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Abstract—From entertainment to education, augmented reality
(AR) is about to impact positively our everyday lives. Enhanced
capabilities of mobile devices, such as smartphones or wear-
ables, as well as ubiquitous network connectivity give AR the
opportunity to prosper. Despite these improvements, AR requires
computationally heavy tasks, such as context recognition and
classification through image or video processing, which are hard
to fulfill on mobile devices. To this end, solutions for computation
offloading to cloud servers have been proposed. We consider
a scenario where context identification is performed through
elicitation of user-generated information, such as images or small
video files. It is the quantity of this information that ultimately
determines the context classification precision, which we model
as a Binomial random variable. We introduce the problem of
maximizing a lower bound of the precision of context classifi-
cation through prudent resource allocation, namely computation
offloading, and bandwidth and computational capacity allocation
at the wireless network edge. We define the context classification
precision as a function of the quantity of information that users
provide, and we demonstrate through numerical experiments that
appropriate management of the limited resources at the wireless
edge can maximize the classification precision of data analytics
mechanisms needed for augmented reality applications.

Index Terms—Mobile Augmented Reality, Mobile Computing,
Computation Offloading, Edge Analytics, Classification Precision,
Context Awareness

I. INTRODUCTION

Augmented reality (AR) is rapidly approaching our every-
day life, and it is increasingly used in various applications
and fields: from tourism and navigation to entertainment and
advertisement, up to training and education. AR is interactive
in real time, aligning real and virtual objects with each other.
A special case of AR is Mobile Augmented Reality (MAR),
which is realized through the deployment of a mobile app [1].

In order to reap the benefits of AR applications and have
good Quality of Experience (QoE) for the user, i.e., to project
the right virtual object onto a physical object, a central issue
is that of context identification and classification. In [2], the
authors examine the relationship between tourist satisfaction
and the perceived quality of AR applications, concluding that
users are more concerned with high-quality content and a good
degree of personalized service than system quality. Next gen-
eration MAR systems will incorporate recommender systems
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which will use contextual information from the surroundings
of the user.1 Determining the context of users is a complex task
that involves object recognition on mobile devices, by using
information both from sensors on the devices and information
explicitly given from users, such as images or small videos.
Context identification is a major machine-learning objective
outcome which needs to be performed in real-time and under
limited edge resources, in order to timely project the right
virtual object to users.

However, precision in context classification is costly and
challenging to guarantee, given the limited computational
power and bandwidth resources at the edge. This naturally
raises challenges, as computationally expensive tasks have to
be performed in real-time. Since mobile devices have lim-
ited computational resources, offloading of computationally-
intense tasks to a cloud server may be needed occasionally.
Furthermore, bandwidth is also scarce. Hence, in order to fill
the gap between the insufficient mobile processing capability
and the high computation demands of AR applications, there is
a need for a sophisticated mechanism which will take decisions
regarding the amount of context information that needs to be
collected from the users and the location (device or cloud) to
process this information.

In this work, we consider a single cell with many users,
each user running an AR mobile app. For example, consider
an app showing short videos containing information about
archaeological findings the user is pointing at. In order to
project appropriate virtual objects on top of the real objects
to which the users are pointing, not only location but also
information such as the noise levels or the luminosity of the
environment of the user is needed, i.e., the users’ context needs
to be identified and classified. Context identification relies on
a variety of voluminous and computation-intense information
items, such as videos or images that are solicited by the user.
Classification precision is determined by the quantity of the
information submitted by the users. Further, video analytics
is a particularly resource-demanding task which needs to be
performed in real-time. Mobile devices have limited compu-
tational power, and the shared uplink bandwidth and energy
resources at the edge are also limited. Hence, the question
arises what volume of information items to request from users
and where to do the processing of information items so as to

1Context-aware recommender systems are usually outperforming traditional
(context-unaware) RS regarding prediction accuracy of users’ preferences,
resulting in better quality recommendations [3].



have accurate data analytics. This is the question we attempt
to answer in this paper.

A. Our contribution

The contributions of our paper are as follows.
• We develop a model for user context and how this could

be obtained through costly data collection from users.
• We model the classification precision as a function of the

volume of information obtained by users so as to capture
the realistic limitations in obtaining sufficient information
from users in order to infer their context.

• We formulate a mathematical optimization problem for
maximizing a lower bound on the precision of con-
text classification which we derive analytically, under
constraints related to energy in devices and wireless
bandwidth, as well as stringent delay constraints of AR
applications. We aim in jointly deciding the total volume
of requested information and the location (remote or
local) where the process will take place.

• We perform simulation studies to investigate our model’s
underlying tendencies. We conclude that taking jointly
decisions regarding where to process information and
how much quantity of information to process, leads to
optimum resource allocation. Indicatively, a joint con-
sideration can lead to a 35% higher lower bound for
classification precision, compared to simple algorithms
considering separately these parameters. Moreover, we
evidence that a less stringent delay constraint is more
important for classification precision than lower energy
consumption.

The rest of the paper is organized as follows. In section II
we describe the model, and in sections III and IV we state the
problem and investigate on its properties, and then we evaluate
our model respectively. In section V we refer to related work,
and in section VI we present our conclusions and future work.

II. SYSTEM MODEL

A. Model Components

We depict our model in Fig. 1. We consider a single
base station (BS) with unlimited computational and energy
resources. We consider that the wireless link between the BS
and the users has limited bandwidth RB for receiving and for
transmitting data from/to AR users’ devices.

We assume a set of users u ∈ U who are in range with
the BS, each equipped with an AR device. Each AR device
associated with user u is equipped with sensors that give
information to the system, e.g., geographic location and battery
levels of the device in use. The application provider decides
in advance the maximum amount RE

u of energy resources
that can be used by the application, so that the user is not
discouraged by the energy consumption of the application
and remains engaged. Devices also have limited computational
capacity.

We next define the users’ context. Context types refer to
the company, mood, or other attributes that characterize the
user’s spatiotemporal state [3]. For example, consider the set

Fig. 1. Illustration of the AR model and basic components. Information
items are solicited from users in order to better classify their context. Context
classification process is a resource-demanding task and, to overcome this,
computation offloading to the BS is proposed. Decisions are taken about
the volume of information items to solicit from user, and the portion of the
computational task to process locally at device or offload to to be processed
at the BS.

N of context types, N = {Mood, Company, Location, Objects
of focus}. Each element in this set is a factor that influences
the suitability of projection of an AR item to the users and,
ultimately, her Quality of Experience (QoE) [3]. For simplicity,
we consider only one context category, so |N | = 1, and we
let L = {1, . . . , L} be the set of discrete context labels that
matter for the application. For example, assume that we are
interested in classifying the scenery where the user is pointing
at, i.e., the real object over which the virtual object will be
projected, and let L = 2, and L = {building, statue}.

B. Context and Information Items

1) Context Information Items: In order to better identify
the users’ context and provide them with a higher QoE, our
system requires users to submit some ”information items”
that will be used to classify their context. The system gets
the requested information items, either implicitly (e.g., from
sensors) or explicitly (e.g., requesting it from users) [1]. For
simplicity, in this paper we assume that the users’ context is
defined by one type of information items. For example, assume
that in order to classify the object of focus, our system requests
only short videos [4]. Let xu ∈ {1, 2, . . . , Xu} be the variable
describing the volume of information items user u submits,
e.g., the number of frames, and Xu be the maximum volume
she is willing to share, e.g., for privacy reasons [5].

2) Processing costs of information items: Due to different
characteristics of different devices, we consider CE

u and CP
u,D

to be the device-specific energy and computational power
costs per unit of volume of information, e.g., per frame, for
obtaining and processing information items of user u in her
device (e.g., as in [5]), and CP

u,B the computational power cost
per unit of volume of information at the server. We consider
the computational cost in seconds [4]. In terms of bandwidth,
the cost of processing an item at the BS consists in the cost of
transmitting it, e.g., transmitting fingerprints or entire frames



(e.g., as in [6]). We denote as CB
u the per unit of volume, e.g.,

per frame, cost for sending information items of user u to the
BS, e.g., in bits.

C. Context classification and precision
1) Classification: Taking as input volumes xu, the context

label lu ∈ L for each user u is inferred. Given an appropriately
trained classifier, e.g., an SVM, the output is a class member-
ship, i.e., one specific label in L. In the previous example,
the output will be either ”building” or ”statue”. The real-time
requirements of MAR applications suggest that the task has
to be completed within a maximum delay TD.

2) Precision of Classification: We denote as p the precision
of our classifier, defined as the percentage of the true positives
divided by the percentage of both true and false positives.
To capture the heterogeneity in how users submit information
items, our model considers classification precision to be user-
dependent. Moreover, recall that different computation costs,
CP

u,D and CP
u,B , occur for classifications performed locally

and remotely. Due to the limited computational resources
of mobiles devices and the stringent delay requirements for
object classification on mobile devices [7], [4], we assume that
different classification algorithms (with the same delay cost
CD

u per unit of volume of information items) run at mobile
devices and at the BS. This is justified by existing works,
e.g., [5], [4], and results in different classification precision
for on-device (local) or cloud (remote) classification. The
classification precision of the already trained classifier in use
for a single information item is a random variable Pur with
mean pur ∈ [0, 1], where u ∈ U and r ∈ {B,D} the location
where computation is executed, where r = B for remote and
r = D for on-device classification.

We consider the classification precision to depend also on
the volume of information items provided by the user: The
correct classification of each submitted information item, e.g.,
frame, is considered a Bernoulli trial, with probability of
success pur. Naturally, the total number Wur of correct clas-
sifications when xu information items are processed follows
a Binomial distribution B(xu, pur). The final label lu ∈ L
for user’s u context is defined by the majority of multiple
Bernoulli trials, i.e., P[lu is correct] = P[Wur > xu

2 ].
Let Zur = xu − Wur be the number of wrong classifi-

cations in user’s u context when xu information items are
available. Clearly, Zur ∼ B(xu, 1 − pur), with E[Zur] =
xu(1 − pur) and Var[Zur] = xupur(1 − pur). Then,
P[Wur > xu

2 ] = P[xu − Zur > xu

2 ] = P[Zur < xu

2 ] =
1−P[Zur ≥ xu

2 ] = 1−P[Zur ≥ xu(1−pur)+xu(pur−1/2)] =
1− 1

2P[|Zur −E[Zur]| ≥ xu(pur − 1/2)]. Using Chebychev’s
inequality, it is 1− 1

2P[|Zur−E[Zur]|] ≥ 1− 1
2

Var[Zur](
xu(pur−1/2])

)2
= 1− 1

xu

pur(1−pur)
2(pur−1/2)2 .

Finally, it is P[lu is correct] ≥ gru(xu), where

gru(xu) = 1− 1

xu

pur(1− pur)

2(pur − 1/2)2
(1)

is a lower bound for the classification precision of user’s u
context classification in location r ∈ {B,D} when xu > 0 in-

formation items, e.g., frames, are processed. In real scenarios,
values pur can be found from historical data collected by the
application provider.

3) Properties of Precision Certainty: From (1) we can
trivially conclude that as the volume xu of information items
submitted by user u increases, (i) the precision increases and
(ii) the rate of increase decreases, i.e., precision is a monotone
increasing and concave function of the volume xu of submitted
information items. This follows intuition as, for example, two
seconds of video are likely to give more information about
the context than one-second video, e.g., more details about the
scenery the user is pointing at. This results in higher precision
but with diminishing returns, as from the first second of video
we already have some knowledge about the user’s context.

III. COMPUTATION OFFLOADING FOR PRECISION
MAXIMIZATION

A. Problem Statement

In order to provide users with high quality AR recommenda-
tions, information items need to be processed and their context
needs to be classified. There is clearly a trade-off between data
usage, energy consumption, delay and classification precision
uncertainty: classification at the devices reduces data usage
but increases uncertainty and energy consumption.

We assume that the process of an information item can be
split to partially run on the device and the BS at the same time.
We denote as xB and xD the vectors whose u-th elements are
the decision variables xB

u and xD
u , interpreted as the volume of

information items that is requested from user u and processed
at the BS or locally, respectively. Clearly, xu = xB

u +xD
u ≤ Xu

is the total quantity of information items requested by user
u. We consider that the final precision regarding user u is
the average of the precisions obtained by classifications done
locally and remotely2 and consider the continuous analogous
of the defined precision functions in (1).3 We define

g(xD,xB) =
∑
u∈U

gBu (xB
u ) +

∑
u∈U

gDu (xD
u ) (2)

and consider the following optimization problem:

max
xD,xB

g(xD,xB) (3)

s.t.

xD
u ≤ min

{RE
u

CE
u

,
TD

CD
u

}
, ∀u ∈ U (4)∑

u∈U
xB
u C

B
u ≤ RB , (5)

xB
u ≤

TD

CD
u

, ∀u ∈ U (6)

xD
u + xB

u ≤ Xu, ∀u ∈ U (7)

2Since the computation task is split, we can make application-specific
assumptions regarding the final precision of classification. For example, we
can assume that the combination of the two classifiers results in the maximum
of the two obtained precisions, or a weighted sum of them.

3Continuous extensions of gru(·) can be inferred, e.g., when variables xu

denote the seconds of video, with interpolation or extrapolation methods.



0 < xD
u , xB

u ≤ 1, ∀u ∈ U . (8)

This problem consists in maximizing a lower bound on the
probability of correct classification of the users’ context with
respect to the volume and the location (remote or local) of
process of the users’ information items, and not the probability
of correct classification itself, which would constitute a much
more complex (computationally) metric to derive.

Equation (4) captures energy and delay limitations for
classifications executed on mobile devices. Equations (5) and
(6) capture network (e.g., bandwidth) and delay limitations
for classification done remotely. Equations (7) ensure that the
requested volume of information items will not exceed Xu

and (8) set upper and lower bounds to xB
u and xD

u .

B. Properties of the Problem

Function g(xD,xB) is monotone increasing and concave
in the volumes xD

u and xB
u of request of information items,

∀u ∈ U . This trivially holds, as our objective is the sum of
monotone increasing and concave functions (section II-C3).

This problem consists in the maximization of a non-linear
convex monotonically increasing function under linear con-
straints. Since the domain (0, Xu]

2 |U| of g(xD,xB) is a
convex and bounded set and g(xD,xB) is monotonically
increasing, every local maximum is a global maximum. Given
the properties of the problem, the optimal solution can be
found numerically by applying the KKT conditions [8].

IV. EVALUATION

A. Synthetic dataset

We consider a system with 100 users and experiment with
several values of energy consumption and delay tolerance. We
experiment with the lower bound we presented in (1). We
consider higher precision for classifications executed at the BS
and lower precision for those executed on mobile devices. Fol-
lowing the results in [5], we assume a ratio of 2/3 for expected
precision is obtained at the BS and the devices. Following
results from [7], we consider high and low delay tolerance
TD to allow the 75% and 10% of the maximum volume of
information items, respectively, to be processed within real-
time constraints of MAR applications. Similarly, we consider
high energy consumption for classifications done locally to
allow only 10% of the maximum volume of information items
to be processed locally, as opposed to the 75% we assume for
low energy consumption. All results consider the percentage of
the bandwidth that would be needed to offload the maximum
volume of information items for all users.

B. Schemes under Comparison

In real-life scenarios, many application providers may use
simplistic schemes to address the computation offloading of
context classification, thus being mindful about extra delay
costs. The convex optimization we propose can be solved
easily by existing efficient solvers. In our evaluation we
consider two simple online heuristics that do not present any
further delay cost to find a solution. Namely:

OffloadFirst: Given bandwidth and delay constraints as-
sumes a fixed order of users and offloads the maximum
possible intensity for each user, until constraints are tight. Then
process the remaining quantities locally.

LocalFirst: Given energy and delay constraints processes
locally the maximum possible quantity of information items
for each user. The remaining volume is offloaded to the BS.

Both schemes aim at maximization of the lower bound of
correct classification. The quantity of information items that is
processed locally is limited due to delay and energy constraints
while the processed at the BS quantity is limited due to delay
and bandwidth constraints in all schemes.

C. Numerical Results and Derived Conclusions
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(a) High delay tolerance (b) Low delay tolerance
Fig. 2. Classification precision lower bound vs. network resources. A lower
bound for classification precision is depicted for low ’o’ and high ’*’ energy
consumption for context classification on the device, for (a) high and (b) low
delay tolerance.
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(a) Low energy consumption (b) High energy consumption
Fig. 3. Lower bound of classification precision vs. network resources. Lower
bound for classification precision is depicted for high ’o’ and low ’*’ delay
tolerances for (a) low and (b) high energy consumption on mobile devices
due to classification.

1) Relation of schemes and their limitations: Taking into
consideration the definitions of the heuristics and from Figs.
2 and 3, we conclude that:

(i) Due to the fixed order considered on users by OffloadFist,
its maximum lower bound is always lower than the proposed,
both in terms of classification precision and in terms of
network resources requirement, even if enough bandwidth
resources are available to transmit all information items for
all users.



(ii) Due to the concave objective function, LocalFirst’s
maximum lower bound is always lower than the proposed, both
in terms of classification precision and in terms of network
resources requirement, even if enough energy resources are
available to process all volume of information items locally.

(iii) As opposed to LocalFirst and OffloadFirst, our scheme
reaches the maximum possible value, i.e., P[lu is correct] = 1,
even for very restricted, both energy and bandwidth, available
resources.

2) About the influence of constraints: Lower delay toler-
ance results in lower classification precision (Fig. 3) and higher
per volume energy consumption results in lower classification
precision (Fig. 2). Also, comparison of the obtained precision
in Figs. 2b and 3b indicates that a delay-related limitation is
more restrictive than an energy-related limitation.

Finally, taking jointly decisions leads to optimum resource
allocation and outperforms both OffloadFirst and LocalFirst.
The gain over the comparison schemes significantly depends
on the restrictions about delay tolerance and energy consump-
tion. All precision values in Figs. 2 and 3 are normalized
with respect to the maximum value of the lower bound for
classification when delay tolerance and energy constraints are
idle.

V. RELATED WORK

In [2], the authors conclude that content quality and per-
sonalized service quality have a stronger effect on users’ QoE
than system quality. Along these lines, tour guide solutions for
mobile users which incorporate in their decisions contextual
information have been developed, e.g., [9]. In [10], the authors
recommend items based on the focus of the user and her
distance from them. Nonetheless, context recognition requires
computationally expensive tasks. According to [4], it takes on
average more than 2 seconds to finish object recognition on
a mobile CPU, which is an intractable delay for a real-time
AR application. In [7], the authors measure cloud offloading
for visual tasks (recognition) for AR, concluding that cloud
offloading is a promising technology to fill the gap between
the insufficient mobile processing capability and the high
computation demands of AR applications. Towards a less
bandwidth-consuming object recognition, the authors in [6]
take fingerprints of images that users get to offload, in order
to process the recognition task in the cloud. In [11], the
authors manage cloud resources for offloading requests to
both improve offloading performance seen by mobile devices
and reduce the monetary cost per request to the provider. In
[12], the authors implemented a MAR system based on cloud
computing. This system uses a smartphone to capture images
and sends processed features to the cloud. The mobile device
is used to perform some image processing tasks and the cloud
is used to realize heavy computations.

VI. CONCLUSIONS AND FUTURE WORK

We aim at resource-efficient edge analytics for MAR ap-
plications and develop a mathematical model for context
classification, taking into consideration the realistic limitations

in obtaining sufficient data from users. After taking into
account energy, bandwidth and delay constraints of real-time
MAR devices and applications, we formulate a mathematical
optimization problem for maximizing context classification
precision, we analyze its properties and characterize its so-
lution.

We conclude that taking jointly decisions regarding the lo-
cation (remote or local) of the classification and the quantity of
data to use for this, leads to maximization of the lower bound
of the obtained classification precision and optimum resource
allocation at the wireless edge. Moreover, there is evidence
that a less stringent delay constraint is more important than
lower energy consumption.

In our future work, we plan to enrich our model, considering
that context is described by more than one category, e.g.,
considering both the classification of visual and modal context
of users. Moreover, we will investigate the influence of more
than one information items on each context category, e.g., both
images and sound recordings that can be used to determine the
users’ context.
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