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Abstract—Data spaces are an emerging concept that allows
intermediaries to facilitate data exchange among interested
stakeholders. Often, these intermediaries are trusted to filter the
relayed data items, e.g., in order to support query-based data
access APIs, or to implement access control. In this paper, we
explore and compare two approaches for protecting data against
illegitimate tampering, balancing the need for data filtering and
data integrity protection. We apply our concept in data spaces
that serialize data objects using JSON-LD, e.g., data spaces that
implement ETSI’s NGSI-LD API, and we enable intermediaries
to hide segments of the transmitted data, providing at the
same time integrity verification proofs for the revealed portions.
Both approaches are efficient, with minimal communication and
computational overhead.

Index Terms—Zero-knowledge proofs, NGSI-LD, Selective dis-
closure

I. INTRODUCTION

Data spaces are emerging as a new form of digital platform
aiming to liberate data from silos in order to enable data-driven
innovations and shape digital transformation [1]. A growing
number of reports by commercial entities and governmental
bodies highlight the business potential and the possible societal
impact that can be achieved by embracing data spaces (see for
example [2]). Furthermore, data spaces are an integral part of
EU’s Data Governance Act1, which is the first major legislative
initiative implementing the European Strategy for Data.

A data space is composed of building blocks that enable
semantic interoperability of data, uniform data access methods,
as well as increased sovereignty and trust. Data spaces allow
data suppliers to share the data that they control with data
consumers. Data exchange is usually implemented through a
data intermediary, which is responsible for controlling data
access and how data is used [3]. Such data intermediaries are
often implemented by third parties which provide an API for
storing and accessing data (see also Figure 1).

In many use cases, data intermediaries should be able
to selectively disclose portions of the transmitted data, e.g.,
when a consumer is only interested in some attributes of a
data item, or when a consumer is authorized to access only
specific attributes. In those cases, data integrity cannot be
checked by using the traditional digital signatures generated
by the data suppliers, since signature verification would fail
for the partial data objects. Many existing systems simply
delegate signing rights to the intermediary (e.g., in the form
of a certificate chain). However, this enables intermediaries to

1https://digital-strategy.ec.europa.eu/en/policies/data-governance-act

modify the transmitted data, therefore it cannot be used when
the intermediary is not fully trusted by the supplier.

In this paper, we focus on data spaces where data is
serialized using JSON-LD [4], a popular serialization format
that combines JSON and data semantic interoperability. We
propose two signing algorithms that achieve the following:

• Secure Decomposition: Data suppliers can decompose a
data object into smaller fragments in a deterministic and
reversible way and then generate a single digital signature
that covers all fragments.

• Secure Selective Disclosure: Any third party–including
data intermediaries–with access to the public key of the
data supplier, the digital signature, and the fragments can
produce a verifiable subset of the fragments.

• Secure Selective Composition: Given a verifiable subset
of the fragments and the public key of the data supplier,
any third party can verify the integrity of the given
fragments and construct with them a new composite
object.

Our solution allows intermediaries to hide segments of the
transmitted data providing at the same time integrity verifica-
tion proofs for the revealed portions. This process does not
require intervention from the data suppliers, neither requires
from intermediaries to store any secrets. Furthermore, it does
not require data consumers to establish a trust relationship with
the intermediaries.

The remainder of this paper is organized as follows. In
Section 2 we present the design of our solution, detailing the
underlay architecture and the signing algorithms. In Section
3 we present the implementation of our solution and its
evaluation. We discuss related work in Section 4 and we
conclude our paper in Section 5.

II. DESIGN

A. Underlay architecture

Our data space is based on an intermediary implementing
ETSI’s NGSI-LD API [5]. This API allows access to attributes
of entities representing real world assets, also known as digital
twins. The attributes of an entity are defined by the entity
type. As a motivating example, consider the use case of an
intermediary (also referred to as context broker in NGSI-LD)
providing information about cars located in a city. In this
system there can be entities of type car with attributes such
as model, colour, speed, location, as well as auxiliary entity
types, e.g., road with attributes name, traffic, geopath, etc.
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Fig. 1. The entities of our reference architecture.

An entity is represented as a JSON-LD object that includes2

an id member with a URI as its value, a type member
which contains the entity type, and a member for each entity
attribute; the member’s name is the attribute name and the
member’s value is the attribute value. An attribute value can be
represented using any valid JSON data type, including another
JSON object. Figure 2 shows on the left side a JSON-LD
object used to represent an entity of type “car”. As we can
see, the value of member “colour” is a string, the value of
member “speed” is an integer, whereas the value of member
“brand” is another JSON object.

In the following subsection we present two designs that
enable the selective disclosure of data. Both designs share a
common step: the decomposition of a JSON-LD object into
a list of disclosures. A disclosure represents a member of
the JSON-LD object. For composite members, i.e., members
whose value is a JSON object, a disclosure is constructed
for all sub-members, following a depth-first approach. A
disclosure is composed of two parts: the disclosure name
whose value is the JSON pointer [6] to the corresponding
member, i.e., a string representing the “path” to that member in
the JSON-LD object, and the disclosure value which contains
the corresponding member value. In the example of Figure 2,
the table in the middle includes all possible disclosures for
the provided JSON-LD object. It can be observed that there
is a disclosure for the composite “brand” member (disclosure
5) and a separate disclosure for each of the members of the
“brand” value (disclosures 6 and 7).

The decomposition process is reversible, i.e., given a set
of disclosures, a JSON-LD object can be re-constructed in
a straightforward way. Selective disclosure in our system is
achieved by revealing only a portion of the disclosures, which
are then combined by a data consumer into a composite
JSON-LD object. In the example of Figure 2, using only
the disclosures highlighted in the table (1, 4 and 6), we can
construct the composite object shown on the right side.

The integrity of the revealed disclosures can be verified ei-
ther using a digital signature over the hashes of all disclosures,
or using BBS+ signatures. We consider both approaches in the
following section.

B. Hash signature-based approach
In our first design, which is based on legacy and widely

used cryptographic primitives, an object is signed as follows:

2In this paper we adopt the “concise” representation specified in section
4.5.2.3 of [5]

1) Initially, a data supplier calculates the disclosures of a
JSON-LD object and transforms each disclosure into a
single message by concatenating the disclosure name
with the disclosure value, plus a random salt value,
separating them using the space character.

2) For each message constructed in step 1, the data supplier
calculates its hash.

3) The data supplier concatenates the base64 encoding of
all hashes into a data structure and digitally signs it:
the output of this process (the hashes and their digital
signature) is used as the signature of the data object.

4) The data supplier stores the signature of the object,
the disclosures and the corresponding salt values in the
intermediary.

An intermediary can now reveal to a consumer a portion of
the disclosures. A consumer can verify their integrity using the
signature of the data object and construct a composite object,
as follows:

1) The consumer validates the signature of the data object
using the public key of the data supplier.

2) For the available disclosures, the consumer reconstructs
the messages that the supplier created in the first step of
the signing algorithm (including the salt values).

3) For each message, the consumer calculates its hash and
verifies that it is included in the signature of the data
object.

4) Finally, the consumer creates a composite JSON-LD file
using the name and value of each provided disclosure.

It can be easily observed that the consumer does not
learn any information about the hidden disclosures, since the
signature of the data object includes only their (salted) digest.

C. BBS+ signature-based approach

The BBS+ signature design is based on the group signa-
ture scheme presented in [7] enhanced with Zero-Knowledge
Proofs (ZKPs) by [8] and [9]. The BBS+ signature scheme
is currently under standardization by CFRG IETF group [10].
This scheme can be thought as a composition of two (inter-
dependent) pairs of algorithms; one pair for generating and
verifying group signatures, and another for generating and
verifying ZKPs.

The BBS+ signature algorithm enables digital signatures
over a group of individual messages. This algorithm accepts
as input the group of messages and the signer’s private key,
and outputs a single constant size signature. The signature
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1 /id did:self:iQ9PsB

2 /type car

3 /colour black

4 /speed 30

5 /brand {'company': 'bmw', 'model': 'i5'}

6 /brand/company bmw

7 /brand/model i5

{
"id":"did:self:iQ9PsB",
"type":"car",
"colour":"black",
"speed": 30,
"brand":{

"company":"bmw",
"model": "i5"

}
}

{
"id":"did:self:iQ9PsB",
"speed": 30,
"brand":{

"company":"bmw",
}

}

Fig. 2. A JSON-LD object, its disclosures, and a composite object constructed using the 1st, 4th, and 6th disclosures.

can be validated given the signer’s Public Key (PK) and the
entire group of signed messages; this is equivalent to validating
a “traditional” digital signature, if we consider the group of
messages as a single compound message.

The BBS+ ZKP generation protocol is a non-interactive
ZKP protocol that enables any entity that knows a signature
generated using the signature algorithm and the original signed
group of messages, to create a proof of knowledge of the
signature while selectively disclosing only a sub-group of
the signed messages. The size of the proof is linear to the
number of hidden messages. The proof can be validated with
only the signer’s PK and the sub-group of revealed messages.
The whole protocol is zero-knowledge in the sense that, from
this process, no information can be derived about either the
signature or the hidden messages.

In our design, an object is signed using BBS+ as follows:
1) Initially, a data supplier calculates the disclosures of a

JSON-LD object and transforms each disclosure into a
single message by concatenating the disclosure name
and value, separating them using the space character.

2) Then, it generates a BBS+ signature providing as input
its private key and the list of disclosures.

3) Finally, the JSON-LD object and the signature are stored
in a intermediary.

An intermediary can reveal to a consumer a portion of the
disclosures by calculating the corresponding ZKP. A consumer
can verify their integrity using the provided ZKP and construct
a composite object as follows:

1) For the available disclosures, the consumer reconstructs
the messages that the data supplier calculated in the first
step of the signing algorithm.

2) The consumer verifies that the provided ZKP is a valid
proof for the calculated messages.

3) Finally, the consumer extracts the name and value of
each disclosure and creates a composite JSON-LD ob-
ject.

Similarly to the hash-based approach, the ZKP approach
does not reveal any information about the hidden disclosures.

III. IMPLEMENTATION AND EVALUATION

We have implemented a data space for sharing data gener-
ated by entities representing (emulated) cars (see also Fig-
ure 1). Our intermediary is implemented as a distributed
brokering system.3 A data supplier stores data disclosures

3More information about the implemented system can be found at
https://mmlab-aueb.github.io/snds-site/

and the corresponding signatures in the intermediary. An
intermediary is accessed through an NGSI-LD API gateway,
which is trusted by the data consumer. This gateway, which
may be administered by the data consumer, is implemented
using the Python Web-Server Gateway Interface.4 The gateway
is responsible for receiving NGSI-LD API requests from a
data consumer client application, retrieving the corresponding
disclosures from the intermediary, validating the proofs, and
responding with the composite object. We consider API re-
quests where the consumer is interested in READing only
certain attributes of a data object, therefore, the brokering
system provides only the corresponding disclosures.

A. Performance evaluation

1) Set up: We start with a baseline scenario where the bro-
kering system is fully trusted, hence it constructs the composite
object, encloses it in a JSON Web Signature (JWS) [11] using
ECDSA with the P-256 curve, and transmits it to the NGSI-
LD API gateway. We construct artificial JSON-LD objects
consisting of 100 members. Member names and values are
randomly generated 5-character strings.5

For the hash-based option, salts are 128-bit random numbers
encoded using base64, hashes of disclosures are calculated
using SHA-256, encoded using base64 and stored as a JSON
array; then this array is enclosed in a JWS using ECDSA
with the P-256 curve: this is the signature of the data object.
Released disclosures are transmitted as a base64-encoded
JSON array, followed by the generated signature of the data
object.

For the BBS+ signature option, we rely on MATTR’s BBS+
implementation6 which generates group signatures using the
BLS12-381 pairing-friendly elliptic curve [12]. Released dis-
closures are transmitted as a base64-encoded JSON array,
followed by the base64 encoded ZKP.

2) Communication overhead: We measure the communica-
tion overhead between the brokering system and the NGSI-
LD API gateway as a function of the number of revealed
disclosures. In particular we measure the size of a response
sent from the brokering system and the NGSI-LD API gateway
when 1-100 disclosures are revealed. Figure 3 shows that the
hash-based approach has the highest communication overhead.
We can also see that as the number of revealed disclosures

4https://wsgi.readthedocs.io/
5Our implementation and the evaluation scenarios can be found at

https://github.com/mmlab-aueb/selective-disclosure
6https://github.com/mattrglobal/ffi-bbs-signatures
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Fig. 3. Communication overhead.

0

20

40

60

80

100

120

1 11 21 31 41 51 61 71 81 91

Ti
m

e 
in

 m
s

Revealed disclosures

Baseline Hash-based BBS+

Fig. 4. Computational overhead of the intermediary.

increases, the communication overhead of the BBS+ approach
decreases, since the more disclosures are revealed, the smaller
the size of the ZKP is.

3) Computational overhead: We measure the time required
for a supplier to calculate a signature, for the intermediary
to reveal some disclosures, and for the consumer (i.e., the
NGSI-LD API gateway) to verify the integrity of the received
disclosures. These measurements are obtained in a desktop PC
using an Intel i5 processor and 8GB of RAM, running Ubuntu
22.04.

In the baseline scenario, the supplier does not calculate
any signatures, whereas in both our designs the signature
calculation time is constant. Specifically, in the hash-based
approach the time required for calculating the signature of the
object is < 0.1ms, whereas in the BBS+ approach the time
required for calculating the group signature is ≈ 22ms.

The computational overhead of an intermediary may depend
on the number of revealed disclosures. As shown in Figure 4,
the computational overhead of an intermediary in the hash-
based approach is 0, since the intermediary does not have to
perform any cryptographic operations; similarly, in the base-
line scenario an intermediary calculates a JWS that requires
< 0.1ms. In contrast, in the BBS+ approach, an intermediary
needs on average 70ms to produce a response, as it needs to
calculate a ZKP.

Similarly, the computational overhead of a consumer may
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Fig. 5. Computational overhead of the consumer.

also depend on the number of revealed disclosures. As shown
in Figure 5, the computational overhead of a consumer in
the hash-based approach is < 0.1ms since the consumer
only has to verify a signature, calculate some hash functions
and perform a lookup; similarly, in the baseline scenario a
consumer only has to validate a signature, which requires
< 0.1ms. In the BBS+ approach, a consumer needs on average
60ms to verify a response, as it needs to validate a ZKP.

B. Security evaluation

Our threat model considers attackers acting as interme-
diaries, wishing to modify relayed data, as well as honest
but curious gateways wishing to learn information about the
hidden disclosures.

It can be trivially proved that our solution protects the
integrity of the revealed disclosures. Indeed, in the hash-
based approach, an invalid disclosure would be accepted by
a conforming consumer only if its hash was included in the
signature of the data object (created in step 3 of the signing
algorithm). However, this would require from an attacker
either to find a collision in the used hash function, so that
the hash of the invalid disclosure would match the hash of a
valid disclosure, or to break the security of JWS, allowing the
hash of the invalid disclosure to be substituted in the signature
of the data object. Similarly, in the BBS+ approach, an invalid
disclosure would be accepted by a conforming consumer only
if an attacker could break the security of the BBS+ signature
algorithm.

Furthermore, both designs considered by our solution
achieve indistinguishability of hidden disclosures. Specifically,
let two disclosures, D1 and D2 that belong to different objects
but have the same name and value (e.g., two objects of type
“car” of the same “colour”); if D1 and/or D2 are hidden, a cu-
rious gateway cannot tell if the relationship D1 == D2 holds.
In the hash-based approach this is achieved by randomizing
the output of the hash function used for creating the signature
of the data object by introducing some random salt. Similarly,
in the BBS+ approach, all ZKPs are randomized.

On the other hand, untraceability of disclosures is only
achieved by the BBS+ based approach. Specifically, let Dt1

be the disclosure of an object at time1 and Dt2 the same
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disclosure of the same object at time2 (e.g., the speed of a
car at time1 and the speed of the same car at time2). Even
if Dt1 and/or Dt2 are hidden, a a curious gateway can tell
whether or not Dt1 == Dt2 in the hash-based approach. This
is not the case in the BBS+ based approach, since the output
of the ZKP process is randomized.

Finally, although both designs do not provide any informa-
tion about the name and the value of the hidden disclosures,
both reveal the number of the hidden disclosures. In case this
information is sensitive, decoy disclosures can be used.

IV. RELATED WORK

A simple approach for providing functionality similar to our
system is the decomposition of a JSON-LD object into smaller
“objects” with each such object being individually signed.
Such an approach has been followed in similar contexts by
related work (e.g., [13]). Nevertheless, this approach has some
disadvantages compared to our solution: it results in bigger
messages, it requires more signature verifications by the data
consumers, and it requires auxiliary information stored in each
“smaller object” to indicate that they are indeed fragments of
the original object.

Our hash-based approach is related to Content Extraction
Signatures (CES) [14], [15], [16]. Our solution is specific to
JSON-LD objects and it provides constructs that can be used
for decomposing a JSON-LD object into multiple “messages”,
a process also required by CES but not specified elsewhere.
Similarly, some CES realizations organize hashes of messages
into a Merkle tree and sign the root of the tree (as opposed to
the whole list of hashes). This can also be used in our system.

Similarly, our hash-based approach shares similarities with
the Selective Disclosure for JWTs (SD-JWT) [17] IETF draft.
This draft focus on JSON Web Tokens (JWT) and uses
disclosures to selectively reveal members of a JWT. Moreover,
this draft also stores salted hashes of the disclosures in the
JWT, which is signed by the corresponding “issuer”. The main
difference between this draft and our solution is that an SD-
JWT does not use JSON Pointers to specify the disclosure
name, instead using the corresponding attribute name as the
disclosure name and defines inside the JWT “placeholders”
where a disclosure should be put to construct a composite
object. Our solution does not use such placeholders, instead
it allows composite object creation using only the disclosures.
Using this approach, and as opposed to SD-JWTs, our solution
makes it easier to “hide” members of composite objects, or
even array elements. Furthermore, our approach can be used
with BBS+ signatures in a straightforward manner.

Many systems implement selective disclosure via Attribute-
Based Encryption (ABE) (see for example [18]). ABE allows
data suppliers to encrypt their data in such a way that only
consumers that have specific “attributes” can decrypt it. These
systems, unlike our solution, also protect data confidential-
ity against intermediaries. Therefore, in those systems, data
intermediaries are mere brokers of encrypted items. In our
solution data intermediaries have access to the contents of a
data item hence they can provide more advanced functionality,
e.g., they can support API calls that include data filtering

criteria. Furthermore, in encryption-based systems all data
items usually have to be re-encrypted every time a key is
breached. Other recent systems use Homomorphic Encryption
to allow intermediaries to perform some operations (see for
example [19]). However, the overhead of homomorphic en-
cryption is not tolerable for many use cases.

V. CONCLUSIONS

In this paper we considered the problem of data integrity
protection in data spaces that include third party intermedi-
aries. We presented the design, implementation, and evalu-
ation of two approaches that enable intermediaries to hide
segments of the relayed data objects, providing at the same
time integrity protection for the revealed portion of the data
objects. Both approaches do not require any intervention by
the data supplier, nor do they require the intermediaries to
store any secret information. Furthermore, both approaches
introduce low computational and communication overhead.

Both solutions enable a data intermediary to hide any
members of the data objects stored in the data space. Future
work in this area includes tools for allowing data publishers
to specify members that cannot be hidden (e.g., the ob-
ject identifier). Furthermore, our implementation relied on a
custom-implemented NGSI-LD API gateway. Future work in
this area includes the integration of our solution to existing
systems, such as the FIWARE Orion context broker.7 Finally,
in our solution composite objects were constructed by the
NGSI-LD gateway; we are investigating protocols that allow
the integration of our proofs directly into NGSI-LD objects
(such as the Data Integrity proofs under standardization by
W3C): this will not only allow intermediaries to construct the
composite objects by themselves, but it will also enable client
applications to verify the integrity of the received objects, fol-
lowing standards-compliant approaches, and without relying
on a trusted gateway.
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