
Capabilities-based access control for IoT devices
using Verifiable Credentials

Nikos Fotiou, Vasilios A. Siris, George C. Polyzos
Mobile Multimedia Laboratory

Department of Informatics
Athens University of Economics and Business, Greece

{fotiou,vsiris,polyzos}@aueb.gr

Yki Kortesniemi, Dmitrij Lagutin
Department of Communications and Networking

School of Electrical Engineering
Aalto University, Finland

{yki.kortesniemi,dmitrij.lagutin}@aalto.fi

Abstract—Capabilities-based access control is a promising
paradigm that can handle the particularities of IoT systems.
Nevertheless, existing systems are not interoperable and they
have limitations, such as lack of proof of possession, inefficient
revocation mechanisms, and reliance on trusted third parties.
In this paper we overcome these limitations by designing and
implementing a system that leverages Verifiable Credentials
(VCs) to encode the access rights. Our solution specifies protocols
for requesting and using VCs that can be mapped to OAuth 2.0,
includes an efficient and privacy preserving proof of possession
mechanism, and it supports revocation. We implement and
evaluate our solution and we show that it can be directly used
even by constrained devices.

Index Terms—Decentralized Identifiers, OAuth 2.0, Proof-of-
Possession, Internet of Things

I. INTRODUCTION

Access control for the Internet of Things (IoT) is challeng-
ing as IoT devices are often constrained (memory-, power-,
and computation-wise) and they may have limited or even no
network connectivity, but they are still expected to handle a
heterogeneous, dynamic set of users [1]. At the same time,
user privacy is not always protected as many access control
solutions require the user to reveal their identity to the devices
they use even when that is not necessary for the safe use of
the device.

Many IoT systems apply custom, inefficient, coarse-grain
access control mechanisms, resulting in unauthorized access
to devices [2]. Additionally, traditional Role/Attribute-based
Access Control Systems impose intolerable management over-
head since IoT devices have to be continuously configured
with up-to-date Access Control Lists (ACLs). In order to over-
come this problem, many systems deploy and rely on trusted
intermediate entities, which are responsible for maintaining
the ACLs and take access control decisions on behalf of the
IoT devices. However, this creates availability issues, e.g., in
the recent Facebook outage, Facebook’s employees couldn’t
use the smart locks in Facebook facilities.1 Capabilities-based
access control (CapBAC) is a promising paradigm that can
address these issues since it does not require the IoT devices
to maintain ACLs; instead user capabilities are encoded in to-
kens, which can be validated by the device itself. Whilst most

1https://www.businessinsider.com/facebook-employees-no-access-
conference-rooms-because-of-outage-2021-10

of the existing CapBAC solutions define their own encoding
schemas for the capabilities, our solution relies on Verifiable
Credentials [3], which is currently a W3C Recommendation.2

A Verifiable Credential (VC) provides a cryptographically
secure and machine-verifiable means for expressing digital
and real-world credentials in the cyber world. In contrast to
commonly used identity certificates (e.g., X.509 certificates)
that link the user’s identity to a public key and then only
provide a binary identification, i.e., either the whole identity
of the subject is revealed, or nothing is revealed, VCs (as
authorization certificates) can be used to reveal only the
required attributes of a subject [4]. In particular, the user’s real
identity does not always have to be revealed, as anonymous
or even ephemeral identifiers can be utilized to protect user
privacy. In our solution, VCs are used as self-descriptive tokens
that include the capabilities of a user over the IoT device;
then, IoT devices can easily enforce access control simply by
verifying the validity of the VC.

The VC data model, which is currently a W3C recommen-
dation, allows the definition of various VC types for different
uses. Each type defines the attributes that a VC should contain,
thus facilitating interoperability within that use case. Our
solution leverages this property and defines a new VC type
for device access control: any security system or IoT device
can easily integrate our approach by supporting our VC type.

Many existing solutions treat (capabilities) tokens as mere
“bearer” tokens, where anyone having access to the token
can utilise it — this can pose problems if the token leaks to
unintended users. A more secure approach is to issue creden-
tials, which specify the intended user’s (subject’s) identifier:
then the credential can only be used by proving control of
that identifier. Our solution leverages Decentralized Identifiers
(DID) [5] for authenticating both the VC issuers and subjects.
Our prototype implementation utilizes the did:key [6] method
that not only allows VCs to be bound to a DID controlled by
the user, but also allows users to easily create a different DID
for each target IoT device and even replace them after each
use, thus avoiding user tracking and correlation. Additionally,
the did:key method does not require the device to be online
when the credential is used, thus supporting a wide range of

2https://www.w3.org/standards/types#REC

use cases. Nevertheless, our design is DID method agnostic
hence, depending on the capabilities of the IoT device and the
use case, other DID methods (including methods that require
online connection for the device) can also be used.

While the VC data model specifies the format of a VC and
the entities involved in the VC lifecycle, it does not specify
any protocol for issuing or using VCs. Our system defines
such protocols that can be mapped to standard OAuth 2.0
authorization flows, thus facilitating easy integration with
legacy systems.

Finally, many existing solutions do not provide token revo-
cation; our solution specifies a lightweight, privacy-preserving
VC revocation mechanism that can be used even with discon-
nected IoT devices.

In summary, the contributions of our work are the following:
• We design an interoperable access control solution that

can be easily integrated into existing systems.
• We show that our solution is lightweight and it has

intriguing security and privacy features.
• We provide a lightweight, privacy preserving revocation

mechanism and we consider various deployment strate-
gies.

• We add support for DIDs without binding our solution
to a specific DID method, enabling a wide range of
applications.

• We implement a prototype of our solution and evaluate
its performance with constrained devices.

The remainder of this paper is organized as follows. In
Section 2 we introduce VCs and DIDs and we discuss related
work. In Section 3 we give an overview of our solution and we
detail its design in Section 4. We present the implementation
and evaluation of our solution in Section 5. Finally, we discuss
various aspects of our solution in Section 6 and we conclude
our paper in Section 7.

II. BACKGROUND AND RELATED WORK

This section first introduces the verifiable credentials and
decentralized identifiers, and then covers the previous work
on capability-based access control for IoT devices.

A. Verifiable credentials

A Verifiable Credential (VC) [3] allows an issuer to as-
sert some attributes of a subject. A VC includes informa-
tion about the issuer, the subject, the asserted attributes,
as well as possible constrains (e.g., expiration date). Then,
holders of a VC can prove to a verifier that they possess
a VC with certain characteristics. To facilitate interoper-
ability, the VC data model allows different VC types that
defines the attributes a VC should include. A VC type is
defined in a context, which is a URL. An example of VC
type is “UniversityDegreeCredential” defined in the context
“https://www.w3.org/2018/credentials/examples/v1”. As it can
be seen (by visiting the context URL) this credential type
includes attributes such as “alumniOf”, “degree”, “college”,
and so forth. Our solution leverages this property and defines
a new VC type for device access control: any security system

or IoT device can easily integrate our approach by supporting
our VC type.

B. Decentralized Identifiers

W3C defines Decentralized identifiers (DID) as “a new type
of identifier for verifiable, self-sovereign digital identity. DIDs
are fully under the control of the DID subject (the identity
owner), independent from any centralized registry, identity
provider, or certificate authority.” [5] Additional information
associated with the DID can be stored in a DID Document,
which describes the subject of a DID, including mechanisms,
such as public keys, that the DID subjects use to prove
their ownership of the DID. The process of retrieving a DID
Document for a DID is called DID resolution. Depending on
the DID method, some DIDs are resolved using a domain-
specific distributed ledger (e.g., the Sovrin DID [7]), some are
resolved using trusted Web server (e.g., the did:web DID [8]),
and some are exchanged directly between the parties involved
(e.g., the Peer DID [9]). The did:key [6] method utilized in
our prototype uses public keys, encoded in a particular format
as DIDs. Hence, did:key does not require any resolution (as
the DID contains the public key), thus making it particularly
suitable for constrained offline IoT devices.

C. Related work

Our solution is motivated by the broad body of recent work
that highlights the need for re-visiting access control in the
IoT [10]–[13]. These papers postulate that access control in
IoT systems cannot be handled using legacy mechanisms,
since IoT systems usually involve many users, require complex
rules that take into consideration the physical world, and
consider more advanced user relationships and access rights.

Many existing solutions propose capabilities-based access
control (CapBAC) system for the IoT. Gusmeroli et al. [14]
design a system where capabilities are encoded in signed XML
documents using a system-specific schema. Additionally, a
revocation and authentication mechanisms are discussed, but
their actual design is left deployment specific. Similarly,
Hernadez-Ramos et al. [15] propose a CapBAC system where
capabilities are represented as signed JSON objects using a
system-specific format, and af Heurlin [16] proposed a solution
using SPKI authorization certificates, but neither solution
supports revocation. Heracles [17] is a CapBAC system for
the industrial IoT. Heracles uses a custom token format, which
includes a unique user identifier. This identifier however is not
used for proving token possession. Moreover, all tokens of a
user include the same identifier, hence the user can be tracked.
Our solution provides proofs of possession by using dynamic
user identifiers, hence preventing user tracking.

Related work leverages DIDs and CapBAC for adding
access control in the IoT, by introducing intermediate entities,
which are responsible for taking access control decisions on
behalf of the IoT devices. These can be trusted network
entities (as in [18], [19]) or even a blockchain-based smart
contract [20]. In our solution, we remove the need for such an

Device 1

Authorization

Server

Owner

User A

Trusted issuers

Issuer A

Issuer B

A
u

th
o

ri
za

ti
o

n
 r

eq
u

es
t

home.iot/device1/light/read

Client App

User A

read

toggle

read

home.iot/device1

temperature light

read read

Issuer A

Fig. 1. Solution overview

intermediate entity by allowing even constrained IoT devices
to enforce access control on-device.

Our system leverages VCs for expressing capabilities be-
cause VCs are well understood techniques being standardized.
Additionally, supporting a specific VC type is straightforward,
hence interoperability can be supported with low effort. Re-
lated approaches that can be used instead of VCs in a system
similar to ours are Macaroons [21], Authorization Capabilities
for Linked Data (ZCAP-LD) [22], and capabilities as defined
by the WAVE framework [23].

III. SOLUTION OVERVIEW

As illustrated in Fig. 1, our solution considers an IoT system
composed of the following entities: IoT devices managed by
their owners, users wishing to interact with devices using a
client application, and authorization issuers that grant users ac-
cess to the devices through an authorization server. Each IoT
device provides resources (e.g., in Fig. 1 the device provides
a temperature sensor and a light switch) and each resource
allows operations (e.g., read temperature, read switch status,
toggle switch status). For confidentiality, authorization servers
and devices can be accessed using a secure communication
protocol (e.g., our implementation uses HTTPS).

In simple use cases, e.g., a smart home, an owner and an
issuer can be the same entity, but there can be cases where
these are two distinct entities, i.e. the owner can delegate the
authorization decisions to a separate issuer. Suppose a situation
where an office space containing IoT devices is leased to some
company; in this case the owner is the building owner, while
the tenant is a trusted issuer that can issue credentials for users,

which are office workers or visitors. Naturally, there can be
multiple trusted issuers for each owner (e.g. multiple tenants
in an office building).

From a high-level perspective these entities interact with
each other as follows. Issuers configure their authorization
servers with the capabilities each user should have and IoT
devices are configured with lists of trusted issuers. A user
wishing to perform an operation on a IoT device, authenticates
themselves to an authorization server and requests “autho-
rization”; authorization is granted in the form of a Verifiable
Credential (VC) that includes the operations that the user can
perform, as well as a user controlled, ephemeral DID. With the
newly acquired VC, the user sends a request to the IoT device
together with a proof that that the user indeed controls the
DID included in the VC. The IoT device verifies the validity of
both the VC and the proof, and if the VC permits the requested
operation, the IoT device executes it.

Our system achieves the following:

• The VC generation process involves no communication
with the IoT device allowing the device to remain offline.

• IoT devices do not maintain any user-related information,
only a list of trusted issuers and the required VC type.

• Users’ access rights can be easily modified/removed.
• User tracking can be prevented even when IoT devices

collude with anonymous and ephemeral subject DIDs.

IV. SYSTEM DESIGN

We now detail the design of our system, present the
CapabilitiesCredential VC type, and specify protocols for
requesting and using a VC in our system.

A. Definitions

In the rest of this paper we are using the following
notation. We denote by PubX and DIDX the public key
and DID of an entity X respectively. Moreover each device
is identified by a URL denoted by URLdevice and each
resource has a name which is unique in the context of an IoT
device; hence, a resource is uniquely identified by the pair
(URLdevice, resource name). Let Rname = [Oa, Ob, .., Ox]
be a resource named name that can be accessed using
operations Oa, Ob, .., Ox. We denote by ~RURLdevice

the set
of resources R of an IoT device URLdevice. Similarly, let
Cname = [Oa, Ob, .., Ox] be the operations a user is allowed
to invoke on a resource Rname, i.e., the capabilities of the user
over Rname. We denote by ~CURLdevice

the set of capabilities
the user has over all resources of an IoT device URLdevice. By
definition, Cname ⊆ Rname and ~CURLdevice

⊆ ~RURLdevice
.

This relationship is illustrated in Fig. 2, where the first graph
represents the set ~R on an IoT device and the second graph
represents the capabilities set ~C of a user for the same device.
Finally, we denote by Suser the “account” information (e.g., a
username and a password) that a user uses for authenticating
to an authorization server when requesting a credential.

B. The CapabilitiesCredential VC type

In our system we define a new VC type named Capa-
bilitiesCredential. A VC of this type includes a property
named capabilities that expresses the resource operations that
a VC subject can invoke. This property includes pairs of
resource names and allowed operations, e.g., the subject of
the VC included in the third column of Fig. 2 is allowed
to invoke the “read” operation of the “temperature” and
“light” resources. This credential type is defined in the context
https://mm.aueb.gr/contexts/capabilities/v1.

VCs in our system are encoded as JSON Web Tokens
(JWT) [24] which include the following claims:3

• iss: The DID of the issuer.
• sub: The DID of the VC subject.
• aud: The URL of the target IoT device
• nbf: A timestamp before which the VC is not valid.
• exp: A timestamp indicating VC’s expiration time.
• vc: This composite claim describes the actual capabilities

granted and it includes the following properties:
– context: The context of the credential.
– type: The type of the credential (i.e., Capabilities-

Credential).
– capabilities: The capabilities property.

Finally, each VC is embedded in a JSON Web Signature
(JWS) [25] that can be verified using the public key.

C. Operations

We now detail the operations of our system.
1) Setup: During this phase users register with an issuer

and agree on a secret Suser that can be used for authenticating
them. Furthermore, each IoT device is configured with a list of
DIDissuer identifiers, which belong to trusted issuers. Finally,
the authorization server of the issuer is configured with the
capabilities sets ~C of their users.

2) Credential request: Prior to requesting a credential,
users generate a new DID DIDsubject, which will be used
as the DID of the VC subject for this particular device. Then
they send to the issuer their secret Suser, the generated DID,
and the URL of the device they want to access. The issuer
authenticates the user, constructs the appropriate VC, and
sends it to the user. Therefore, the following exchange of
messages takes place:

U → I : Suser, URLdevice, DIDsubject

I → U : V C{URLdevice, DIDsubject, capabilities}

3) Access request: A user can request a device to perform
an operation on a particular resource by providing a suitable
VC, as well as a suitable proof of possession. The proof
demonstrates that the user knows the private key corresponding
to the VC subject, and therefore, the provided VC has been
issued to this particular user. This proof is a simple digital
signature over the request parameters and a nonce used for

3Our system does not use the (optional) VC id property, hence, the JWT-
encoding of a VC does not include the ‘jti’ claim.

preventing replay attacks. Upon receiving the user request, the
device then performs the following verifications:

1) It extracts DIDissuer from the received VC and it
examines if the issuer is trusted.

2) It verifies that the VC is valid (i.e. current time is
between nbf and exp).

3) It verifies that the VC is of type CapabilitiesCredential
4) It extracts the capabilities property of the vc claim and

it verifies that the entry for the requested resource name
includes the requested operation.

5) It resolves the public key that corresponds to DIDissuer

and verifies the VC signature.
6) It resolves the public key that corresponds to

DIDsubject and validates the provided proof.

D. Revocation

Our revocation mechanism is based on the system described
in [26]; a similar approach for VC revocation is followed by a
recent W3C draft [27]. In order to support revocation, an issuer
maintains a revocation list that covers all not expired VCs it
has issued. This list is a simple bitstring and each credential
is associated with a position in the list (each revocable VC
includes a property named “revocationListIndex” that specifies
the position in the revocation list). Revoking a VC then means
setting the bit corresponding to the VC to 1. Since the list
includes only non-expired VCs, its size is tolerable for most
use cases. For example, an issuer that issues on average 100
VCs per day with lifetime equal to one month, would only
need 30× 100 bits to store its revocation list.

Upon receiving a request that includes a non-expired VC
that support this revocation mechanism, the IoT device verifies
the status of the VC by examining the value of the bit of the
corresponding revocation list. When an entity requests from an
issuer a revocation list, the issuer encodes it in a JWT, it adds
a timestamp, and it signs it. Depending on the capabilities of
the IoT device, various design choices can be considered for
retrieving the revocation list.

1) Devices with full connectivity: The device fetches the
list from a URL specified in the credential itself. Since the
revocation list concerns many VCs, it can be cached by the
device for an “acceptable” period of time (e.g. the list may
contain a validity period during which no new lists will be
issued).

2) Devices with limited connectivity: The device (or its
owner) can periodically pull the latest version of the revocation
lists of all trusted issuers and store it in a location accessible
by the device.

3) Devices with no connectivity: In that case, the user is
responsible for retrieving the signed revocation list from the
issuer and including it in the access request. The device must
verify the signature of the JWT, as well as its “freshness”.

V. IMPLEMENTATION AND EVALUATION

We have implemented a prototype of the solution and taken
measurements to evaluate it’s performance.

home.iot/device1

temperature light

read read toggle

{

…

"aud": "home.iot/device1",

…

"vc": {

…

"type": ["CapabilitiesCredential"],

"credentialSubject": {

"capabilities": {

"temperature": [“read"],

"light": [“read"]

}

…

Device Capabilities set Generated VC

home.iot/device1

temperature light

read read

Fig. 2. Mapping access rights to a VC

A. Implementation

Our solution consists of an issuer, a client and a device
that interact using HTTPS. Our issuer4 is a .net core web ap-
plication that implements OAuth 2.0 specification. Credential
request is implemented as an OAuth 2.0 authorization flow
using the “client credentials” grant (section 4.4 of [28]).
Similarly, for the IoT device access request we rely on
OAuth2.0 and the “Demonstrating of Proof-of-Possession at
the Application Layer” (DPoP) draft [29]. Hence, an access
request includes the corresponding VC in the Authorization
header of the generated HTTP request and the appropriate
proof in the dpop header. Finally, we have implemented a
Python 3-based verifier5 as well as a verifier implemented for
IoT devices using Arduino IDE and Arduino Cryptographic
Library.6

B. Performance evaluation

We have measured the VC issuing processes in a desktop
PC equipped with an Intel i5 5540 CPU and 8GB RAM,
running Windows 10, and we have measured access request
verification (which includes the verification of a VC and a
proof) in Raspberry Pi 2 Model B Rev 1.1 with a 900MHz
quad-core ARM Cortex-A7 CPU and 1GB RAM, running
Raspberry Pi OS, and an Espressif ESP32 WROOM-32 IoT
device (240MHz dual-core Xtensa LX7 CPU). We are using
EdDSA and ES256 signature algorithms for JWS.

The results in Table I show that issuing a credential takes
less than 0.1 ms and the verification performance of the
solution is sufficient even on a cheap constrained devices such
as ESP32. Despite the fact that the Arduino Cryptography
Library is optimized for 8-bit microprocessors (ESP32 is a
32-bit), the verification of both the VC and DPoP proofs,
including two signature verifications, still only takes 160ms,
allowing real-time usage of the devices in many use cases.

4https://github.com/mmlab-aueb/vc-issuer
5https://github.com/mmlab-aueb/py-verifier
6https://gitlab.com/h2020-iot-ngin/enhancing iot cybersecurity and data

privacy/privacy-preserving-self-sovereign-identities

TABLE I
EXECUTION TIME OF OUR SYSTEM OPERATIONS MEASURED IN MS.

Operation Execution time in ms
VC issue using EdDSA/ES256 on PC < 0.1
Request verification using EdDSA on RPi 10.01
Request verification using ES256 on RPi 19.3
Request verification using EdDSA on ESP32 160

Since VCs and proofs are transmitted in HTTP headers
they are encoded using base64. The base64 encoding of a VC
that includes two resources and two operations (like the VC
included in Fig.2) is 656 bytes. Similarly, the base64 encoding
of the proof is 440 bytes.

C. Security evaluation

Our system achieves the following security properties:
Distributed access control management. User and access

control policy management is implemented independently of
the IoT device (and its owner), since granting or revoking
an access right does not involve any communication with the
device. Also, each issuer is allowed to use its internal policy
for deciding who can access which IoT resource and these
policies can be kept secret.

Distributed IoT device management. Using our system, it
is very simple to add or remove an issuer. New issuers can be
added by appending their DIDissuer in the corresponding IoT
device configuration file; similarly, an issuer can be removed
by deleting the corresponding entry. We recognize that this
requires remote access to the configuration of a device, which
may not be possible/desirable in some use cases: an alternative
solution based on chain of trusts is discussed in section VI.
Futhermore, since VCs are structured using a type, it is easy
for an entity to become an issuer. Additionally, many working
groups are working on standardized types of VCs, which
makes adding new issuers to a system even easier.

Attack surface reduction. In our solution the amount of
verifications an IoT device needs to perform is less compared
to a system that relies on Access Control Lists (ACLs), which
are also inflexible, do not scale well, and are difficult to use
and upgrade [30]. In our system, a device only has to verify the

validity and the possession of the VC included in a resource
access request. Furthermore, devices are not required to store
any additional secret information to implement our protocols,
nor do they have to maintain user accounts.

Enhanced privacy. In our system, user privacy is protected
against “curious” device owners. Users can rotate the public
key of their client application whenever they want (up to
single-use identities) and request a new VC; this way they
can prevent tracking [19]. Similarly a user is allowed to use
as many client applications as they want. Finally, if a user
requests access for multiple devices during an Credential
request, they should receive one VC per device. Although
it is possible to create a VC for multiple devices this is
not recommended since: (i) such a VC would reveal to a
verifier unnecessary information about the VC Subject, and
(ii) revoking access to a single IoT device would result in the
whole VC being revoked.

Resilience to attacks. Our system is resilient to many types
of attacks. Since the VCs are bound to a user’s DID, our
system is not affected by attackers-in-the-middle that intercept
the communication between a client application and a device.
These attackers, even if they have access to the encryption key
used in the HTTPS session, can neither modify the transmitted
VCs without being detected, nor re-use the captured VCs to
their own purposes. Similarly, our system utilizes different
DIDs for accessing each IoT device, hence, even if the private
key that corresponds to a DID is breached, the captured VCs
can only be used for that specific purpose. An attacker that
has access to the account information that a user uses for
authenticating to an authorization server (i.e., Suser) can only
use them for requesting new VCs and it cannot affect the
already issued VCs. Finally, an attacker that has access to the
private key of an issuer cannot affect VCs of other issuers,
nor can they issue VCs that give access to devices that have
not been configured with DIDissuer.

Related to this property, our system provides segmentation
of secret information. In particular, user account information
(Suser), which is a very sensitive resource, is used only for
requesting VCs. Therefore, we can imagine scenarios where a
user requests a VC using their well-protected corporate laptop
and using multiple safeguards, and then storing the received
VC in their mobile phone: even if the mobile phone is stolen,
user account information is not jeopardized. Similarly, a user
may use multiple clients and adjust the security properties
of a VC accordingly. For example, a user wishing to use
a VC from their “travel” laptop during a particular period,
may request a VC that includes the corresponding “not used
before” and “expires after” fields. Finally, users may rotate the
secret information that corresponds to their accounts without
affecting the already issued VCs.

VI. DISCUSSION

Our solution defines the authorized issuers for each device
by listing them in the device’s configuration file. A key
limitation of this approach is that any change to list of autho-
rized issuers requires accessing the configuration file. Often,

such files cannot be accessed over the network but require
physically visiting the device, which can be inconvenient or
even impossible at times. A more flexible approach is to only
list the device owner’s identity in the configuration file and
then delegate the right to issue credentials to the issuers using
suitable VCs. In this case, the client would have to present
this issuer-VC along with the above discussed user-VC and
proof to form a complete chain of trust from the issuer to the
access request.

Also, our implementation uses the did:key method, which
simply encodes a public key as a DID. However, if the IoT
device can support DID resolution, other, more advanced
DID methods can be used, resulting in some security related
gains. For example, our Python-based verifier also supports the
did:web method. In did:web, the DID is a URL which (when
resolved over HTTPS) results in a DID document that includes
the public key of the DID owner. The advantage of this method
is that DID owners can update their DID documents without
having to modify the corresponding DIDs. Therefore, a user
can rotate keys without having to receive a new VC.

Finally, it is possible to construct Verifiable Credentials that
support selective disclosure, i.e. revealing only the selected
attributes of a credential. In some use cases this would allow
even better privacy as only the required information would
have to be revealed to the device.

VII. CONCLUSIONS

We presented an access control solution for the IoT, which
leverages Verifiable Credentials (VCs). Our system has the ad-
vantages of capabilities-based access control systems, adding
at the same type support for proof of possession and revoca-
tion. Our system is interoperable and can be easily integrated
in legacy systems since its core operations are implemented by
following existing standards. Moreover, our system supports
Decentralized Identifiers, it is lightweight, and it has intriguing
security and privacy features.

Future work in this area is focused on two areas. Firstly, our
system can be extended to support delegation of VCs among
users. Secondly, we investigate alternative signature schemes
that will allow selective disclosure of the capabilities included
in a VC. This will enhance the privacy of our system and
will reduce attack surface by enforcing the principle of least
privilege.

ACKNOWLEDGMENTS

The work reported in this paper has been funded in part by
European Union’s Horizon 2020 research and innovation pro-
gramme through subgrant Enabling Zero Trust Architectures
using Oauth2.0 and Verifiable Credentials (ZeroTrustVC) of
project eSSIF-Lab, under grant agreement No 871932, and
project IoT-NGIN under grant agreement No 957246.

REFERENCES

[1] S. Dramé-Maigné, M. Laurent, L. Castillo, and H. Ganem, “Central-
ized, distributed, and everything in between: Reviewing access control
solutions for the iot,” ACM Comput. Surv., vol. 54, no. 7, sep 2021.

[2] S. Ravidas, A. Lekidis, F. Paci, and N. Zannone, “Access control
in internet-of-things: A survey,” Journal of Network and Computer
Applications, vol. 144, pp. 79–101, 2019.

[3] Manu Sporny et al. (2019) Verifiable credentials data model
1.0. [Online]. Available: https://www.w3.org/TR/verifiable-claims-data-
model/

[4] D. Bauer, D. M. Blough, and D. Cash, “Minimal information disclosure
with efficiently verifiable credentials,” in Proceedings of the 4th ACM
Workshop on Digital Identity Management, ser. DIM ’08. New York,
NY, USA: ACM, 2008, pp. 15–24.

[5] D. Reed, M. Sporny, M. Sabadello, D. Longley, C. Allen, R. Grant, and
M. Jonathan Holt, DO, “Decentralized identifiers (dids) v1.0,” W3C,
Working Draft, Jul. 2020, https://www.w3.org/TR/2020/WD-did-core-
20200723/.

[6] D. Longley, D. Zagidulin, and M. Sporny. (2020) The did:key method.
Https://w3c-ccg.github.io/did-method-key/.

[7] M. Lodder and D. Hardman, “Sovrin did method specification,” W3C,
Editor’s Draft, Aug. 2020, https://sovrin-foundation.github.io/sovrin/
spec/did-method-spec-template.html.

[8] M. P. et al., “did:web method specification,” W3C, Editor’s Draft, Dec.
2021, https://w3c-ccg.github.io/did-method-web/.

[9] D. H. et al., “Peer did method specification,” DIF, Editor’s Draft, Aug.
2020, https://identity.foundation/peer-did-method-spec/index.html.

[10] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fernandes, and
B. Ur, “Rethinking access control and authentication for the home
internet of things (iot),” in 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, 2018, pp. 255–272.

[11] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov,
R. Gupta, and Z. Durumeric, “All things considered: an analysis of
IoT devices on home networks,” in 28th USENIX Security Symposium
USENIX Security 19), 2019, pp. 1169–1185.

[12] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague,
“Smartauth: User-centered authorization for the Internet of Things,” in
26th USENIX Security Symposium USENIX Security 17), 2017, pp. 361–
378.

[13] E. Zeng and F. Roesner, “Understanding and improving security and
privacy in multi-user smart homes: a design exploration and in-home
user study,” in 28th USENIX Security Symposium USENIX Security 19),
2019, pp. 159–176.

[14] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based security
approach to manage access control in the internet of things,” Mathemat-
ical and Computer Modelling, vol. 58, no. 5, pp. 1189–1205, 2013.

[15] J. L. Hernández-Ramos, A. J. Jara, L. Marin, and A. F. Skarmeta,
“Distributed capability-based access control for the internet of things,”
Journal of Internet Services and Information Security (JISIS), vol. 3, no.
3/4, pp. 1–16, 2013.

[16] L. af Heurlin, “Authorization certificate based access control in embed-
ded environments,” 2015.

[22] C. L. Webber, M. Sporny Eds. (2020) Authorization capabilities for
linked data. [Online]. Available: https://w3c-ccg.github.io/zcap-ld/

[17] Q. Zhou, M. Elbadry, F. Ye, and Y. Yang, “Heracles: Scalable, fine-
grained access control for internet-of-things in enterprise environments,”
in IEEE INFOCOM 2018 - IEEE Conference on Computer Communi-
cations, 2018, pp. 1772–1780.

[18] D. Lagutin, Y. Kortesniemi, N. Fotiou, and V. A. Siris, “Enabling
decentralised identifiers and verifiable credentials for constrained IoT
devices using OAuth-based delegation,” in Workshop on Decentralized
IoT Systems and Security (DISS 2019), in conjunction with the NDSS
Symposium 2019, San Diego, CA, USA, 2019.

[19] Y. Kortesniemi, D. Lagutin, T. Elo, and N. Fotiou, “Improving the
privacy of iot with decentralised identifiers (dids),” Journal Comp.
Netw. and Communic., vol. 2019, pp. 8 706 760:1–8 706 760:10, 2019.
[Online]. Available: https://doi.org/10.1155/2019/8706760

[20] R. Xu, Y. Chen, E. Blasch, and G. Chen, “Blendcac: A blockchain-
enabled decentralized capability-based access control for iots,” in 2018
IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), 2018, pp. 1027–1034.

[21] A. Birgisson, J. G. Politz, Úlfar Erlingsson, A. Taly, M. Vrable,
and M. Lentczner, “Macaroons: Cookies with contextual caveats for
decentralized authorization in the cloud,” in Network and Distributed
System Security Symposium, 2014.

[23] M. P. Andersen, S. Kumar, M. AbdelBaky, G. Fierro, J. Kolb, H.-S. Kim,
D. E. Culler, and R. A. Popa, “WAVE: A Decentralized Authorization
Framework with Transitive Delegation,” in Proceedings of the 28th
USENIX Conference on Security Symposium, ser. SEC’19. USA:
USENIX Association, 2019, p. 1375–1392.

[24] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),”
IETF, RFC 7519, 2015.

[25] ——, “JSON Web Signature (JWS),” Internet Requests for Comments,
IETF, RFC 7515, May 2015. [Online]. Available: https://tools.ietf.org/
html/rfc7515

[26] T. Smith, L. Dickinson, and K. Seamons, “Let’s revoke: Scalable global
certificate revocation,” in Network and Distributed System Security
Symposium, 2020.

[27] W. C. C. Group. (2020) Revocation list 2020. [Online]. Available:
https://w3c-ccg.github.io/vc-status-rl-2020/

[28] D. Hardt (ed.), “The OAuth 2.0 authorization framework,” IETF, RFC
6749, 2012.

[29] D. Fett et al., “OAuth 2.0 Demonstrating of Proof-of-Possession at
the Application Layer (DPoP),” RFC draft, 2020. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-oauth-dpop/

[30] A. H. Karp, “Authorization-based access control for the services oriented
architecture,” in Fourth International Conference on Creating, Connect-
ing and Collaborating through Computing (C5’06), 2006, pp. 160–167.

