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Abstract—In this paper, a performance evaluation of the
Quality-of-Experience (QoE) of YouTube video streaming in
mobile broadband networks with active measurements is de-
scribed. The measurements were collected from a field exper-
iment campaign using the MONROE platform which provides
probes in four European countries and enables the benchmarking
of three mobile broadband operators. Firstly, we present a
framework for the automated collection and processing of the
measurements, and then, we analyze the results to identify the
cache allocation policy per operator. Additionally, we examine
whether the selected cache server has an effect on the delivered
video quality and present the results using standardised objective
methods for the estimation of the perceived quality.

I. INTRODUCTION

The recent advances in mobile devices and video streaming
services have motivated large-scale media consumption in
wireless and mobile environments. In this context, the main
objective of network operators and Internet Service Providers
(ISPs) is to improve the Quality-of-Experience (QoE) of
end-users by providing high-quality services and interactive
mechanisms for seamless adaptation to the network conditions
of each user. At the same time, the recent advances in
mobile broadband (MBB) networks have diminished delays
and increased bandwidth to the extent that it is possible to
shift to unicast streaming technologies instead of multicast
or broadcast. During the last few years, streaming media is
predominately provided over-the-top (OTT) of existing net-
work infrastructures and several proprietary industry solutions
have been deployed, e.g., Apple HTTP Live Streaming (HLS),
Adobe HTTP Dynamic Streaming (HDS), and Microsoft
Smooth Streaming. Also, MPEG issued the open international
standard on Dynamic Adaptive Streaming over HTTP (MPEG-
DASH) and it has been employed by the major Video-on-
Demand (VoD) media providers, such as YouTube and Netflix.

The ability to deliver content to individual users has created
the need to monitor the performance of video streaming
services to each individual client. Recognising the impor-
tance of measuring the QoE in adaptive streaming services,
the International Telecommunication Union (ITU) issued the
Recommendation P.1203 “Parametric bitstream-based quality
assessment of progressive download and adaptive audiovisual
streaming services over reliable transport” [1] in 2016 and a

new work item for the inclusion of HEVC-encoded and Ultra-
HD video streaming is currently under investigation that is
expected to be finalized in 20181.

The video delivery chain for typical video streaming ser-
vices is depicted in Figure 1: the video resides in a video
server of the OTT operator and when it is requested by the
mobile device: a) it goes through the ISP backbone network
directly or b) it transits through a peering connection (with
an ISP which the ISP has a service agreement), or c) it is
fetched from a cached copy from a Content Delivery Network
(CDN). Then, the video is transmitted to the mobile client
from (typically the closest) cell of the mobile network. Thus,
there can be several bottlenecks in video delivery.

From the perspective of an ISP, the QoE of the video
download service is mainly driven by the quality of the
Internet connection between the video client and the OTT
operator server. A poor connection between the user’s device
and the content server can lead to a reduced video download
performance which can cause long video start-up times, video
freezes, and unwanted video terminations. In this context,
the video client plays a major role as it handles the video
buffer size and controls the video download; in adaptive
bitrate (ABR) video streaming, especially, the video content
is encoded at several quality levels (representations) and the
video client is responsible for the adaptation strategy and
the fetching of the representation that matches the network
conditions of the client to avoid buffer underruns.

YouTube issues the “Video Quality Report” which ranks the
ISPs based on their ability to stream YouTube video at HD
quality for at least 95% of the day, while Netflix issues the
“ISP Speed Index”2 to rank the ISPs based on the average
throughput of Netflix video delivery in prime time. Therefore,
it is evident that the evaluation of video streaming services is
essential in order to identify the bottlenecks in the network
and provide insights for the design the network for efficient
video delivery.

In this paper, we focus on the performance of YouTube since
it is one of the most popular video streaming services and
serves more than 1 billion users per month. Indeed, mobile
YouTube traffic accounts for more than 30% of the total

1http://www.itu.int/ITU-T/workprog/wp item.aspx?isn=14039
2https://ispspeedindex.netflix.com/978-1-5386-4725-7/18/$31.00 c©2018 IEEE
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Fig. 1. Video delivery chain in mobile broadband networks.

Internet traffic, and more than 40% of the total YouTube traffic.
We present a framework for active YouTube measurements
and present the results that have been collected from probes
in Norway, Sweden, Spain, and Italy with a variety of ISPs
in each country using the MONROE platform [2]. Both Key
Performance Indicators (KPIs) at the network layer, e.g. loss
rate, and Key Quality Indicators (KQIs), e.g. start-up delay,
freezing time, and quality adaptation, are presented for the
analysis of the results and the variations in performance during
the day is analysed.

II. RELATED WORK

The traffic analysis of YouTube video has been in the focus
of several works in the past because of the popularity of the
service and the constant evolution in the delivery infrastructure
by Google. In [3], a characterisation of YouTube traffic in fixed
and mobile environments was presented. The study analysed
the hosting infrastructure and showed that that the usage of
caching in mobile networks provides high benefits in terms
of delay as well as downlink throughput. Similar studies of
YouTube traffic characterisation were conducted in [4] but the
study was confined to a campus network. A specific study of
YouTube in cellular networks was presented in [5]; the study
corroborates that local content caching by servers at the edge
of the ISP improves the streaming performance.

Moreover, the streaming performance, in terms of startup
delay and bitrate ratio between download rate and video
encoding bitrate was evaluated in [6] and it was shown that
the performance is heterogeneous across the different collected
data (geographical locations and mobile/PC device), with mo-
bile devices suffering larger delays and that YouTube infras-
tructure is performing less efficiently when serving requests by
mobile clients. The impact of the YouTube infrastructure and
the distributed CDN system is the subject of several research
studies. In [7], a methodology to unveil CDN changes through
passive measurements was presented and it was shown that
sudden changes may occur. In [8], YouTube traffic flows were
analysed for over a month and showed that the CDN server
selection policy had a negative impact on QoE.

From the above studies, it becomes evident that YouTube
streaming performance may be different in cellular networks
than in fixed networks. In [9], the packet loss characteristics
of MBB networks under mobility was investigated, and the

impact of Radio Access Technology (RAT) changes, cell
handovers and Location Area Codes (LAC) changes was
examined and showed that almost 70% of the sessions with
a RAT change resulted in packet loss. Additionally, in [10],
measurements were conducted on a 4G cellular network in
Germany and it was shown that the management and configu-
ration decisions have a substantial impact on the performance
since the association of mobile devices to a Point of Presence
(PoP) within the operator’ s network can influence the end-
to-end performance by a large extent. Furthermore, a profiling
of MBB coverage along the railway infrastructure in Norway
was performed in [11]; it was shown that two main coverage
profiles emerge, one where 3G dominates and one where
“no-service” dominates. A unique platform for independent,
repeatable, multi-homed, large-scale measurements and exper-
iments in operational MBB networks was developed [2],[12].
The platform supports three cellular network connections to
enable parallel measurements from different operators. This
platform is used for the collection of the measurements in the
present study, as described in Section III below.

The relation between low-level network characteristics and
video QoE, i.e. the quality as it is perceived by the end-
users and reflects their satisfaction, has been studied in the
past. More specifically, in [13], the YouTube Performance
Monitoring Application (YomoApp) was presented, an An-
droid application which passively monitors KQIs (e.g. player
state/events, video quality levels, stalling, etc.) of YouTube
adaptive video streaming on end-user smartphones. Another
similar tool for YouTube QoE evaluation in Android wireless
terminals was presented in [14]. The importance of examining
the impact of network-level parameters on human-perceived
QoE was highlighted in [15]. This study presented a YouTube
flow control mechanism and a model for the video quality as
perceived by the viewers. Finally, a measurement campaing
in the field was presented in [16], and it was shown that
monitoring the network parameters alone is not sufficient to
infer the QoE; instead, application-layer parameters need to
be collected which show higher correlation with subjective
opinions.

This paper presents a framework for automated testing of
YouTube video streaming performance and presents the results
of a field study in cellular networks in four countries using the
MONROE platform [12]. The main contributions with regard
to previous studies are: (a) the measurements are conducted
with 3 mobile broadband operators in parallel, which enables
the evaluation of the service based on the network infrastruc-
ture, (b) the measurements are collected over a period of one
month using real network traffic and no artificial or emulated
environment, (c) network- and application-layer parameters
are collected and analysed in terms of QoE, and (d) QoE is
objectively assessed using the ITU-T Rec. P.1203 which has
been recently standardised for the quality assessment of ABR
video.



III. MEASUREMENT SETUP

A. Probe infrastructure

The experiment was conducted using the MONROE plat-
form, which employs probes, in the form of a mini-computer,
and a software framework that is responsible for the orches-
tration of the measurements and for the collection, analysis,
visualization and sharing of the measurements. The probe is
connected with 3 MiFis which provide a connection with
the three major mobile operators in each country (Norway,
Sweden, Italy, and Spain) and a GPS with external antenna.
In total, there are 150 mobiles nodes and 100 nodes positioned
in fixed places. In this study, 3 nodes in each country were
used for the measurements. The experiments can be run in the
form of a Linux container (Docker), running on Debian Linux
operating system. Thus, there is full access to the resources of
the computers and external applications can be run in parallel
with the measurements.

B. Active measurements setup

The concept of the proposed experiment is depicted in
Figure 2. The probes periodically request a web-page with
an embedded YouTube player through a bash script; a set of
predefined videos (via the 11-character videoID) is provided
with the URL and parsed by the web-page to fetch the
respective video from YouTube. We have pre-selected a set
of 3 videos with a duration of approximately 2 minutes and
typical video content (one movie trailer, one music video clip,
and one baseball scene). The videos are fetched in HD-720p
(1280 × 720) resolution, because the CPU of the probes
cannot playback HD-1080 videos smoothly. Moreover, the
videos are fetched every 40 minutes (thus 3 measurements
every two hours) from the same operator. Since the node is
connected with 3 MiFi interfaces, the routing is alternated in
each video session (with a break of 5 minutes between ISP
switches) to use the connection of all 3 mobile operators.

We employ the Selenium framework for automated web-
browser testing and the X virtual frame buffer (Xvfb) for
headless browser testing. This setup enables the playback
with minimal CPU and GPU capabilities, which enables the
use of lightweight and economical computers for the active
probing. The web-page with the embedded player employs
the YouTube IFrame API 3 which enables the constant mon-
itoring of the player status and provides callback functions
for a variety of events, such as, the time when the video
player was loaded, the playback start time, the playback
status (playing/stalling/stopped), and the playback quality (i.e.
video resolution). By constantly monitoring these parameters
through Javascript, the video playback performance can be
monitored and the following application-layer KQIs, which
are directly related to the user experience, are collected:

• player load time
• startup delay
• time and duration of stalling events
• quality switches during playback

3https://developers.google.com/youtube/iframe api reference
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Fig. 2. Block diagram of the active probing infrastructure.

• buffer fill level (i.e. fraction of video bytes downloaded)
The use of the actual YouTube player provides the opportunity
to use the exact setup of a typical viewer, since there are
no assumptions about the buffer behaviour (as in the case of
youtube-dl4 for example).

In addition to the above KQIs, the traffic flow is inspected
using the proprietary “StreamOwl OTT probe”, which is a net-
work sniffer that can passively perform Deep Packet Inspection
(DPI) on TCP flows and extract the following network-layer
parameters:

• throughput
• number of TCP re-transmissions
• number of lost packets

Additionally, the network sniffer can detect the YouTube cache
that was selected for delivering the video to the user in order to
identify the caching strategy and policy. Using a geo-location
service (e.g. telize5) we can infer the location of the cache and
whether the video is fetched from a transit connection to the
specific ISP under investigation.

The raw data from the measurements are collected locally
at the end of each video session on each probe and then
transferred to a central management system for centralised
storage and processing.

C. QoE Assessment

The ITU-T Rec. P.1203 model predicts the impact of
audiovisual quality variations and stalling events on quality
experienced by the end user in multimedia mobile streaming
and fixed network applications using adaptive bitrate stream-
ing, based on a previous estimation of audio and video quality
and information on startup delay and stalling events during the
media session. The model predicts the Mean Opinion Score
(MOS) on a 5-point Absolute Category Rating (ACR) scale as
a final audiovisual quality MOS score.

Each individual stalling event has a weight assigned to it
depending on the time between evaluation time and when
the stalling event occurs. This length of the stalling event

4https://rg3.github.io/youtube-dl/
5https://www.telize.com/
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Fig. 3. Cache server selection during the day in Norway.
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Fig. 4. Cache server selection during the day in Sweden.
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Fig. 5. Cache server selection during the day in Spain.
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Fig. 6. Cache server selection during the day in Italy.

Fig. 7. Cache server selection during the day per country.

is multiplied with the weight when calculating the the total
stalling duration impact on perceived quality. The weight
wstali of the i-th stalling event is computed as:

wstali = a1 + (1− a1) ∗ exp−
(
x∗( log(0.5)

a2
)
)

(1)

where x is the time difference between the timestamp of the
stalling event and the end of the video (i.e. if a 20-sec video
stalls at 8-th second, then x is equal to 20-8=12), and a1, a2
are coefficients equal to 0.484 and 10, respectively.

The model also takes into account the total number of
quality direction changes, the difference between the max-
imum and minimum video quality scores, and the duration
in seconds of the longest period without positive or negative

quality change (stable quality). Finally, a machine learning
algorithm takes into account the following features: number
of stalling events, the total duration of all the stalling events,
the relative ratio of stalling duration over the video length,
the time of the last stalling event, and the weights of each
stalling event. For the sake of brevity, the algorithms are only
briefly described here, the interested reader is referred to the
Recommendations for a detailed analysis of the video quality
assessment algorithm. The output of the model is the audio-
visual MOS score at the end of the video and is used in this
paper to objectively estimate the quality of the video.



IV. PERFORMANCE EVALUATION

A. Host infrastructure

Firstly, we investigate whether the cache server which is
used to fetch the video to the client has an impact on quality.
The cache server is identified by monitoring the redirection
of the TCP using DPI on the traffic flow. Since the probes
are connected to 3 MBB operators the aim is to investigate
if clients from different ISPs get directed to the same cache
server or not. Moreover, the aim is to evaluate whether the
cache assignment per ISP is constant during the day since
previous studies have shown that during peak times the video
may be fetched from a different cache.

The results for each country are depicted in Figure 3 for
all the days of the measurements; the vertical bars always
equal 90, since we perform 3 measurements every two hours
( the break between sessions is 40 minutes), for 30 days.
The horizontal line depicts the hour of the day; the bars are
clustered in even-hours during the day for legibility purposes.
The vertical stacked bars give an indication of how stable
the assigned cache server per ISP is, as denoted by the
Autonomous System (AS) number. If a vertical bar does not
contain values of the two other ASes it means that the video
is always fetched from the same cache for all the days of the
experiment.

In Figure 3, the results for the cache server selection in
Norway are presented. AS1 is placed in Oslo, i.e. in the same
city as the probe. AS-2 is placed in Oslo, and it belongs to
the Google CDN, while AS-3 is placed in London, thus it is
obvious that the video is server via a peering connection. The
first remark is that the transit connection appears mostly with
operator-3 during the peak times 8-12am and 6-10pm. The
second remark is that operator-1 almost always delivers the
video via AS-1 while operator-2 uses AS-2 for approx. 5% of
the videos during peak hours.

In Figure 4, the cache server selection for Sweden is
presented. It is noted that AS-1/2/3 in Norway is different than
the AS-1/2/3 in Sweden and AS-1/2/3 in Italy or Spain; the
notation ’AS-x’ is used to denote an Autonomous system in the
measurement campaign that was conducted in each country.
Thus, AS-x in the Norway campaign corresponds to a different
AS than the AS-x in the Sweden campaign. Similarly, ISP-x
in Norway is different that ISP-x in Sweden.

It can be seen that the video is always fetched from AS1
(which corresponds to AS- and is placed in Karlstad, the place
where the probe is located, while AS-2 belongs to the Google
CDN. Moreover, it can be observed that during peak hours
the operator-2 and operator-3 deliver some videos from AS-
2, while operator-1 always delivers the video from AS1 (n.b.
the “operator-x” in one country is obviously different than the
“operator-x” in another country, and AS-y in one country is
different that AS-y in another country.).

In Spain, as depicted in Fig. 5, there is more volatility during
the day for operator-3, which employs 3 ASes both during
peak hours and non-peak hours. Instead, operator-1 always
uses a local cache, placed in Madrid, corresponding to AS-1

and corresponds to Google CDN, and operator-2 uses AS-
2 during the peak hours, in addition to AS-1, which is also
placed in Madrid but does not belong to the Google CDN.
AS-3 is placed in Paris and is only used by operator-3, which
is an indication that there is a peering connection.

Finally, in Italy, as depicted in Fig. 6, there is a much
more stable cache server selection. Operator-1 always uses
the AS-1 from the Google CDN and the same holds for the
vast majority of the cases for operator-2 and operator-3 with
a small exception for operator-3 during 6-8pm. The second
AS-2 that is used for the delivery of the content is placed in
Torino, the same city as the probe.

From these results it is evident that there is a different cache
selection policy in each country, and in some of them the video
is even fetched via a peering connection from another ISP at
another country. Also, peak hours seem to have an effect on
the switch between Google CDN and a local cache.

B. QoE performance evaluation

Besides the investigation of the host infrastructure, it is
also important to study the impact of the cache server on
the delivered quality, calculated as described in Section III-C.
The distance of the cache server and its capacity may affect
the delivery to a multitude of users and may result to higher
startup delay, stalling events, and switching to a lower quality
during playback. From the collected results, we observed that
the number of video sessions in which the playback stalled
during playback are less than 5%. However, there were many
cases (ranging from 5% to 30%) where the video playback
was not sustained at HD-720p but was scaled down to 480p
or even 360p. The MOS values for each of the operators in
each country, depending on the cache server are presented
in Table 1. To highlight how the cache server affects the
delivered quality, we have not aggregated the results per
operator, but rather we present the results for each operator
and AS individually. The bold figures in the table indicate
the hightest MOS, i.e. the highest perceived quality by the
viewers.

From this table, it can be seen that, in Norway, AS-1 and
AS-2 perform equally, while AS-3 performs slightly worse,
which is attributed to the fact that the cache is located in
another country and the video is fetched through a peering
connection. However, the quality does not drop significantly. In
Sweden, AS-1 and AS-2 also perform equally for all operators.
It is reminded again that AS-1/2/3 in Norway is different than
the AS-1/2/3 in Sweden and AS-1/2/3 in Italy or Spain; the
notation ’AS-x’ is used to denote an Autonomous system in the
measurement campaign that was conducted in each country.
In Spain, AS-1 and AS-2 perform equally well, however AS-
3 exhibits the lowest MOS value. Again, this is attributed
to the fact the the server is located far from the client and
the video is served through a peering connection. Finally, in
Italy, where there was the most stable cache selection, the



TABLE I
AVERAGE VIDEO MOS PER OPERATOR AND AS.

Norway operator 1 operator 2 operator 3
AS-1 4.54 4.38 4.41
AS-2 4.34 4.46 4.52
AS-3 n/a 3.78 3.28
Sweden operator 1 operator 2 operator 3
AS-1 4.48 4.52 4.39
AS-2 n/a 4.42 4.41
AS-3 n/a n/a n/a
Spain operator 1 operator 2 operator 3
AS-1 4.54 4.46 4.50
AS-2 4.48 4.38 4.36
AS-3 n/a n/a 3.62
Italy operator 1 operator 2 operator 3
AS-1 4.48 4.52 4.54
AS-2 4.55 4.37 4.48
AS-3 n/a n/a n/a

performance was equally good for all operators and ASes.
From these results, it can be concluded that the main factor
that may deteriorate the delivered quality is the fact that the
video is served from a distant cache which means that the
packets need to traverse several communication links and go
through several bottlenecks. This information can be used by
network operators in order to optimize the strategy for cache
selection and the provision of CDNs for fast delivery of the
content to the viewer.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have presented the results of a field study
for performance evaluation of YouTube streaming quality
which was conducted for a month in four European coun-
tries, using probes with a connection to 3 mobile broadband
operators. The video QoE was computed using standardised
objective methods and was used to identify whether the cache
infrastructure and the selection policy may have an impact
on quality. Firstly, it was found that there is a different cache
selection policy in each country, and in some of them the video
is even fetched via a peering connection from another ISP
located at another country. It was also found that during peak
hours, there is a different selection of cache for a percentage
of the videos. Secondly, it was found that the main factor that
may deteriorate the delivered quality, in terms of perceived
quality, is the fact that the video is served from a distant
cache which means that the packets need to traverse several
communication links and go through several bottlenecks.

We plan to continue these field measurements over the next
six months and correlate them with more low-level network
parameters which are collected by the probes. This will assist
in identifying what are the bottlenecks in the delivery chain
and provide useful insights for the optimization of the service.
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