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Forecasting the energy demand of individual consumers is a vital component
of future smart energy grids since it enables energy-saving mechanisms such
as Demand Response, activity scheduling, and prosumer energy markets.
However, training a separate model with each consumer’s available smart
meter data can raise significant cold-start and scalability issues, despite
the fact that personalization can be achieved in cases where the respective
training sets have adequate data. Namely, making accurate forecasts for
new consumers with limited historical data is challenging since a machine
learning model requires a significant volume of data to be trained adequately,
while scalability becomes an issue when the number of consumers increases.
Training a single model on multiple consumers can mitigate these issues,
hence we propose a single-model RNN-based deep learning architecture
named Deep4Ener, for consumer-level energy demand forecasting, trained
on multiple users and capable of making predictions for unseen consumers
with scarce historical data that were not included in the training phase.
Deep4Ener learns common energy demand characteristics among different
consumers, by utilizing a novel architecture for energy profiling, including
clustering, and an encoder neural network for feature extraction. Experi-
ments with data from two open datasets show that Deep4Ener achieves high
predictive performance both for known and completely new consumers,
while outperforming the current state-of-the-art, namely one-model-per-
consumer, standalone RNN, and Amazon’s DeepAR approaches. Finally, we
demonstrate that Deep4Ener shines when combined with Transfer Learning
to further improve its forecasting performance on different energy demand
consumers with limited data available.

CCS Concepts: • Computing methodologies → Machine learning; •
Hardware→ Smart grid.

Additional Key Words and Phrases: Smart grids, Energy consumption fore-
casting, Deep learning

1 INTRODUCTION
Consumer consumption forecasting plays a vital role in multiple
smart grid applications, such as Demand Response (DR) and hour/day-
ahead activity scheduling, where Short-Term Load Forecasting (STLF)
is utilized [14]. DR initiatives are used to engage energy consumers
into energy efficient consumption behavior by adjusting their de-
mand profiles to mitigate imbalances between supply and demand,
through various incentive mechanisms, such as dynamic energy tar-
iffs based on consumer-level demand forecasts [7]. Moreover, STLF
is crucial for energy market players who need to provide bids for
the day-ahead and real-time markets, based on supply and demand
forecasts [10].

Training one model per consumer has major disadvantages:
A straightforward approach is to train one Machine Learning (ML)
model per consumer with historical smart meter data to achieve
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personalization, which can raise a number of issues. Namely, a
model trained on data from a single consumer cannot generalize and
conduct predictions for new consumers with different consumption
distribution and patterns [25], hence a newmodel needs to be trained
from scratch for each new consumer. Additionally, if a new model is
trained for a user with limited historical data, the resulting predictor
will have a poor performance, which is known as the cold-start
problem. Furthermore, consumer-level demand forecasting includes
considerable energy consumption uncertainty, due to the erratic
behavior of consumers, especially residential ones, which can lead
to low prediction performance when training a separate model per
consumer.
As far as scalability is concerned, there are cases where an elec-

tricity retailer would like to make consumer-level forecasts for its
entire customer base, which can include thousands of consumers,
in order to improve the results of a DR program by choosing per-
sonalized incentives and DR actions for each consumer. In such
cases, training one model for each user would be computationally
demanding due to the need for resource-consuming Deep Learning
(DL) models, that need individualized hyper-parameter tuning, to
tackle energy demand variability and uncertainty [25].

All these issues, raise the need for rethinking the classic energy de-
mand forecasting problem, by transforming it into a consumer-level
consumption forecasting problem, where accurate and scalable pre-
dictions are needed even for consumers with scarce or non-existent
historical data. In this variation of the problem, the goal is not only
to achieve accurate forecasts for each consumer in the training set
(generalization), but also to make predictions for entirely new con-
sumers with adequate accuracy (representativeness), to mitigate
the cold-start problem. If a consumer has adequate historical data,
the one-model-per-consumer approach can be applied to achieve
higher levels of personalization. However, the available smart meter
historical data can be limited in realistic scenarios, while training a
separate model for each consumer can lead to problems related to
generalization, scalability, and the cold-start problem as discussed
earlier.
Advantages of training a single model on multiple con-

sumers: Consumer energy demand forecasting is a problem where
personalization is not the first priority since, despite having signifi-
cant differences, energy consumers share common energy demand
characteristics (e.g. most buildings increase their consumption dur-
ing summer for cooling purposes). Hence, a single DL model trained
on multiple consumers can capture shared patterns among them
and conduct accurate predictions even for users with erratic con-
sumption characteristics since a broader set of consumer types is
utilized for training, thus enhancing the generalization of the DL
model, instead of focusing on personalization.
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Fig. 1. High-level design of the proposed Deep4Ener approach.

Moreover, a single DL model is capable of conducting forecasts
for individual consumers with limited historical consumption data,
or even for completely new consumers, a scenario where the one-
model-per-consumer approach fails. Namely, the single-model ap-
proach can utilize past knowledge from multiple consumers and
apply it to new ones that have limited historical data to identify
their energy demand characteristics and conduct accurate predic-
tions without re-training, a need that is also evident in the literature
[3], [25]. This poses a major advantage of the single-model ap-
proach since in real use cases, energy consumers might have scarce
historical data, e.g. they recently installed smart meters, changed
energy providers, or do not want to share their data for privacy rea-
sons. Hence, the main objective of this approach is to train a model
that achieves generalization regarding test data from observed con-
sumers (i.e. consumers having data in the training set), while also
accomplishing representativeness by making satisfactory predic-
tions even for completely unseen consumers with limited data (i.e.
consumers not included in the training set).

The proposed approach: In this paper, we design and validate a
single DL model trained on consumption data from multiple con-
sumers, termed Deep4Ener. The proposed approach distinguishes
energy demand patterns among different consumers and conducts
forecasts for them individually, by constructing their energy profiles.
The novel combination of the proposed components in our approach
is depicted in Fig. 1. The proposed architecture utilizes a double
clustering component specially designed to cluster energy profiles
consisting of both time-series and non-time-series features, with
the resulting distances from cluster centroids acting as additional
inputs for the demand prediction model.
In particular, our architecture features a Recurrent Neural Net-

work (RNN) encoder with Gated Recurrent Unit (GRU) cells that
captures the impact of past demand and a Multilayer Perceptron
(MLP) that derives the effect that energy profiles have on the next
time-slot’s energy consumption. This leads to higher predictive per-
formance compared to the state-of-the-art approaches in hourly
demand forecasting for individual consumers, even for those not
included in the training set, a scenario where the one-model-per-
consumer approach completely fails. Additionally, we employ regu-
larization and Transfer Learning (TL) to boost the forecasting per-
formance of Deep4Ener on new consumers with scarce historical
data available, by training a base model on a dataset with multiple
consumers, and then fine-tuning it on the new target dataset to
mitigate the cold-start problem. To sum up, the contributions of this
work are the following:

• We introduce Deep4Ener, a consumer-level, single model, en-
ergy demand forecasting pipeline, capable of conducting ac-
curate consumption predictions both for known consumers
and for new consumers with scarce data not included in the
training set.

• We propose a novel Neural Network (NN) architecture that
incorporates a GRU RNN encoder and anMLP, for individual
consumer energy demand forecasting. The model utilizes
energy profiles in the input feature vector, hence enabling it
to identify fundamental differences among the consumption
patterns of individual consumers.

• We further enhance the model’s capability of capturing di-
verse consumption patterns from individual consumers by
introducing a novel double clustering pipeline, designed
to group consumers based on both their energy profiles’
time-series and non-time-series features.

• We validate the proposed approach using real energy con-
sumption data from two publicly available datasets, with
310 and 368 consumers respectively, and show through ex-
periments that our model outperforms the current state-of-
the-art in terms of multiple prediction error metrics, such as
𝑅2, MSE, RMSE, and MAE, while also having the additional
advantages of generalization and representativeness.

Compared to our prior work [8], we enrich the proposed approach
with regularization and Transfer Learning to improve the model’s
ability to make forecasts for new consumers originating from dif-
ferent datasets and with diverse characteristics. Furthermore, we
enhance the experimental evaluation of the proposed approach
by utilizing a second open dataset [29] with consumers from both
households and large buildings. A thorough evaluation is also con-
ducted, with more experiments for each dataset separately, as well as
cross-dataset experiments to validate the real-world transferability
and representativeness of the model. Further to our prior work, we
compare our approach with Amazon’s state-of-the-art probabilistic
time-series forecasting model DeepAR [25]. Our approach makes
predictions for new consumers belonging to different categories,
with few data available, hence extending the current state-of-the-art
and comprising a valuable tool at the hands of energy retailers and
operators who can potentially incorporate Deep4Ener in their DR
pipelines to target new consumers with limited data.
The rest of the paper is organized as follows: in Section 2, we

discuss prior works and highlight the novelty of our work compared
to the current state-of-the-art, while in Section 3 we explain the
proposed approach in detail. In Section 4, the experiment results
are presented and interpreted, while finally in Section 5 this work’s
contributions are summarized and conclusions are drawn.

2 RELATED WORK
One model per consumer: The most straightforward approach
to forecast the energy consumption of a consumer is to train a
model for each consumer with the available historical data. Multiple
ML models have been studied for this purpose [1], [2], [12], [22],
[23], [24], [31], [34], showing promising forecasting capabilities
for a single building, with NNs achieving the lowest error in most
studies. In [21], TL and specifically few-shot learning is utilized for
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individualized building energy demand forecasting, by training a
baseline neural network on a large dataset and fine-tuning a separate
model per building with limited data. However, a model trained to
make predictions for a specific building cannot conduct forecasts
for new ones. To make things worse, the cold-start problem will
emerge in the case of insufficient historical data for other buildings,
in case one wants to train new individual models for each of them.
A single model for multiple consumers: An alternative ap-

proach is to train a single NN using historical consumption data from
multiple consumers. The literature is significantly sparser regard-
ing this approach since the high differentiation of consumer-level
energy demand makes the problem more challenging [33]. In [28],
Dynamic Time Warping (DTW) is used to cluster 24-hour consumer
load curves for 22 days, leading to 20 clusters. Each load curve is
encoded as the nearest cluster centroid and Markov models are used
for next-day load curve prediction. In [26], a pooling-based RNN
is utilized for consumer demand forecasting, which improves the
predictive performance by around 7%, while also avoiding overfit-
ting. In [19], TL is utilized to tackle energy demand forecasting for
multiple houses. Namely, apartments are clustered based on their
daily load profiles, while an individual base RNN is trained on each
cluster centroid’s profile. Each trained RNN is used as a base model
to train an individual model for each apartment, which goes be-
yond the scenario of one model trained on multiple houses. In [30],
few-shot learning is utilized to make energy demand forecasts for
buildings with very limited data, i.e. from 12 up to 192 shots/slots.
Ensemble clustering is used to cluster buildings from a large dataset
and a prototype time-series is generated for each cluster by averag-
ing the time-series of all buildings from that cluster. Then, during
few-shot learning, a base LSTM is trained with the prototype series
from the cluster that is closer to the target building which is then
fine-tuned with the limited target building data, hence going beyond
the approach of having one generalized model for multiple building
types. The results showed a significant improvement compared to a
classic LSTM trained on the limited target data.
In [25], the authors propose a general-purpose time-series prob-

abilistic forecasting model named DeepAR using Autoregressive
Recurrent Networks, which can forecast time-series with a single
encoder-decoder NN. This approach presumes a time-series prob-
ability distribution and learns the mean and standard deviation of
consumption at each time slot, while also utilizing a set of time-
dependent variables as input. The authors evaluate the model with
datasets from multiple domains, including energy consumption
forecasting, where it reached a Normalized Root Mean Squared
Error (NRMSE) of 1.0 kWh on predicting hourly energy demand
for the next day. Probabilistic forecasting is also studied in [33] for
household-level load forecasting by extracting load demand scenar-
ios for each house and training a regression model for each scenario,
which is then combined with a consumption scenario predictor to
obtain the final probabilistic forecast for each household. In [3],
the authors utilize an LSTM architecture for household-level elec-
tricity time-series forecasting, taking advantage of weather data
and the available geo-demographic segmentation data from the
"Smart Meters in London" dataset. Namely, the residential smart
meters are organized in 19 groups according to the survey-based
geo-demographic classification conducted by the dataset creators,

and a separate model is trained for each consumer group to make
24-hour predictions based on the past 24-hour consumption and
weather data.

Our approach differs from [25] since we propose a lighter NN
architecture with an RNN encoder and an MLP that is specifically
designed for deterministic and individualized consumer energy de-
mand forecasting, incorporating energy profiles and clustering in
the model’s inputs. While [25] and [33] predict the energy con-
sumption’s probability distributions for a time window, our model
focuses on forecasting energy demand on a single time slot, with-
out assuming a probability distribution for the data. This leads to
a lighter architecture, which however seems capable of achieving
higher performance in terms of single prediction point error, since
we report lower NRMSE compared to [25].

Our work also differs from [28], [26], [19], and [3] since we incor-
porate consumer energy profiles along with distances from cluster
centroids as inputs in a single demand forecasting model, enabling
it to distinguish consumption patterns and characteristics between
different consumers. In addition, compared to [3], we utilize a novel
double clustering pipeline to group consumers based on their en-
ergy consumption characteristics instead of using geo-demographic
attributes that are only available for a limited number of consumers
through surveys. Hence, our model contributes towards transfer-
ability and replicability since as we show through experiments, it
can make accurate energy demand forecasts for new consumers
with limited data and it can be even transferred to entirely differ-
ent datasets without a re-training phase, or with just a fine-tuning
procedure on limited data from the target dataset.

3 THE PROPOSED DEEP4ENER APPROACH

3.1 Model
We denote by C the set of energy consumers available, consist-
ing of 𝐶 consumers in total, with each consumer 𝑐 ∈ C having
a historical energy consumption time-series denoted as P𝒄 con-
sisting of 𝑇 energy consumption measurements. P𝒄 is defined as
follows: P𝒄 = (𝑃𝑐0 , . . . , 𝑃

𝑐
𝑡 , . . . , 𝑃

𝑐
𝑇
) with 𝑃𝑐𝑡 denoting the energy

consumption measurement in kWh for consumer 𝑐 during time slot
𝑡 ∈ {0, . . . ,𝑇 }.

For each consumer 𝑐 , P𝒄 is used to calculate the energy profile
𝑬𝒄 = (𝜖𝑐1 , . . . , 𝜖

𝑐
36) consisting of 36 energy profile features in total

as described in subsection 3.3. These profile features can be adapted
according to the use case at hand, e.g. consumer or building meta-
data can be included. However, in this work we keep the energy
profiles as general as possible, so that they can be calculated for any
consumer just using historical energy demand measurements, in
order to enhance the transferability and replicability of the method-
ology. In addition, the time-series data need to be transformed using
the sliding window method in order to be utilized as an input for
the RNN encoder component of the neural network architecture
described in detail in subsection 3.5.
We aim to train a single model on energy consumption time-

series data from multiple consumers, which will then be capable of
conducting consumer-level energy demand forecasts for the next
time slots, even for new consumers with limited data. The proposed
architecture utilizes energy profiles to distinguish different demand
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patterns and characteristics between individual consumers. A double
clustering process is applied to group consumers with similar energy
profiles, hence each profile is encoded according to its distances
from all cluster centroids. Additionally, a Deep Neural Network
(DNN) architecture that includes an RNN encoder is utilized to help
the model capture the impact of past consumption time-series.

3.2 Machine Learning Background
3.2.1 Deep Learning. DNNs are designed to capture complex multi-
level data correlations and abstractions for a wide variety of applica-
tions, such as speech-recognition, image processing, and time-series
forecasting [20]. DNNs include multiple layers which themselves
incorporate a number of neurons. Each neuronℎ𝑛 is comprised from
an input feature vector 𝒙 from the previous layer, a weight vector
𝒘𝒏 , a bias 𝑏𝑛 , and an activation function 𝑓 (·) as: ℎ𝑛 = 𝑓 (𝒘𝒏

𝑇 𝒙+𝑏𝑛) .
An algorithm known as backpropagation [32] is utilized to learn the
weights and biases of a neural network from a set of training data
over several epochs. An RNN is a neural network variant which also
keeps an internal memory that captures the temporal characteristics
of input feature sequences. The most popular RNN cell versions are
Long Short-Term Memory networks (LSTMs) and Gated Recurrent
Units (GRUs). The two variants have shown similar performance in
many problem settings, while GRUs are more efficient since they
use fewer parameters [9].

3.2.2 Clustering. Clustering algorithms assign objects into groups
according to their characteristics, so that similar objects belong to
the same cluster, based on a distance measure. k-means with Eu-
clidean distance metric is a widely-used clustering algorithm, that
iteratively assigns objects into the nearest cluster, with a predefined
number of clusters 𝑘 . A variant of k-means , TimeSeriesKMeans,
that is utilized to cluster time-series data based on their curve
shape, uses Dynamic Time Warping (DTW) distance as a simi-
larity measure, instead of Euclidean distance [5], [28]. A warping
path on a 𝑛 × 𝑛 matrix is defined as a sequence 𝑝 = (𝑝1, . . . , 𝑝𝐿)
where 𝑝𝑙 = (𝑖𝑙 , 𝑗𝑙 ) and 𝑙 ∈ [1 : 𝐿], with 𝑝1 = (1, 1), 𝑝𝐿 = (𝑛, 𝑛),
𝑖1 ≤ 𝑖2 ≤ . . . ≤ 𝑖𝐿 , and 𝑗1 ≤ 𝑗2 ≤ . . . ≤ 𝑗𝐿 . Furthermore, the cost
of a warping path 𝑝 for two feature vectors 𝒙 and 𝒚 is defined as:
𝑐𝑝 (𝒙,𝒚) =

∑𝐿
𝑙=1 (𝑥𝑖𝑙 −𝑦 𝑗𝑙 )

2, and the DTW distance between 𝒙 and𝒚
is defined as: 𝐷𝑇𝑊 (𝒙,𝒚) = 𝑐𝑝∗ (𝒙,𝒚), where 𝑝∗ = arg min 𝑐𝑝 (𝒙,𝒚)
is the warping path with the lowest possible cost, which is found
using Dynamic Programming [5], [28]. Hence, the DTW distance
measures the similarity between two time-series vectors by "stretch-
ing" them appropriately to eliminate time-shifts. Thus, using DTW
instead of Euclidean distance improves the clustering performance
of TimeSeriesKMeans compared to standard k-means regarding
time-series data.

3.3 Consumer Energy Profiles
An energy profile is a vector containing characteristics and statis-
tics derived from available consumer energy demand data, which
can be classified as either time-series or non-time-series features.
The time-series segment of a profile includes ordered statistics re-
garding specific time periods, e.g. average hourly energy demand.
The remaining non-time-series segment of features in a profile can

include any other statistics calculated from the consumer’s histori-
cal consumption data, as proposed by [4], [15], and [16]. Namely,
consumption aggregates for different periods of the day, consump-
tion ratios, calculated as the ratio of two consumption figures, and
statistical features.

The energy profiles utilized also include a set of features proposed
by [13], namely relative average consumption in each period of the
day, mean relative standard deviation, and weekend vs. weekday
score. For any consumer 𝑐 , 𝑃𝑐

𝑗
is defined as the mean consumption

and 𝜎𝑐
𝑗
as the standard deviation for each time period 𝑗 ∈ [1, 2, 3, 4]

(each day is divided into four periods). Additionally, mean consump-
tion for weekends and weekdays is defined as 𝑃𝑊𝐸𝑐

𝑗
and 𝑃𝑊𝐷𝑐

𝑗

respectively. The detailed energy profile feature table is presented
and discussed in Appendix A.

3.4 Consumer Double Clustering
Clustering is often utilized to group consumers with similar energy
consumption characteristics, while in most cases algorithms such as
k-means with Euclidean distance are used. However, this approach
might not be ideal for inputs that include time-series. Namely, k-
means with Euclidean distance is susceptible to minor time shifts
since it measures point-to-point distance, thus two 24-hour load
curves with similar shape will be far in terms of Euclidean distance
if one is shifted by just an hour [28].

Hence, in our approach we use k-means with DTW as a distance
measure to cluster consumers based only on the time-series segment
of their energy profiles. The non-time-series segment is utilized
as an input for a second k-means model with Euclidean distance,
resulting to a double cluster membership for each consumer. Namely,
𝑘∗ and 𝑘 clusters for the non-time-series and time-series clustering
procedures respectively. The cluster centroid distances are utilized
as additional input features for the consumption forecasting NN.
Experiments conducted with real data showed an improvement with
this double clustering approach in terms of both cluster quality and
predictive performance of the demand forecasting model when the
cluster centroid distances are included in the input feature vector.
Experiments that demonstrate why the proposed double clustering
approach is superior compared to regular clustering for this use
case can be found in Appendix B.

3.5 The Proposed Neural Network Approach
The energy profiles calculated from the available historical data and
the distances from all cluster centroids regarding each consumer
𝑐 are combined into an input feature vector to train a model that
outputs the consumer’s demand 𝑃𝑐𝑡 for time slot 𝑡 , while 1-hour time
slots are used. Additionally, this input vector includes the following
time-related features: Hour (0-23), Weekday (0-6), DayOfYear (1-
365), and Month (1-12), while it can also contain other available
consumer metadata such as building size in 𝑚2, and solar panel
integration, as well as past energy demand. The main rationale is
that by combining the aforementioned input features, we enable the
NN to learn differences between individual consumer types, hence
distinguishing certain attributes through the hidden layers, which
can lead to more accurate individual consumer forecasts.
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Fig. 2. The proposed Deep4Ener neural network architecture.

The energy demand of previous time-slots improves the model’s
prediction of energy consumption 𝑃𝑐𝑡 for the next time slot 𝑡 . How-
ever, if past consumption is directly used as part of the NN’s input
feature vector, the time dimension of the time-series sequence will
be ignored. Namely, the time-series features will be treated as inde-
pendent and not as a sequence of measurements. On the flip side,
if an RNN is trained only on the past energy measurements, the
advantages of using all the remaining features presented earlier (e.g.
energy profiles) will be missed.
For those reasons, we propose a novel architecture depicted in

Fig. 2, consisting of an RNN encoder that uses the past consumption
time-series as input, and an MLP on top that also includes the rest
of the calculated features. Additionally, the MLP incorporates as
an input the encoding vector output of the RNN encoder’s last cell.
The rationale of our approach is that it combines the advantages of
a GRU RNN trained on energy time-series data and an MLP trained
on crucial features for each consumer, such as energy profiles and
cluster distances. Namely, when a prediction for time slot 𝑡 takes
place, the model also incorporates a memory-aware encoding that
represents the past energy demand time-series.

The input vector regarding an individual consumer 𝑐 at time slot
𝑡 with a 24-hour look-back is: 𝑰 𝒄𝒕 = (𝑃𝑐

𝑡−24, . . . , 𝑃
𝑐
𝑡−1, 𝑥

𝑐
1, . . . , 𝑥

𝑐
𝑚),

where (𝑃𝑐
𝑡−24, . . . , 𝑃

𝑐
𝑡−1) is the past 24-h energy consumption for

consumer 𝑐 , and (𝑥𝑐1, . . . , 𝑥
𝑐
𝑚) includes the energy profile features

alongwith the following features (𝑚 features in total): a) Hour,Week-
day, Month, DayOfYear; b) Profile distances from non-time-series
cluster centroids (𝑘∗ distances for 𝑘∗ clusters); c) Profile distances
from time-series cluster centroids (𝑘 distances for 𝑘 clusters); d) pv
(Boolean feature for photovoltaics - if available - if not, this feature
is omitted); e) total_square_footage (area in𝑚2 - if available - if
not, this feature is omitted). The pv and total_square_footage
parameters are used only if they are available from consumer data.
The past consumption part of 𝑰 𝒄𝒕 , i.e. (𝑃

𝑐
𝑡−24, . . . , 𝑃

𝑐
𝑡−1), is used as

an input for an RNN encoder with GRU cells [9]. We use a GRU
RNN since it is computationally more efficient than LSTMs, while it
preserves similar performance in our experiments. More details on
the exact neural network architecture utilized in our experiments
are presented in Appendix C.

4 DATA EXPERIMENTS
In this section, a thorough set of experiments with real data is
carried out in order to evaluate the proposed approach and compare
it to the state-of-the-art in terms of predictive performance with
different datasets. The experiments’ setup and data preprocessing
pipelines are presented along with the evaluation metrics used.
Furthermore, the results and main takeaways from the experiments
are discussed regarding multiple factors, such as model forecasting
error, regularization, and transferability.

In subsection 4.3.1, different variations of the proposed architec-
ture are compared with state-of-the-art machine learning models
using the Pecan Street dataset, while in subsection 4.3.2, experiments
with the UCI-Elergone dataset are conducted to study the perfor-
mance of the proposed approach when transferred to a different
dataset and with the addition of regularization. Additionally, in sub-
section 4.3.3 the proposed approach is compared against Amazon’s
DeepAR model and in subsection 4.3.4, its cross-dataset transfer-
ability is validated. Finally, in subsection 4.3.5 experiments using
TL are conducted to further enhance the model’s performance.

4.1 Datasets
The first dataset we employ comes from Pecan Street Dataport
[27], and consists of smart meter energy demand data from U.S.
households, with 310 consumers being used for training with energy
consumption measurements from 2018 to 2019. Additionally, the
house area and a Boolean feature about solar panel existence are
used for some of the experiments, while 𝑘∗ = 5 and 𝑘 = 6 for the
non-time-series and time-series clustering procedures respectively
after running the elbow method with the Pecan Street consumers.
We also utilize a second dataset from Elergone and UCI [29]

containing electricity demand data for both residential and industrial
consumers. The same dataset was used in Amazon’s DeepAR paper
[25]. Energy consumption measurements from 2014 are utilized
for training, with 𝑘∗ = 4 and 𝑘 = 7 for the non-time-series and
time-series clustering procedures respectively after running the
elbow method with the Elergone consumers. Detailed statistics and
characteristics for the datasets are presented in Appendix D.
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4.2 Data Preprocessing and Experimental Setup
NNs are designed to minimize an error metric on the training set on
average, thus energy peaks are underestimated since they appear
with a lower frequency compared to low consumption measure-
ments. For this reason, we apply a Box-Cox transformation [6] on
the demand data prior to the training phase, in order to transform
them into a normal distribution. The Box-Cox transformation is
defined as follows:

𝑌𝑖 =

{
𝑌_
𝑖
−1
_

, if _ ≠ 0
log𝑌𝑖 , if _ = 0

(1)

where 𝑌𝑖 refers to the target variables, which in our case are the en-
ergy consumption measurement data, and _ is a parameter selected
in order to approximate a normal distribution curve. Furthermore,
all input and output features are normalized into [0, 1] using a
MinMaxScaler from the Scikit-Learn Python library1. Both trans-
formations are inversed after a prediction is made by the model, so
that the system outputs an energy consumption forecast value in
kWh.

A 80-20 training-test split is applied for the DL models with both
datasets. The Pecan Street dataset consisting of 310 households with
measurements from 2018 to 2019 is randomly split into training and
test sets. This means that the DL models presented are trained on
all of the 310 houses, but only with 80% of the measurements. In
addition, a set of 100 different unseen consumers is used to test the
model’s predictive performance on new consumers, while the same
is the case for the Elergone-UCI dataset. The loss function used for 𝑛
data points is Mean Squared Error (MSE):𝑀𝑆𝐸 = 1

𝑛

∑𝑛
𝑖=1 (𝑌𝑖 − 𝑌𝑖 )2,

where 𝑌𝑖 refer to real/target values and 𝑌𝑖 are the model predictions.
The optimizer used for training is Adam [17], along with early
stopping based on a validation set consisting of 10% of the training
set. The experiments were conducted using an NVIDIA RTX 3080
10GB GPU.

4.2.1 Performance metrics. The metrics used for the energy con-
sumption prediction model evaluation are the 𝑅2, MSE (the loss func-
tion used for training), Root Mean Squared Error (RMSE), Mean Ab-
solute Error (MAE), Normalized Root Mean Squared Error (NRMSE)
and Normalized Deviation (ND). The 𝑅2 metric measures the vari-
ance that the trained model explains and is defined as follows:

𝑅2 = 1 −
∑𝑛
𝑖=1 (𝑌𝑖 − 𝑌𝑖 )2∑𝑛

𝑖=1 (𝑌𝑖 −
1
𝑛

∑𝑛
𝑖=1 𝑌𝑖 )2

. (2)

Namely, 𝑅2 measures the closeness of the predicted regression
values to the real measurements. The RMSE metric is: 𝑅𝑀𝑆𝐸 =√︃

1
𝑛

∑𝑛
𝑖=1 (𝑌𝑖 − 𝑌𝑖 )2 . RMSE is a helpful estimator to measure the stan-

dard deviation of the model’s prediction errors, which is particularly
important in case of building energy demand forecasting since dif-
ferent error standard deviations are observed during different hour
slots. Another error metric we use is MAE:𝑀𝐴𝐸 = 1

𝑛

∑𝑛
𝑖=1 |𝑌𝑖 − 𝑌𝑖 |.

We also employ two normalized error metrics, NRMSE and ND, since
they are utilized in Amazon’s DeepAR paper [25], while they are also
useful to compare the performance of models on different datasets.

1https://scikit-learn.org

Table 1. Experiment Results for Different Variants of the Proposed Approach
with the Pecan Street Dataset

MLP per
consumer*

GRU
(7-day
look-
back)**

Deep4-
Ener

(24-hour
look-
back)

Deep4Ener
(7-day
look-
back)

Deep4Ener
(7-day
look-
back)

# of
models

310 models
for 310
houses

1 model
for 310
houses

1 model
for 310
houses

1 model
for 310
houses

1 model
for 100
unseen
houses

𝑅2 66.0% 74.9% 76.3% 76.4% 68.4%
MSE 0.29 0.29 0.27 0.27 0.50
RMSE 0.54 0.54 0.52 0.52 0.71
MAE 0.31 0.30 0.29 0.29 0.37

*With 4 hidden layers (500, 100, 50, 10 neurons respectively). **With 1 GRU layer with 64 hidden
units.

NRMSE and ND are defined as follows: 𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸
1
𝑛

∑𝑛
𝑖=1 𝑌𝑖

, and

𝑁𝐷 =

∑𝑛
𝑖=1 |𝑌𝑖−𝑌𝑖 |∑𝑛

𝑖=1 𝑌𝑖
, with 𝑁𝐷 (also known as weighted Mean Ab-

solute Percentage Error - wMAPE) being used instead of Mean
Absolute Percentage Error (MAPE) since it is more appropriate
for experiments with different datasets that have different energy
consumption magnitudes.
The evaluation metrics are calculated after reversing the trans-

formations performed on the data, i.e. Box-Cox and normalization,
and are used to compare the following approaches:

• Our proposed Deep4Ener approach with a 24-hour look-
back, as depicted in Fig. 1 and Fig. 2.

• Our proposed Deep4Ener approachwith a 168-hour (1-week)
look-back.

• A regularized version of Deep4Ener with a dropout of 0.5
applied on every layer of the MLP component, except for its
input layer 𝑰𝑴𝑳𝑷 , where a dropout of 0.7 is applied.

• A GRU RNN with 1-week look-back trained on multiple con-
sumers, without using energy profiles and cluster distances.

• One MLP per consumer, having the same architecture with
the MLP part of the model described in Section 3.5 using the
past day’s consumption directly as an input.

• Amazon’s DeepAR model [25].

4.3 Experiments and Discussion
4.3.1 Experiments with the Pecan Street dataset. Table 1 depicts
experiment results for different variations of Deep4Ener compared
with other state-of-the-art DL approaches for hourly demand pre-
diction using the Pecan Street dataset. In the first results column,
the evaluation metrics for a group of individual models trained
separately for each consumer are presented. A 80-20 training-test
split is conducted for each of the consumer individual datasets. The
significant values of the Standard Deviation (SD) of the error metrics
observed for the 310 trained models shows that the limited amount
of historical data for many of the consumers negatively affected the
respective models. Namely, the SD of the MSE, RMSE, and MAE
was 0.22, 0.20, and 0.15 respectively.
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Additionally, the resulting metrics show that the inherent uncer-
tainty and in some cases arbitrary nature of residential consumer
behavior substantially limit the forecasting ability of some models,
leading to poor prediction performance for many consumers. This
occurred since the available data volume for many households was
inadequate to train an ML model (e.g. a few days or weeks), hence
leading to the cold-start problem and enforcing one of the main
motivations of the proposed Deep4Ener approach. The three middle
columns of Table 1 present three models trained on multiple con-
sumers (80% of the combined dataset) and evaluated on the left-out
test set. In the second column, the single GRU RNN approach with
a 168-hour window achieved slight gains in terms of forecasting
error compared to training an individual model per consumer.
The last three columns of Table 1 present the results for two

variants of Deep4Ener as described in Section 3.5. The Deep4Ener
architecture (Fig. 2) with a 24-hour look-back made forecasts with
lower errors and higher 𝑅2 than the GRU RNN model, while also
having the additional advantage of using a 24-hour window instead
of 168-hour one. Namely, Deep4Ener achieved a 6.9% reduction
of MSE compared to the simple GRU RNN approach, showing
that the approach of utilizing energy profiling and clustering cou-
pled with the neural network depicted in Fig. 2 brings significant
value when forecasting the energy demand of individual consumers.

Hence, in the second to last column of Table 1 we depict a Deep4-
Ener architecture that integrates characteristics from all the previ-
ously described models, using an RNN encoder with 1-week look-
back window. The results show that this Deep4Ener variant does
not achieve any significant performance gains compared to the 24-
hour window version of Deep4Ener, hence it might not be worth to
extend its look-back window in similar cases. Thus, it is evident that
the proposed Deep4Ener approach achieves generalization since
it outperforms the approach of training a separate model per con-
sumer, while it also scored lower error metrics compared to a classic
GRU RNN model, when tested on a held-out test set.

In the last column of Table 1, we evaluated the trained Deep4Ener
model on a new set of consumers that the model had never seen
before (100 houses for 2017), to determine if representativeness can
be achieved. Despite worse predictive performance when evaluated
on unseen consumers, the error metrics are still acceptable, espe-
cially considering that training an accurate new model for unseen
consumers with inadequate data is not feasible. Thus, Deep4Ener
achieves representativeness while also tackling the cold-start prob-
lem.

4.3.2 Experiments with the Elergone-UCI dataset. Table 2 presents
an evaluation of Deep4Ener on the second dataset utilized for this
work, as described in Section 4.1. Similarly to Table 1, the first
column of Table 2 shows a set of 368 models trained for 368 con-
sumers separately, with a 80-20 training-test split for each con-
sumer’s dataset. The respective evaluation metric values and their
standard deviations across the 368 models highlight the emergence
of the cold-start problem, where consumers with scarce historical
data lead to high forecasting errors for the respective models. For
instance, the Standard Deviations of RMSE and MAE were more
than their means, i.e. 354 and 328 respectively.

Fig. 3. Deep4Ener trained with UCI data and tested on Pecan Street data.

In the second column of Table 2, Deep4Ener is trained on the
UCI dataset consisting of 368 consumers and is compared against
the one-model-per-consumer approach (first column of Table 2).
Again, a 80-20 train-test split is used on a combined dataset with
measurements from all the consumers. We observe that Deep4Ener
significantly outperforms the one-model-per-consumer approach
for all the evaluation metrics. Namely, the proposed Deep4Ener
approach manages to lower the MSE by 63.5 %, the RMSE by
39.6 % and the MAE by 12 % compared to the one-model-per-
consumer approach, while also achieving representativeness and
predictions for new unseen consumers.

In the third column of Table 2, a regularized version of Deep4Ener
is trained on the same UCI data. Dropout is utilized as a regular-
ization measure since it constitutes one of the most popular neural
network regularization techniques. Other regularization approaches,
such as L1 or L2 regularization, can also be adopted. However, the
goal of the experiment is to validate the effect that regularization
has on the model’s transferability and not to identify the most suit-
able regularization measure for the specific use case and dataset.
As expected, the error metrics suffer from a an increase when reg-
ularization is applied and validated on the UCI test set. However,
regularizing Deep4Ener leads to higher levels of representativeness
when we validated it with new consumers from the Pecan Street
dataset.

In the last two columns of Table 2, the proposed Deep4Ener and
regularized Deep4Ener models trained on the UCI data are tested
on 100 houses from the Pecan Street dataset (the same houses as
in the last column of Table 1). The error metrics in these last two
columns have different magnitudes compared to the rest of the ta-
ble columns since they are calculated on a different dataset. The
regularized version of Deep4Ener (trained with the UCI data) is
also presented in Fig. 3 while making forecasts for 1 week of Pecan
data. The results show that Deep4Ener can conduct accurate hourly
energy consumption forecasts for new consumers from an entirely
different dataset with diverse consumer characteristics and patterns.
Fig. 3 shows that the model struggles to capture the "ramp downs"
which makes sense since in this particular example, the ramp downs
are severe and the model cannot react quickly enough, given the
fact that it was trained in an entirely different dataset of buildings.
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Table 2. Validation of Deep4Ener Trained with the Elergone-UCI Dataset

MLP
per

consumer*
Deep4Ener RegularizedDeep4Ener

Deep4Ener trained
with UCI data and

tested on Pecan houses

Regularized Deep4Ener
trained with UCI data

and tested on
Pecan houses

Number
of models

368 models
for 368

consumers

1 model
for 368

consumers

1 model
for 368

consumers

1 model trained on 368
UCI consumers and tested
on 100 Pecan consumers

1 model trained on 368
UCI consumers and tested
on 100 Pecan consumers

𝑅2 88.0% 99.3% 97.9% 50.2% 62.5%
MSE 10275.3 3749.9 11305.9 0.80 0.61
RMSE 101.4 61.2 106.3 0.89 0.78
MAE 21.7 19.1 28.1 0.62 0.53

*With 4 hidden layers (500, 100, 50, 10 neurons respectively).

Table 3. Comparison Between the Proposed Approach and DeepAR

DeepAR [25] Deep4Ener
NRMSE 1.00 0.18
ND 0.07 0.06

Table 4. Transferability of Deep4Ener with NRMSE

Trained on Pecan* Trained on UCI
Tested on Pecan 0.47 0.63
Tested on UCI 2.4 0.30

* Without pv and total_square_footage in the input feature vector.

Furthermore, adding regularization to Deep4Ener led to higher pre-
dictive performance when tested on unseen consumers from Pecan
Street, further enforcing the motivation for utilizing regularization
when representativeness on new consumers is desired.

4.3.3 Comparison with DeepAR. In Table 3, we compare Deep4Ener
against Amazon’s DeepAR [25] using the UCI dataset with the same
set of consumers described in the previous section. Deep4Ener out-
performs DeepAR in terms of NRMSE and ND, which are the two
metrics used in [25] for this dataset. This improvement in predic-
tion performance probably occurs due the fact that our model is
specially designed for deterministic energy demand forecasting, in-
corporating energy profiles and double clustering, while DeepAR
is designed to tackle general-purpose probabilistic time-series fore-
casting. In the previous sections, Deep4Ener was compared to other
popular neural network forecasting models, i.e. MLP per consumer
and RNN-GRU approaches, nevertheless a direct comparison with
other specific models from the literature is difficult, due to the lack
of code, and/or model parameter definition in order to reproduce
the results on different datasets.

4.3.4 Cross-dataset transferability. In Table 4, we further examine
the cross-dataset transferability of regularized Deep4Ener using
NRMSE. The regularized version of Deep4Ener is trained on the two
datasets separately to produce two individual models, which are
then tested on the held-out test sets of both datasets respectively. It
is evident from the primary diagonal of the table that generalization

Table 5. Transfer Learning (TL) Evaluation on Pecan Data

Deep4Ener
trained
with

UCI data
(No TL)

Deep4Ener base
model trained
with UCI and
fine-tuned on
3-month data
from 100 Pecan

consumers

Deep4Ener base
model trained
with UCI and
fine-tuned on
12-month data
from 100 Pecan

consumers
NRMSE 0.63 0.57 (-9.5%) 0.55 (-12.6%)

is achieved when the model is tested on a held-out test set with
data consisting of consumers that are also included in its training
set. From the secondary diagonal, it is evident that the model also
achieves representativeness when trained on the UCI dataset and
tested on Pecan consumers, while this is not the case for the opposite
setup. This is expected since the Pecan-trained model has seen
values up to a certain maximum consumption for houses, while the
UCI dataset includes much higher values. Hence, the Pecan-trained
normalizer will transform most of the UCI measurements to 1.

4.3.5 Transfer Learning experiments. Finally, in Table 5 we employ
TL to further improve the transferability and representativeness of
regularized Deep4Ener by fully leveraging the available energy con-
sumption data from buildings with limited historical measurements.
Consequently, the improved transferability of Deep4Ener with TL
can improve its forecasting performance on the target buildings. TL
is utilized in the literature to use knowledge acquired from train-
ing a model on one problem in the solution of a similar problem.
In our case, a base model is first trained on 368 consumers from
the UCI dataset and all weights of the model are saved. Then the
same NN architecture is initialized with the saved weights from the
base model and the training procedure continues on a set of 100
Pecan consumers, a methodology called fine-tuning. More about TL
background and motivation can be found in Appendix E.
It is evident from Table 5 that when the base model is fined-

tuned with 3-month data from Pecan Street, a 9.5% reduction of
NRMSE is achieved on the Pecan Street test set compared to not
using TL at all. The results in the third column show that when 12-
month data are used for fine-tuning the NRMSE is further decreased.
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Hence, employing TL to fine-tune Deep4Ener on the target set of
consumers can further improve its predictive performance, even if
few data are available for them, in which case a new model trained
from scratch would lead to poor forecasts, which is known as the
cold-start problem.

5 CONCLUSION
In this paper we tackle the problem of consumer-level energy de-
mand forecasting with limited data, utilizing a single novel deep
learning approach we named Deep4Ener. The proposed approach
leverages an RNN encoder and an MLP paired with energy pro-
files and double clustering to discover different patterns among
electricity consumers and provide accurate predictions even for
completely new ones with scarce data available, hence contributing
to the state-of-the-art. Experiment results with real data from two
datasets show that the proposed approach outperforms the current
state-of-the-art in terms of all the prediction error metrics used. The
proposed Deep4Ener approach also makes accurate forecasts for
consumers from an entirely different dataset with diverse demand
characteristics, with the experiment results being further improved
when Transfer Learning is employed.

Possible future research directions can include multiple approach-
es, e.g. the integration of Deep4Ener in a DR system to demonstrate
and study its impact on the resulted DR actions in terms of en-
ergy savings compared to other prediction mechanisms. It would
be interesting to study the real-world impact of such a forecast-
ing methodology, in terms of kWh and carbon emission reduction
achieved through a DR program.
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A DETAILED ENERGY PROFILE DEFINITION AND
NOTATION

Table 6 presents in detail the energy profile features utilized in
the proposed approach, after thorough analysis regarding the im-
portance and impact of each feature using the Pearson correlation
coefficient. All the features of Table 6 are the same ones as in our

Table 6. Energy Profile Features Used for consumer 𝑐

IDs Profile feature Description Type

1-24 24h load profile
Hourly average
normalized

consumption (24 features)
ts*

25 𝑃𝑐 Mean consumption non-ts
26 𝜎2

𝑐 Consumption variance non-ts
27 𝑚𝑎𝑥𝑐 Maximum consumption non-ts
28 𝑚𝑖𝑛𝑐 Minimum consumption non-ts
29 min_over_mean 𝑚𝑖𝑛𝑐 / 𝑃𝑐 non-ts
30 mean_over_max 𝑃𝑐 /𝑚𝑎𝑥𝑐 non-ts

31
𝑃𝑅1 (Relative

average
consumption 1**)

𝑃𝑐1 / 𝑃𝑐 non-ts

32
𝑃𝑅2 (Relative

average
consumption 2)

𝑃𝑐2 / 𝑃𝑐 non-ts

33
𝑃𝑅3 (Relative

average
consumption 3)

𝑃𝑐3 / 𝑃𝑐 non-ts

34
𝑃𝑅4 (Relative

average
consumption 4)

𝑃𝑐4 / 𝑃𝑐 non-ts

35
weekend_
weekday_

difference_score
1
4
∑4

𝑗=1
|𝑃𝑊𝐷𝑐

𝑗
−𝑃𝑊𝐸𝑐

𝑗
|

𝑃𝑐
𝑗

non-ts

36 mean_relative_std 1
4
∑4

𝑗=1
𝜎𝑐
𝑗

𝑃𝑐
𝑗

non-ts

*ts stands for time-series. **Each day is divided in the following periods: overnight (period 1,
22:00-6:00), breakfast (period 2, 6:00-9:00), daytime (period 3, 09:00-15:00), and evening (period 4,
15:00-22:00).

prior work [8], except for the seasonal score feature, which is omit-
ted in this extended version since it requires a full year of data to be
calculated. Our analysis showed that the seasonal score feature has
a small correlation with the consumed energy, hence we believe that
by removing it we can apply our approach to greater number of con-
sumers that have less than a year of historical data available. This
slight modification makes it possible to calculate the energy profile
of a consumer with just a week of historical data, while obviously
more data (if available) will lead to a more accurate representation
of the consumer’s consumption characteristics.

B DOUBLE CLUSTERING EXPERIMENTS
To further evaluate and compare the proposed double clustering
pipeline against regular clustering, the Hopkins statistic and the
Davies–Bouldin index are utilized. The Hopkins statistic represents
the cluster tendency of the dataset, i.e. the probability that the data

Table 7. Clustering evaluation on the Pecan data

Metrics Full profile Time-series Non-time-series
𝐻 84.5% 86.8% 83.5%
𝐷𝐵 1.81 1.65 1.07

Clusters 5 6 5

points were derived from a uniform distribution. For that reason, a
null hypothesis 𝐻0 and an alternate hypothesis 𝐻𝑎 are used, where
𝐻0 implies that the data points are derived by a uniform distribution,
and 𝐻𝑎 assumes that they were randomly generated. Let D be the
examined dataset, where𝑚 points (𝑝1, . . . , 𝑝𝑚) are sampled from it,
and𝑚 other points (𝑞1, . . . , 𝑞𝑚) are derived from a random uniform
distribution. Then, the Hopkins statistic [18] is defined as follows:

𝐻 =

∑𝑚
𝑖=1 𝑢𝑖∑𝑚

𝑖=1 𝑢𝑖 +
∑𝑚
𝑖=1𝑤𝑖

, (3)

where 𝑢𝑖 is the distance between each random point and the near-
est point from D, and 𝑤𝑖 is the distance between each point in
(𝑝1, . . . , 𝑝𝑚) and its nearest neighbor from D. Values of 𝐻 closer
to 1 indicate that the dataset has a high clustering tendency, while
values closer to 0 indicate that the dataset is uniformly distributed.

The Davies–Bouldin index (𝐷𝐵 index) [11] measures the average
similarity of the derived clusters. Values closer to 0 indicate a clear
cluster partition, with 0 being the lowest possible value. Let 𝐶 =

{𝐶1,𝐶2, . . . ,𝐶𝑘 } be a partition of 𝑛 data points into 𝑘 clusters and
𝑑 (𝑐𝑖 , 𝑐 𝑗 ) the distance between the centroids of clusters 𝐶𝑖 and 𝐶 𝑗

(the centroids are defined as 𝑐𝑖 and 𝑐 𝑗 respectively). Also, 𝑑 (·, ·) is
the Euclidean distance measure. The 𝐷𝐵 index is defined as follows:

𝐷𝐵 =
1
𝑘

𝑘∑︁
𝑖=1

max
𝑗≠𝑖

𝑠𝑖 + 𝑠 𝑗
𝑑 (𝑐𝑖 , 𝑐 𝑗 )

(4)

where 𝑖, 𝑗 ∈ {1, . . . , 𝑘} and 𝑠𝑖 is the average distance of the points in
cluster 𝐶𝑖 to their centroid:

𝑠𝑖 =
1
|𝐶𝑖 |

∑︁
𝑥∈𝐶𝑖

𝑑 (𝑥, 𝑐𝑖 ). (5)

An evaluation and comparison of the double clustering pipeline
against regular clustering is conducted on the full Pecan Street
dataset using the Hopkins statistic (𝐻 ) and the Davies–Bouldin in-
dex (𝐷𝐵), with the optimal number of clusters being selected using
the elbow method. As presented in Table 7, using the full energy
profile to train k-means with Euclidean distance is compared against
splitting the profile with the double clustering procedure. The results
show a small improvement in terms of 𝐻 and a significant improve-
ment regarding 𝐷𝐵 when using the double clustering pipeline, i.e.
splitting the profile into time-series and non-time-series features
and applying TimeSeriesKMeans with DTW and k-means with Eu-
clidean distance respectively. Thus, it is evident that the proposed
double clustering approach results in a better clustering of buildings
compared to directly applying k-means to the energy profiles.
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Fig. 4. Gated Recurrent Unit (GRU)

C DEEP4ENER NEURAL NETWORK NOTATION AND
DETAILED ARCHITECTURE

The detailed architecture and neural network notation utilized for
Deep4Ener are explained in the following paragraphs. An example
of the last GRU cell 𝒉𝒕−1 as depicted in Fig. 4, is presented below:

𝒛𝒕−1 = 𝜎 (𝑼𝒛𝑃𝑐𝑡−1 +𝑾𝒛𝒉𝒕−2 + 𝒃𝒛), (6)

𝒓𝒕−1 = 𝜎 (𝑼𝒓𝑃𝑐𝑡−1 +𝑾𝒓𝒉𝒕−2 + 𝒃𝒓 ), (7)

�̃�𝒕−1 = tanh(𝑼𝒉𝑃𝑐𝑡−1 +𝑾𝒉 (𝒓𝒕−1 ⊙ 𝒉𝒕−2) + 𝒃𝒉), (8)

𝒉𝒕−1 = 𝒛𝒕−1 ⊙ �̃�𝒕−1 + (1 − 𝒛𝒕−1) ⊙ 𝒉𝒕−2, (9)

where 𝒛𝒕−1 is the update gate vector, 𝒓𝒕−1 is the reset gate vector,
�̃�𝒕−1 is the candidate activation vector, 𝒉𝒕−1 is the output vector,
and 𝜎 (·) refers to the sigmoid activation function 𝜎 (𝑥) = 1

1+𝑒−𝑥 ,
while 𝑼𝒛 , 𝑼𝒓 , 𝑼𝒉,𝑾𝒛 ,𝑾𝒓 ,𝑾𝒉, 𝒃𝒛 , 𝒃𝒓 , and 𝒃𝒉 are the weight and bias
parameters of the NN cell [9].
The RNN encoder output 𝒉𝒕−1 is an encoding of the past con-

sumption that the NN learned during training. The size of the en-
coding vector is a hyper-parameter derived from the parameters
of the RNN encoder. In our work, we use an encoding with a size
equal to 64, after hyper-parameter tuning, which is the number of
neurons each GRU cell contains, i.e. 𝒉𝒕−1 = (𝑂1, . . . ,𝑂64) as de-
picted in Fig. 2. The encoding along with the rest of the features
of 𝑰 𝒄𝒕 , 𝒙

𝒄 = (𝑥𝑐1, . . . , 𝑥
𝑐
𝑚) in our case, are used as an input feature

vector for an MLP with 4 hidden layers. Apart from the input layer
𝑰𝑴𝑳𝑷 = (𝒉𝒕−1, 𝒙𝒄 ), the MLP consists of a number of hidden lay-
ers, and an output neuron which is the energy demand prediction
𝑃𝑐𝑡 for time slot 𝑡 , regarding the specific consumer. Each hidden
layer includes multiple neurons, with the number of hidden layers
and neurons being hyper-parameters, and each neuron using the
previous layer outputs as an input:

𝑯1 = 𝐸𝐿𝑈 (𝒘1
𝑇 𝑰𝑴𝑳𝑷 + 𝒃1), (10)

𝑯𝒏 = 𝐸𝐿𝑈 (𝒘𝒏
𝑇𝑯𝒏−1 + 𝒃𝒏), 𝑛 = 2, . . . , 4, (11)

𝑃𝑐𝑡 = 𝜎 (𝒘5
𝑇𝑯4 + 𝒃5), (12)

Table 8. Dataset Descriptive Statistics

Pecan Street
Energy (kWh)

Elergone-UCI
Energy (kWh)

mean 1.22 323.98
SD 1.39 772.45
min 0 0

25% percentile* 0.36 19.79
50% percentile* 0.74 98.32
75% percentile* 1.57 268.62

max 19.15 10,163.86
skewness 1.56 5.56

*Percentage of the measurements which are lower than the respective percentile value.

where 𝐸𝐿𝑈 (·) refers to the Exponential Linear Unit activation func-
tion, which is defined as:

𝐸𝐿𝑈 (𝑥) =
{
𝑥, 𝑥 ≥ 0
𝛼 (𝑒𝑥 − 1), 𝑥 < 0.

(13)

In our case, it is 𝛼 = 1 and we use 𝐸𝐿𝑈 instead of 𝑅𝑒𝐿𝑈 since it does
not face the dying𝑅𝑒𝐿𝑈 problem andminimizes the cost faster while
producing more accurate results. Furthermore, the MLP layers have
500, 100, 50, 10, and 1 neurons respectively after hyper-parameter
tuning, and dropout regularization of 0.5 (applied to every layer) is
utilized for some of the model variations.

D DATASET STATISTICS
Table 8 presents the statistics of the datasets. It shows that both
datasets suffer from heavy positive skewness, which is expected due
to the nature of energy consumption and its patterns throughout the
day. The statistics of the two datasets show that their consumers are
diverse, both in terms of energy demand magnitude and intra-day
patterns since the first one only contains houses and the second one
also includes buildings.

E TRANSFER LEARNING BACKGROUND AND
MOTIVATION

Transfer Learning (TL) is a Machine Learning paradigm that stores
knowledge (in the form of neural network weight and bias parame-
ters) acquired during model training for one problem setting and
transferring it to a related problem. The saved parameters of the
whole network or just a part of it, are utilized as the initial weights
for a new training phasewith a different dataset on a related problem.
In the case of the single-model building energy demand forecasting
problem, diverse datasets from different types of buildings exist, e.g.
commercial buildings, industrial buildings, offices, households, etc.,
hence constituting different sub-problems with unique characteris-
tics. Therefore, as presented in section 4.3.5, we utilize TL to fully
leverage the available data from datasets that have limited historical
measurements, in order to enhance the transferability of the trained
model and its performance on the target buildings. Specifically, load-
ing a model that is already trained on a rich dataset and fine-tuning
it with a few weeks of data from a scarce target dataset significantly
improves its performance in regard to the buildings of the latter.
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