—R 1K)

()

Ay(Ky,R)=1- , 4
(K R) T )
Jirnky (7)€[1,R]

where rnk,(i),7 € Z, is the rank of item 7 in user’s u content
preferences.

The denominator in Equation (4) equals to the total
request probability of user u for the top R items, which are
the ones a typical recommender system would recommend.
The numerator, on the other hand, equals to the total
request probability of user u for the bottom R items in the
recommendation window. Hence, A, (K,, R) expresses the
worst-case deviation from initial user request probabilities,
that may result from the choices of our scheme when com-
pared to a typical “honest” recommender system. As such,
this metric is admittedly conservative and it denotes an
upper bound on the possible distortion of original user
request probabilities.

The size of the recommendation window, K, introduces
an interesting trade-off. Higher K, values allow for more
flexibility in selecting items to recommend to users and
shaping their demand in favor of caching efficiency, as it
will be seen in the sequel. But at the same time, a higher K,
value may result in higher distortion of user preferences, as
can be readily seen in Equation (4).

3 THE JOINT CACHING AND RECOMMENDATIONS
PROBLEM

The net outcome of these recommendations is that a given
cache placement {P. : z € C'} may satisfy a portion of the
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total demand in the cell, as measured by the cache hit ratio’

Ducu iep Py (9)
H= ey (%)
ZUEZ/{ Ziel’ Pu q(l)

On the user side, the requirement is to maximize the num-
ber of requests that can be satisfied by the cell cache (cache
hits). This results in lower content access delays and higher
user QoE. At the same time, since fewer requests have to be
satisfied by the backend server, the utilization of backhaul
links is lower. In other words, the maximization of the cache
hit ratio serves both types of requirements.

Formally, let {y;} and {z.;}, i € Z,u € U, be two sets of
binary decision variables with y; = 1 when item ¢ is cached
and y; = 0, otherwise; and z,;, = 1 when item i is recom-
mended to user u and z,; = 0 when it is not. The objective of
the joint caching and recommendation decisions are then to

max > yi(zapl (i) + (1 - 2a)P(0) (6
yXx uel i€EW,y,
s.t. > yiLi <C (7
i€l
> wu=R, Vuel ®
€Wy
Ui, Tui €{0,1} uw €U, i € W,. 9)

In Equations (6) and (8), W,, denotes items within the recom-
mendation window of user u. The cardinality of this set is

K, = max{k|A,(k,R) < rq(u)}, (10)

where 74(u) € [0,1) denotes the user-specific preference
distortion tolerance, an upper bound on user preference dis-
tortion in Equation (4) that should not be exceeded for any
user. Our formulation implies that the system could provide
users with the opportunity to determine themselves how
much distortion tolerance they are willing to tolerate.
Inequality Equation (7) reflects the cache storage capacity
constraint, whereas equalities Equation (8) ensure that
exactly R items are recommended to every user.

3.1 Problem Complexity and Approximability
Properties

We refer to the problem Equation (6), (7), (8), (9) as the Joint

Caching and Recommendations Problem (JCRP).

Proposition 3.1. The Joint Caching and Recommendations
Problem is NP-complete.

Proof. We work with the decision problem variant of JCRP,
to which we refer as the Joint Caching and Recommenda-
tion Decision Problem (JCRDP).

JCR Decision Problem. Consider a set of users U, a cat-
alogue Z of content items with lengths L;,i € Z, user
demand distributions p?"*/ and recommendation win-
dow sets W,, u € U, a cache capacity C' and a real num-
ber @ > 0. Given Equations (7), (8), (9) and semantics of

5.Since the caching decisions are made independently for each
cache (ref. 2.1.3), we drop the index z from subsequent references to
cache placements, i.e., we write P instead of P..

{yi}, {zui} as in the JCRP, are there a cache placement
and item recommendations to each user so that
DD wilwap () + (- 2P (D) 2Q, (D

ueU i €Wy,

where p“/(i) and p] (7)) are given by Equations (2) and
(3)?

Let a JCRDP instance be denoted as JCRDP(U,Z,
P/ )W, R, C, L, Q). Given a cache placement and lists of
recommendations for each user, we can check in polyno-
mial time whether they satisfy or not Equations (7), (8)
and (11). Hence, the JCRDP lies in NP.

Consider an instance of JCRDP with such preference
distributions of users that their recommendation windows
are of size R. Then, the recommendations are trivially fixed
for each user; namely, z,; = 1 for each item ¢ that ranks in
the first R positions in the individual preference distribu-
tions and z,; = 0 otherwise. The JCRDP now simplifies
to asking whether there are {y; } variables so that:

> Ty > Q (12)
ueU

sty yli <C (13)
i€l

y; €{0,1} iel, (14)

where v; is given by

vi =3 2up(i) + (1 - 2a) ().
ueld

Equations (12), (13), (14) constitute the decision ver-
sion of the 0-1 Knapsack Problem (K'SP), where [ and v
are the sizes and values, respectively, of the items that
have to be packed within space C.

Moreover, assuming an oracle that solves JCRDZP,
returning the recommendations lists for all users and the
cache placement, we can directly solve the decision ver-
sion of the 0-1 K'SP. Conversely, given the solution to the
0-1 KSP, we get the caching policy for the special case of
the problem, where the recommendations are trivially
obtained. O

As a first step towards an efficient approximation algo-
rithm, we investigate the monotonicity and submodularity
of the JCRP (JCRDP) objective function. We recall the rele-
vant definitions in what follows. Let S be a finite set of ele-
ments (interchangeably called universe or ground set) and
X, Y any two subsets of S satisfying X C Y C S. A set func-
tion f:2% — R is called monotone if f(X) < f(Y), VX,Y C
S. Moreover, f is called submodular, if for any element
ec S\Y, it holds that fx(e)> fy(e), where fa(e)=
f(AUe) — f(A). Namely, the extra marginal benefit from
adding an item to a set decreases as this set grows larger.
Similarly, f is called supermodular, if for any element
e € S\ Y, itholds that fx(e) < fy(e).

We now claim that:

Proposition 3.2. The objective function of the JCRP is non
monotone.
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Fig. 3. Schematic outline of the three-step algorithm for the joint caching and recommendation problem.

Proof. The objective function in Equation (6) corresponds to
the non-normalized expected cache hit ratio of the JCRP.
Each content item ¢ that is a candidate to be cached carries
non—negative utility

Zprcq

ueld

_Zl_

ueld

(15)
Pl (i) +

> w

wiEWy,

w,py (@)

The first summand captures the original demand for the
item and the second one the added value the item
acquires due to recommendations made to users for it.

The objective function is monotone if it increases or, in
the worst case, remains constant, every time a new item is
added to the cache (y; changes from O to 1) or to the recom-
mendation list of any user (z,; changes from 0 to 1).

Monotonicity with respect to y;. Consider that we add
item ¢ to the cache, that is y;=1. Then the cache hit ratio
will increase by a factor

> (1= w)pr (i)

ueld

E T 7‘6‘(’
wupu

w:xy; =1

and the system will have a positive gain.

Monotonicity with Respect to x,;. Now consider the case
where an item 1 is inserted in the recommendation list of
user u, i.e., z,;(i) = 1. When this happens, the following
scenarios are possible with respect to its impact on a spe-
cific user and the cache placement:

(c1) Ttem 7 is cached (y;=1).

(c2) Item i is not cached (y;=0) and is recommended at
a lower rank than any other cached item in the recommen-
dation list of user .

(c3) Item i is not cached (y,=0) and seizes the position
of a cached item, say j with y;=1, in the recommendation
list of u (item j, and possibly other items, move to lower
positions in this list).

In cases (c1) and (c2) the contribution of item i to the
cache hit rate is positive and zero, respectively. On the
contrary, in (c3), the contribution of ¢ is negative since it
reduces the value of the cached item j, as well as that of
any other items that shift to lower-rank positions in the
recommendation list of u (recall assumption 2.1). Thus,
the objective function in Equation (6) is non monotone. O

Proposition 3.3. The objective function of the JCRP is neither
submodular nor supermodular.

Proof. The objective function would be submodular (resp.
supermodular) if it exhibited consistently decreasing
(resp. increasing) returns as new items are added to the
cache or the recommendation list of any user.

Consider sets X, Y to be two sets of cached items with
X CY.When anew item i € 7\ Y is added to the cache

(y;=1), the gain in cache hit ratio is positive and fixed
(refer to Equation (16)).

When a new item 7 is recommended to user w, i.e.,
2, = 1, the following cases are possible:

(c1) Item i is cached neither in X norin Y.

(c2) Item i is cached in both X and Y.

(c3) Item i is cached in Y but not in X.

In (c1), the marginal gain in cache hit ratio is zero for
both sets X and Y.

In (c2), the marginal gain in cache hit ratio exhibits
diminishing returns and the objective function behaves as
a submodular one. More specifically, if k, cached items
are already in the recommendation list of user u, the added
value w] p’(i) that i generates for the cache hit ratio is that
of a recommendation in the position k,+1 in the list. But &,
can only increase for every user as the cache grows and
the impact of a recommendation for i is a decreasing
function of its rank in the list (ref. Assumption 2.1).

In (c3), the marginal gain in cache hit ratio increases
with enlarged cache placements. Marginal gain is
achieved only for set Y. For X, the cache hit ratio does
not change (if there are no cached items following item ¢
in the recommendation list of u) or even decreases (if 7
precedes one or more cached items in the recommenda-
tion list of ), as in case (c3) in Proposition 3.2. Thus, the
objective function behaves as a supermodular one.

Overall, the objective function is neither submodular
nor supermodular with respect to variables ;. ad

Summarizing Propositions 3.2 and 3.3, the objective func-
tion is neither monotone nor submodular. Hence, more gen-
eral techniques that yield approximability guarantees for
this category of functions, e.g., [15], [16], and have been
often applied in caching problems e.g., [17], [18], are not
applicable to the JCRP.

In the following section, we propose an efficient heuristic
algorithm for solving the JCRP. Although the algorithm
does not lend to rigorous approximability analysis (ref.
Section 4.2), it is computationally simple (ref. Section 4.1)
and exhibits excellent performance (ref. Section 6).

4 AN ALGORITHM FOR THE JOINT CACHING AND
RECOMMENDATION PROBLEM

4.1 Description of the Algorithm

Our Caching-aware Recommendations (CawR) algorithm
proceeds in three steps, as shown in Fig. 3 and it is summa-
rized in the pseudocode of Algorithm 1.

The first step is an initialization step where a provisional
set of recommended items RC" is derived for each user.
Input to this step are the content preference probability
distributions of users. Recommendations are made for the
top-R items in the user preferences but, contrary to what
would happen with a typical recommender system, these
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recommendations are not communicated to the user; they
are only relevant as intermediate result of the algorithm’s
operation.

The second step is a content placement step, where we
determine which content should be cached. To this end, we
compute the content request probabilities according to
Equations (2), (3). All content items are assigned utilities
that equal the aggregate request probability they attract:

(@) =Y ()

ueld

i€T. (16)

The optimal placement is then an instance of the 0-1 KSP.
We use the Dynamic Programming (DP) FPTAS algorithm
in ([19], section 8.2) to obtain an (1-¢),e > 0 approximation
of the optimal solution; let P denote this placement.

Finally, in the recommendation amendment step, the origi-
nal recommendations to users are amended so as to maxi-
mize the utility (i.e., expected attracted requests) of the
cached content. To this end, we first identify for each user u
the set of K, items in his/her recommendation window
from Equation (10). Then we compare the item sets P and
RC™. Two possibilities exist:

o If RC,Z" C P, then the original recommendations
derived in the initialization step remain intact (and
the resulting user preference distortion is zero).

e If [RC'NP|=F €[0,R—1], then the F items
that appear in both sets are retained in the final
recommendation list. F = min{R — F}, F,}, where
Fy = |(W,\ RC™)(P|, most preferred cached items
appearing in the recommendation window of w (but
not in the recommendation set derived in the initiali-
zation step), are added to the recommendation list
for u, replacing the bottom-F' items in RC’ZL; and, if
there is still space (F7 + F' < R), the remaining rec-
ommendations are made for the (R — F} — F) least
popular items out of the (R — F}) remaining (non-
cached) items in RC™".

The final set, RC{;, of R items that are recommended to
user u are in general different from the equal-size provi-
sional set RC" derived in the initialization step. Since the
values of p/“? after the recommendation amendment step
are different, one might think that the algorithm returns
to the content placement step and runs another round of
steps 2 and 3. In Proposition 4.1 we prove that this is not the
case, and that our algorithm terminates in a single round.

Proposition 4.1. CawR terminates after a single execution of the
recommendation amendment step.

Proof. It suffices to show that the recommendation amend-
ment step does not motivate any change in the cached
content. Such a change would occur if the modification of
recommendations resulted in change of item utilities (see
Equation (16)) so that

jePJEP (i) > v(j) an

However, the recommendation amendment step increases
the utility of an item already in the cache, when issuing rec-
ommendations for it to additional users than those in the
initialization step; or, in the worst-case, it leaves it intact.

At the same time, it reduces or leaves intact the utility of
items that have not been included in P during the content
placement step. Hence, condition in Equation (17) cannot
be fulfilled and the cache placement PP does not change. O

Hence, the algorithm essentially sets the cache placement
on the basis of the original recommendations to users (with
zero user preference distortion). Then, it selectively changes
recommendations to nudge individual user preferences
towards content that attracts demand from the overall user
population. This way, the utility of the cached content, i.e.,
the demand it attracts, grows and the expected cache hit
ratio increases.

In the toy example of Fig. 1, CawR first sets the provi-
sional recommendation list RC" to the R most preferred
items for every user, as highlighted in the 2nd column. The
resulting demand distributions are shown in the 3rd col-
umn. These recommendations are not shown to the end-
users. In the second step, CawR computes the utility of each
item from Equation (16) and caches items A,C,D. In the final
step, CawR compares the recommendation window W, of
each user u with {A, C, D} and determines the final lists of
recommendations RC{j, which are issued to the users. In our
case, Wua ={A,B,C,D}, W, ={A,C,D,E F}, and
Wus = {A, B,C, D, E}, respectively. The sets RC{j are those
highlighted in the 4th column in Fig. 1.

Algorithm 1. The CawR Algorithm

Input: Probabilities pﬁr‘jf , weights w], recommendation

windows W,, Yu € U, number of recommendations R
Output: Content placement P and recommended item sets
RCI Yu e U.
Step 1:
1: Set the initial recommendation list RC" to the R most
preferred items of the user and p,.. to f(rnkL (i), R)
(ref. Assumption 2.1).
2: for every user v € U and item i € 7 do
3:  Compute the content request probabilities p/“(i) from
Equations (2) and (3).
: end for
Step 2:
: foreveryitem i € 7 do
Compute its utility from Equation (16).
end for
: Use the DP (1 — €)-approximation algorithm, e > 0, to solve
the 0-1 KSP and derive the content placement P.
Step 3:
9: for every user u do
10:  Add items in RC!" ()P to the final recommendation list

'S

RC! for u.

11:  if RC/ is not full then

12: Add to set RC! items that are both cached and within
W, in decreasing order of preference probability till it
is filled up.

13:  endif

14:  if RC/ is still not full then

15: Add to the list items out of the remaining ones in RC'™

in decreasing order of preference probability till the set
is filled with R recommended items.

16:  end if

17: end for
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4.2 Complexity of the CawR Algorithm

The manipulation of recommendations injects controllable
distortion to the original user content preferences. In the
worst case, the algorithm recommends to user u the bottom
R of the top-K, items, resulting in at most A, distortion
of the recommendations an “honest” recommender system
would make.

In the first step, our algorithm sorts the list of the items
and finds the most preferred ones for each user at time
O(U| - [Z] -1og |Z| + 1] - |Z]) = O(U| - [Z| - log|Z]). n the
second step the algorithm computes a utility for every item
and then uses the DP FPTAS algorithm for the 0-1 KSP. This
implies a complexity of O(|Z| +|Z| - |C|) = O(|Z]*) since the
cache capacity is upper bounded by the total catalogue size.
In the third step, the algorithm compares the items within
the recommendation window of each user against the cache
placement to define the final recommendations, leading to
O(JU| - max, (|[Wy]) - [C|). Since the size of the recommenda-
tion window is naturally bounded by the catalogue size, the
total computational complexity of CawR is O(|f| - |Z ).

In the two sections that follow, we draw on both analysis
Equation (5) and simulations with real and synthetic data-
sets Equation (6) to gain further insight to the properties of
the proposed algorithm.

5 PROPERTIES AND PERFORMANCE BOUNDS OF
OUR ALGORITHM

In this section, we compare the performance of our algo-
rithm to benchmark recommender schemes and analyze its
sensitivity to the maximum distortion tolerance parameters,
{rq(u)} and the user content preference distributions,
{prre’}. We codify our results as propositions, referring the
reader to [5] for their proofs and a more detailed discussion.

5.1 Benchmark Recommender Schemes
We consider three alternative schemes for determining
which content to cache and which to recommend to each
user. They serve as plausible comparison references for our
algorithm and help set bounds for its performance.
Zero-Distortion (ZD) Scheme. The scheme recommends
to each user the top-R items in his/her preferences and
caches the C items attracting the highest aggregate demand,
after accounting for the impact of recommendations. Hence,
the recommendations follow precisely the user preferences,
in line with what recommender systems nominally do, and
the cache placement adapts to them.
Unbounded-Distortion (UD) Scheme. This scheme
ranks items in order of decreasing aggregate demand over
all users, after taking into account the factors (1 — w’) that
weigh users’ original preferences. It then caches the top-C
of those and recommends to all users the same top-R items.
Contrary to the ZD scheme, it is now the cache placement
that determines the individual recommendations, catering
for no bounds on the resulting distortion of the inherent
user preferences.

Proposition 5.1. When recommendations follow Assumptions
2.1 and 2.2 and the user preference distortion tolerances are
relaxed, i.e., W, =1 Yu € U in Equations (6) and (8), the UD
scheme is the optimal solution to the JCRP.

JANUARY 2019

Least Frequently Used (LFU) Caching Algorithm. The
algorithm caches items that attract the maximum aggregate
demand over all users, but it does not recommend anything
to them. It is known that LFU maximizes the cache hit ratio
for a single cache in the absence of recommendations.

Denoting the expected cache hit ratio each scheme
achieves by H,,s € {ZD,UD, CawR}, we can show that

Proposition 5.2. The expected cache hit ratios achieved by the
three schemes that issue recommendations satisfy:
Hzp < Hewwr < Huyp. (18)
Thus, the performance of the unbounded- and zero-
distortion schemes set an upper and a lower bound, respec-
tively, for what is achievable with CawR. Notably, due
to Proposition 5.1, Hyp sets an upper bound to the cache
hit ratio under the optimal algorithm, Hppr, for the JCRP
(when the distortion constraints are not relaxed), and, even-
tually, for the cache hit ratio achieved by the CawR algo-
rithm. Namely

Hewwr < Hopr < Hyp. (19)
It is less intuitive how LFU compares with the three
schemes issuing recommendations since they weigh the
inherent user content preferences with factors (1 —w!,) to
determine the cache placement. We explore these compara-
tive relationships as well as the tightness of the bounds in
Equation (19) with numerical simulations in Section 6.

5.2 Sensitivity Analysis to Parameters of CawR
5.2.1  Monotonicity and Submodularity of H¢..r with
Respect to the Distortion Tolerance Parameters

The parameters {r;(u)},u € U in CawR control the amount of
distortion that is tolerated with respect to the original user
content preferences. Higher r;(u) values imply larger W,
sizes, as can be seen from Equation (4), and higher chances to
find cached items in them. This is interpreted into higher
cache hit ratio when at least one of the currently issued rec-
ommendations is for a non-cached item. In that case, CawR
can replace its recommendation(s) for one (or more) of these
items with recommendations for one (or more) of the cached
items that are included in the enlarged W.,,.

Proposition 5.3. Hcy,r is a monotonically increasing function
of the distortion tolerance parameters {r,(u),u € U}.

Less strict claims can be made about the submodularity
of Heaywr with the {ry(u)} parameters [5].

5.2.2 Sensitivity of He,r to the Individual User Content
Preferences

Although the exact values of Hcqyr and Hzp may vary

widely depending on the user content preference distribu-

tions, {p?"*/, u € U}, we can state that:

Proposition 5.4. As the individual content preference distribu-
tions become more skewed, Hyzp and Heq,r tend to converge
with each other.

The key remark is that as the distributions {p?"*/} become
more skewed, the recommendation windows become smaller.
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Fig. 4. Experiments with MovieLens traces. Cache hit ratio, H, versus capacity for different number of recommended items, R. UD (dotted line) and
LFU (dash-dot line) are not affected by R, solid lines correspond to CawR and dashed ones to ZD.

Therefore, the additional flexibility of CawR in selecting items
to recommend tends to vanish and its recommendations
to the users coincide with those of the ZD scheme. In fact,
the recommendations of the two schemes exactly coincide
when K, = R.

6 EXPERIMENTAL EVALUATION OF OUR
ALGORITHM

6.1 Datasets and Default Parameter Settings

We use both synthetic and real datasets [20] to derive the
user and item feature vectors, f, w € U and f' i € Z, respec-
tively, and then infer the user content preference distribu-
tions p"*/ (see Section 2). The purpose of using real datasets
is three-fold: a) to show how our model of user preferences
and content items can be informed by real data; b) to drive a
more “realistic” evaluation of the cache hit ratio CawR
achieves; and (while doing so) ¢) to validate the theoretical
claims made in Section 5. With synthetic datasets, on the
other hand, we can control the experimentation settings and
analyze the sensitivity of our algorithm to important varia-
bles such as the (dis)similarity of content preferences across
users. Experiments were performed with the Movielens
dataset as well as with synthetic datasets.

6.1.1 MovielLens Dataset

The analyzed dataset is a subset of the MovieLens project
dataset [20]. These data include ratings of movies in a 0-5
rating scale by a big population of users and have been
used widely in studies of recommender systems. Each of
these movies is described by M =19 thematic tags (e.g.,
drama, comedy, sports). In our experiments, we analyze dif-
ferent samples of 700 users and 10000 items of the catalogue,
as retrieved in October 2016.

In populating our model, we draw on the fact that a user
did rate a specific item, rather than the actual rating (s)he
assigned to it. More specifically, the item tags are directly
used to generate the item feature vectors. If an item is
described by m different tags, the respective positions of the
item feature vector are set to 1/m and the remaining ones
to zero. For instance, if item 7 is described by “action” and
“comedy”, we set f'(j) = 0.5, for those j values correspond-
ing to “action” and “comedy”. Then, if Z,(u) is the set of
items that user u has rated, we estimate the element f,(j),
J € [1, M], of user’s u feature vector as

ZiEI,.(u) fl (.])

== — (20
Z,}'\; > ez, ()

£.,(5)

6.1.2 Synthetic Datasets

In this set of experiments, the elements of the two vectors
are populated with values drawn from random probability
distributions (the default one is the standard uniform distri-
bution). The default parameter values for simulations with
synthetic datasets are |U/|=150 users, |Z|=1000 items and
M = 8 thematic areas.

For simulations with both types of datasets, the normal-
ized item size L; is sampled from a discrete uniform vari-
able U(1, Lyay), with default L., =4. Our baseline
assumption is that recommendations provide all R items in
the list with an equal boost

P, (i) = 1/R,

which fades out with R. The intuition is that the fewer the
recommendations are, the less cognitive load they demand
from users to process them, and the more significant their
impact is on the eventual user content requests. This
assumption is more realistic for users accessing content
from large-display devices, where it is more comfortable to
scroll down the recommendations’ list.

The choices of user recommendation weights, w;, are
aligned with experimental evidence in [14], according to
which YouTube users request one of the top 10 recom-
mended items with a probability that varies in [0.5, 0.7].
Thus, in our experiments the user recommendation weights
are sampled from ¢/(0.5,0.7).

(21)

6.2 Trace-Driven Simulations

Figs. 4 and 5 validate the performance bounds we found
analytically for the cache hit ratio under CawR in Section 5.
The extent to which these bounds are tight depends on the
number of issued recommendations per user, R, and the
preference distortion tolerance parameter, 7.

6.2.1 The Impact of the Number of Recommended

Items on Cache Hit Ratio

On the one hand, R does not affect the performance of UD
and LFU schemes. On the other hand, the achievable cache
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Fig. 5. Experiments with MovieLens traces. Cache hit ratio, H, versus capacity as a function of the preference distortion tolerance, r, (identical for all
users). Dotted and dashed lines correspond to the UD and ZD scheme, respectively. The four intermediate curves correspond to CawR.

hit ratio under CawR and ZD deteriorates with higher R
values. Intuitively, as the recommendation effect is spread
across more items, some of it is wasted because it gets
harder to find R cached items within the users’ recommen-
dation window (in the case of CawR) and among the top-R
items in their preferences (in the case of ZD). Hence, the
upper bound becomes looser as the number of recommen-
dations grows. Interestingly, so does the lower bound when
the relative gain of CawR over the zero-distortion scheme
grows with R. This is the case as far as the size of the recom-
mendation window size K, is higher than R so that CawR
has higher chances to find a cached item to recommend. For
R =10 and r4=0.01, ZD performs up to 16.6 percent worse
than CawR in terms of cache hit ratio, especially for really
small instances of cache capacity (Fig. 4a). For r4=0.1, this
gap grows to 121 percent (Fig. 4b). At the same time, CawR
reaches the 96 and 97 percent of the performance of the UD
scheme, for r4=0.01 and r4=0.1 respectively, and realistic
cache capacities (Fig. 4a, 4b). An alternative way to quantify
the benefits of our algorithm is by looking into cache capac-
ity requirements. For 74=0.01, ZD needs up to 35 percent
more cache capacity than CawR to reach the maximum
achievable cache hit ratio when R=10 (Fig. 4a). For r,=0.1,
this value climbs to 147 percent (Fig. 4b).

In all cases, the LFU scheme is significantly outper-
formed by schemes that use recommendations.

6.2.2 The Impact of the Preference Distortion
Tolerance, r;, on Cache Hit Ratio

This enhanced flexibility of CawR is also the reason why it
approaches the upper bound faster (i.e., for smaller cache)
when r;=0.1 (Fig. 4b), increasing its advantage over the ZD
scheme that is insensitive to r,.

The only scheme that is affected by the preference distor-
tion tolerance parameter is CawR. Higher values of r; provide
the scheme with more flexibility in recommending items that
are simultaneously parts of the cache placement and the user
recommendation windows. Hence, as can be seen in Figs. 5a
and 5b, but also in Figs. 4a and 4b, the CawR performance
increases monotonically with 4 moving away from its lower
bound (ZD scheme) towards its upper bound (UD scheme).
Indicatively, for R = 3 and rq = 0.1, we evidence with CawR
cache hit ratios up to 71 percent higher than those under the
ZD scheme at very small caches (Fig. 5a). The respective per-
formance gain increases to 121 percent for R = 10 (Fig. 5b).

Regarding cache capacity requirements, even for distor-
tion tolerance values smaller than r; =0.01 and R =3,
CawR needs up to 35 percent less storage capacity to con-
verge to the upper bound confronted to the ZD scheme.
This gain escalates up to 65 percent when 74 = 0.1 (Fig. 5a).

6.2.3 The Impact of Cache Capacity, Catalogue Size,
and Number of Users on Cache Hit Ratio

A final set of experiments with the MovieLens traces
addresses basic scaling properties of the algorithm, i.e., how
the cache hit ratio varies as a function of the content cata-
logue size, cache size, and population of users.

Figs. 6(a-b), report the positive impact of ratio

_cache capacity C 22)
"~ catalog size  |T]

on the cache hit ratio. We further notice that the CawR and
the ZD schemes approach the hit ratio of the UD scheme
slower when compared to a system with fewer items.

6.3 Simulations with Synthetic Datasets

In this subsection, we explore how the performance of our
algorithm is affected by the sensitivity of users to recommen-
dations and the heterogeneity in their content preferences.

6.3.1 User Recommendation Weights

In the experiments of this subsection we consider two sce-
narios for the range of the user recommendation weights w/,
in Equation (3), namely w! € [0,0.2] and w!, € [0.5,1]. The
achieved cache hit ratio for each scenario is shown in Fig. 7.

As is expected, for small recommendation weights, the
cache hit ratio under all recommendation schemes is small
and comparable to that achieved under the recommenda-
tion-agnostic LFU scheme. However, CawR remains attrac-
tive when cache space is a concern. With storage spaces
smaller than the 5 percent of the total catalogue size, CawR
scores similarly to the ZD scheme, needing up to 35 percent
less cache capacity. Compared to the UD scheme, CawR
reaches the 89 percent of the performance of the UD scheme,
performing always more than 14 percent better than ZD.

On the contrary, for larger recommendation weight
values, UD, ZD and CawR schemes differ more clearly from
each other. The cache hit ratio under CawR is 33 percent
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Fig. 6. Experiments with MovieLens traces. Cache hit ratio, H, versus capacity as a function of catalogue size (left) and number of users (right). Dot-
ted lines correspond to the UD scheme, dashed to the ZD scheme and solid lines to CawR.

higher than under ZD, for modest cache capacities in the
order of 2 percent of the catalogue size. In terms of cache
capacity, CawR equals ZD needing up to 32 percent less
cache capacity even for capacities lower than the 2 percent of
the total catalogue size. Compared to the UD scheme, for
high recommendation weights, CawR reaches the 97 percent
of the performance of the UD scheme, performing always
more than 6 percent better than the ZD scheme. Overall,
Fig. 7 indicates that the more users assign importance to rec-
ommendations made to them, the higher the advantage of
our algorithm over the “honest” recommendation scheme.

6.3.2 Heterogeneity in User Content Preferences

The heterogeneity in user content preferences can manifest
itself in multiple ways. To control this heterogeneity, we
generate the user content preference distribution as a con-
vex combination of two distributions: a user-specific com-
ponent p¢°, which is modeled as described earlier in
Section 2.2; and a second user-agnostic probability distribu-
tion, p®!, which is modeled after a Zipf distribution, in line
with experimental evidence in [21] and [22]. The preference
of user u for item i is then given by:

P (i) = i - p (i) + (1 —wfy) - p' (3). (23)
o
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Fig. 7. Experiments with Synthetic datasets. Cache hit

ratio versus capacity as a function of user recommendation weights,
R=10, r4=0.01, |Z|=1.000 items. Dotted lines correspond to the UD
scheme, dashed lines to ZD, dash-dot lines to LFU, and solid lines to the
CawR.

The rationale for introducing p¢*' is that user preferences
emerge as the combined result of individual preferences
and external promotional and marketing actions that set
global trends in content popularity. The weight w¢ captures
how these two influences mix for user w. Smaller w values
emphasize the component distribution that is common
across users, smoothing out the intrinsic user heterogeneity.

We have experimented with different values for w!. In
Fig. 8a we depict results from experiments where w! =0
(o) and w} =1 ("), Vu € U. For w, = 0 the three schemes
that issue recommendations collapse to one. Moreover, the
total achieved cache hit ratio is higher when the content
preference distributions are homogeneous (w;, = 0 Vu € U).
Both remarks can be explained intuitively since, in the
rather extreme case where w!, = 0 Vu € U, the recommenda-
tions issued by the three schemes to the users are identical
and for the R most popular items in the cache.

A second experiment with user heterogeneity concerns
the impact of the content preference distribution. Namely,
we let the three functions shown in Fig. 8b serve as the user
content preference distributions, permuting the order of
items for each one of them. The functions include a Zipf dis-
tribution with skewness parameter =1 ('0’), a uniform dis-
tribution over all items ('+’), and the distribution that
emerges when the elements of the user feature vector f, are
drawn from the standard uniform distribution ("*).

Although the skewness of the last two distributions is
similar, the achieved cache hit ratio, when the demand dis-
tributions follow them, is very different. When the demand
is equally split over all items, the cache hit ratio is higher
than when users’ preferences are equally split over features.
In the first case, the recommendation window of every user
will contain the entire catalogue. Hence, CawR exhibits the
highest possible flexibility when choosing items to recom-
mend and cache. On the contrary, since the items in the cat-
alogue can be very different, when user preferences are
randomly spread among features, dissimilarities do emerge
in the demand. Finally, the lowest cache hit ratio emerges
when demand distributions follow a Zipf law with skew-
ness parameter equal to unity. Such a result is expected
from Proposition 5.4. These results essentially confirm that
the performance of CawR, much as that of other caching
schemes, is quite sensitive to the shape of the original user
content preferences, which set hard bounds on what is
achievable.
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Fig. 8. Experiments with Synthetic datasets. Cache hit ratio versus capacity as a function of content preference heterogeneity (a,c) and content pref-
erence distributions (b). On the left plot, dotted lines correspond to the UD scheme, dashed lines to ZD, dash-dot lines to LFU, and solid lines to the
CawR. All schemes are depicted for homogeneous (‘0’) and heterogeneous (**’) user demand distributions. On the central, we depict three different
prre/ distributions (log-log-scale). On the right, the cache hit ratio under CawR is plotted for the three distributions in (b).

In Fig. 8c we only plot the cache hit ratio achieved by
CawR, but its comparative advantage over ZD still holds. It
is more pronounced for Zipf distributions with higher
skewness paramater a and fades out as a tends to zero,
inline with the prescriptions of Proposition 5.4.

7 MODEL EXTENSIONS AND FUTURE WORK

7.1 Quantifying the Distortion of User Preferences
In our analysis, the distortion of user preferences is defined in
Equation (4) as the normalized difference between the sums
of preference probabilities for the actually recommended
items and those recommended by the “honest” recommender
system. This is clearly only one of many possible alternatives
for quantifying the distance between the two sets of items.

In the current formulation of the JCRP, the distortion
constraint is conservative. Any choice of items within the
recommendation window will satisfy it; but so do combina-
tions of items, some of which lie outside this window. In
other words, the recommendation window, as defined in
Equations (4) and (10), marks a sufficient but not necessary
condition for bounding the distortion of the original user
content preferences by 7.

One apparent alternative would be to get rid of the hard
notion of recommendation window and allow arbitrary
selections of recommended items as far as the distortion
measure does not exceed a certain threshold. Then in the
formulation of the optimization problem in Section 3, we
would replace the requirement ¢ € W, in Equation (9) with
an additional constraint

> (i)
i€l
R

> e

i=1

1-— < rg(u). (24)

Although this may sound more intuitive, in practice it intro-
duces considerable amount of computational complexity to
the solution of Equation (9). Specifically, the choice of items
would become a demanding combinatorial problem for non
trivial instances.

7.2 Future Work
Understanding the precise way recommendations shape
individual content preferences is a research thread per se,

mainly pursued in the context of marketing and recom-
mender systems (e.g., [23]). A plausible direction for future
work consists in translating these largely experimental find-
ings into solid models and validating our findings in this
paper with them as starting points. This should address the
human behavior heterogeneity, possibly leveraging data-
driven machine learning techniques and principles from
behavioral science.

In this work we consider one round of interaction
between the users and the system. An interesting extension
would be to consider how the dynamics of this interaction
evolve in the long-term under such recommendations,
addressing aspects like the trust users build in the system
and including possible system penalization (e.g., churn
effects). In a fully transparent system, where users are aware
of the nudging recommendation practices, users might even
choose themselves and trade the distortion their recommen-
dations will undergo.

From the network/system point of view, a basic assump-
tion for our analysis has been that the caching and recom-
mendation decisions are made independently in each
cache-enabled base station. Users are associated with a sin-
gle cell according to a content-unaware criterion such as the
received signal strength. An obvious problem extension
would be to let users associate with multiple cells simulta-
neously, and access content dynamically from different
caches. This setting would call for jointly optimizing the
content caching, routing and recommendation decisions.

8 RELATED WORK

Caching is a classic theme in data networking that has
recently been experiencing a new research thread in the
context of 4G and 5G mobile cellular networks and their
small cell architectures [18]. One of the major concerns in
these settings is how the user demand and content popular-
ity can be accurately predicted. Besides the temporal local-
ity of content demand [8], such predictions should account
for user mobility and the small user populations that small
cell caches present. To this end, proactive (e.g., [9], [10]) and
reactive (e.g., [24]) caching approaches are proposed. At the
same time, the combination of small with macro cells yields
further possibilities to coordinate caching with content rout-
ing through different cells, as shown in [6].
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Much sparser is the literature on the interplay between
caching and recommender systems, which is the core theme
of our paper. To the best of our knowledge, they are jointly
considered in [13], [14], [25], [26], [27], [28], [29]. The first
four are concerned with video traffic, whereas the rest
address generic content.

The authors in [13] appear to be the first who base cach-
ing decisions on personalized recommendations issued by
recommender systems. They use synthetic datasets to com-
pare their recommendation-driven caching scheme with a
conventional popularity prediction one. They report small
gains for their scheme that disappear in practical scenarios
with ten or more users served by the cache. In [25], the
authors derive conditions under which it pays off to look
into the spatial variation of content demand and fill the
cache with content that is locally, rather than globally, most
popular. Recommendation-based techniques are proposed,
albeit not quantitatively evaluated, also in [27]. The aim is
to determine how to replicate content within a CDN. Com-
mon to [13], [25], [27] is the fact that recommender systems
are used as proxies for inferring the content popularity. We
are distinctly different from them, regarding the way we
approach recommender systems: not just as alternative pre-
dictors of content demand but also as demand-shaping tools
that can actively be used to trade-off user- and network-cen-
tric performance objectives. In fact, our approach to increas-
ing the utility of cache content could be seen as dual to the
one taken by these three studies. Rather than struggling for
accurate predictions of the users demand for content, our
algorithm nudges the users demand towards content items
that are common in their preferences.

Hence, conceptually most relevant to our work are the
studies in [14], [26], [28], [29]. In the empirical study of [14],
the authors achieve an increase of the YouTube cache hit
ratio by reordering the videos shown to the users under the
Related Videos list so that already cached ones occupy the
first positions. In [28], the authors work with peer-to-peer
(P2P) systems and propose heuristic recommendation algo-
rithms accounting for both the content dissemination costs
and user preferences. In [29] a proactive resource allocation
and demand shaping framework is presented. The authors
analyze theoretically the delivery costs and their reduction
through proactive caching. In their recommender system,
they modify the ratings shown to users in order to enhance
the certainty of user demand. The ”soft cache hits” in [26]
are motivated by the entertainment-oriented content con-
sumption in current Internet. The idea is to recommend
alternative (cached) content to users who request content
not placed in the cache. The authors present a variety of
optimization problems regarding soft-hits and cache place-
ments in wireless environments and algorithms to solve the
proposed problems.

Contrary to [14], [28] and [29], our focus is on wireless
networks. Compared to all previous works, we formalize
the joint caching and recommendation problem under per-
sonalized recommendations, i.e., different items are recom-
mended to each user. We introduce the distortion tolerance
measure to cater for how aggressively recommendations
attempt to shape the demand for content in favor of the
caching performance. Our results in Sections 5 and 6 sug-
gest that the proposed approach could yield significant

gains for the network performance and the users satisfac-
tion without disrespecting their individual preferences.

9 CONCLUSIONS

Our work in this paper is motivated by the trend that wants
both content providers and network operators also assum-
ing roles in content delivery by owning and managing con-
tent delivery networks. We have looked into the possible
benefits that can arise for the end users and the network
when there is some coordination between recommender
systems and caching decisions. This coordination, at least in
this work, implies that recommender systems actively engi-
neer the recommendations issued to users in ways that
enhance the caching performance. Practically, this engineer-
ing consists in recommending content that may not neces-
sarily rank top in the inferred user content preferences but
still score high in them. By carefully nudging the individual
user demand towards content that attracts preference from
many users, the recommender system can result in higher
cache hit ratios and enhanced QoE for end users.

Practitioners in areas like e-commerce are more familiar
with this demand-shaping (more broadly: behavior-shaping)
dimension of recommendations. There is strong evidence
that the willingness to consume can be affected by online rec-
ommendations [23]. Their manipulation there aims at nudg-
ing consumers to spend more on products and services. We
rather advocate their “manipulation” for “good” purpose, as
an additional network traffic engineering tool that can be
used to jointly optimize or balance user- and network-
oriented performance objectives.

We have attempted to show this potential in the context
of wireless networks with small cells. At the same time, we
tried to explicitly and systematically address ethical con-
cerns that are raised by this approach. Simulation results
show that the proposed caching-aware recommender sys-
tems bring significant caching performance gains that per-
sist over a broad range of parameters for the diversity in
users’ preferences, the capacity of caches, the number of rec-
ommended items and the content catalogue size.
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