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Abstract—Point cloud streaming is a key component of 5G
(and beyond) networks, serving as a foundation for holographic
communication. While it enables immersive experiences, it also
poses significant challenges to network infrastructure. Uncom-
pressed point cloud streams produce Gbps traffic volumes, while
compressed streams often suffer from multi-second latencies.
Therefore, the feasibility of real-time applications that require
ultra-low motion-to-eye latency, such as Network Music Perfor-
mance and Remote Driving, remains unclear. In this work, we
design and implement a novel point cloud streaming tool, based
on the Draco encoder, Intel’s RealSense SDK, and OpenGL.
We deploy our prototype implementation in a private 5G stand
alone network and provide an in-depth analysis of the latency
and throughput of point cloud streaming. Our results show that
deploying volumetric streaming services over 5G networks is
still a challenging task. However, a combination of simple cost-
reduction strategies can bring it significantly closer to feasibility.

Index Terms—Ultra-low latency, Volumetric, Streaming,
Draco.

I. INTRODUCTION

A Point Cloud (PC) in the context of volumetric video
is a collection of 3D points that represent the shape and
structure of objects or scenes in space [1]. Each point typically
includes spatial coordinates (x, y, z) and may also carry
additional attributes like color or reflectance. PC streaming is
used to transmit dynamic volumetric content, such as people,
environments, or objects, captured by one or more depth
cameras, for real-time rendering in AR/VR/XR applications.
Unlike stereoscopic 3D video, which offers a sense of depth
from a single point of view, volumetric video can be rendered
from different points of view.

PC streaming is gaining popularity as 5G and Beyond 5G
networks become increasingly available [2]–[4]. These net-
works promise throughput and latency that can support previ-
ously infeasible services, such as holographic communication
for human-to-human or human-to-robot interactions. Notable
examples include Network Music Performance [5] and Remote
Driving [6]; these require ultra-low latency communication,
typically less than 100 ms of motion-to-eye latency, as well
as high throughput, often up to hundreds of MBps.

While many studies have explored PC streaming perfor-
mance, to the best of our knowledge, there are no detailed
performance evaluations of volumetric streaming for ultra-low
latency applications. Most published works exploit TCP [7]–
[9], which offers recovery from packet losses, but due to its re-
transmissions, is unsuitable for ultra-low latency applications.
Some works do employ UDP [10]–[12], but they convert the

PC to a planar (2D) format, thus losing the ability to render
it in 3D from different points of view. Of course, latency is
not just due to network transmission: PC compression and
decompression are computationally demanding tasks. Since
the level of compression affects the bandwidth required for
the PC stream, understanding the performance of PC streaming
requires understanding the effects of the compression settings.

In this work, we design and implement a PC streaming
tool and analyze in depth its performance in terms of latency,
bitrate, and transmission resiliency. Our tool is built upon the
Intel RealSense SDK for PC capture, the Draco encoder library
for compression and decompression, a custom lightweight
transport protocol, and OpenGL for rendering the 3D data.
Most importantly, the tool allows individual analysis of the
latency introduced by each stage in the PC processing pipeline,
on both the producer and consumer sides. Our goal is to reveal
performance bottlenecks and set directions for future research
towards achieving ultra-low latency PC streaming.

We evaluate our tool in a private 5G Stand Alone (SA)
network. We explore different strategies to adjust latency and
bitrate, such as selecting the Draco compression level, lower-
ing PC resolution, omitting color attributes and parallelizing
compression. Our results offer a preliminary characterization
of the conditions under which PC streaming becomes practical
under real 5G conditions.

The remainder of the paper is organized as follows. In
Sec. II, we discuss related work on PC streaming. In Sec. III,
we introduce our novel streaming tool and present our evalua-
tion setup, while in Sec. IV we present our evaluation results
and discuss future research directions. Finally, in Sec. V, we
summarize our conclusions.

II. BACKGROUND WORK

The literature on PC streaming is extensive, including sev-
eral surveys. In [1], the authors deliver a comprehensive survey
of volumetric streaming, providing a qualitative categorization
of the approaches into Dynamic Meshes versus Time Varying
Meshes, and Volumetric Mesh versus PC streaming. Emphasis
is put on the computational cost of compression to reduce
bitrate and its impact on latency, underscoring the benefits of
exploiting Mobile Edge Computing (MEC).

Another survey covers latency and bitrate reduction meth-
ods [13]. The authors categorize designs into network-based
and user-based. The network-based designs analyze network
conditions, such as error-rate, to adapt the streaming setup.
The user-based designs analyze user behavior, such as field
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of view transitions, and proactively adapt the streaming setup.
A survey specific to PC streaming is presented in [2]. The
study covers work on encoding techniques, encompassing
recent advancements in user-centric PC streaming, AI-driven
PC streaming, and low-latency-focused PC streaming. It also
points out some “transformative metaverse enablers”, such as
MEC, VLC, and network coding.

It is worth mentioning individually some papers that ad-
dress PC encoding. In [14], the authors compare 4 codecs:
Google’s Draco, Corto, MPEG’s Open 3D Graphics Compres-
sion (O3dgc) and OpenCTM, investigating the compression of
vertex normals and attributes. The paper discusses live stream-
ing, providing a simple model of the transmission pipeline to
calculate an expected frame rate, as well as lower and upper
bounds for end-to-end latency. The model suggests that Draco
can deliver the lowest end-to-end latency (50-120 ms) for
RTTs larger than 20 ms. In [15], the authors introduce an
encoding scheme that reduces bitrate 55-99% with no quality
loss, by transforming 3D PCs to 2D depth images, consisting
of a color image and a depth map, and then compressing them
using 2D encoders. However, they do not discuss the latency
of this method. In [16], the authors deliver a QoE analysis of
different encoding mechanisms, reporting that Draco requires
higher data footprint to achieve the same mean opinion score
as learning-based RS-DLPCC, while solutions that render PC
to 2D video perform the best. Latency is also not discussed
in this study.

Other papers focus on the design of protocols and services
for streaming PCs in 5G networks. In [4], the authors dis-
cuss exploiting 5G edge computing in a function-as-a-service
manner, where end-users upload the volumetric stream to
a broker located in the 5G MEC, which transcodes media
in a personalized and adaptive fashion. In [17] the authors
investigate the addition of an MCU for the real-time delivery
optimization of multiple PC streams. This design presents
reduced computation and network requirements, at the cost of
extra latency. ViVo [3] is a PC streaming platform for mobile
end-users, covering the entire pipeline from capturing to
rendering. It considers visibility limitations to determine which
video content to fetch. It also considers parallel processing
during decoding, which can increase the FPS on smartphone
devices up to 400%.

The 3D streaming protocols tend to prioritize bandwidth
economy, at the expense of latency, thereafter TCP is often
used, despite its ill fit to real-time media transmission. In [8],
the authors introduce a novel MPEG DASH-inspired technique
for PC transmission which adapts streaming quality to connec-
tion quality. GROOT [7] is a streaming framework that enables
real-time transmission and decoding on mobile devices. It
introduces a novel tree data structure that enables parallelizing
and, in turn, accelerating the PC decoding process. The authors
report less than 100 ms motion-to-eye latency in a LAN. Yuzu
[9] is similar to GROOT, using coding to reduce the bandwidth
cost of 3D streaming by exploiting AI and perception-driven
methods. Its evaluation shows that processing latency, without
any transmission delays, can be less than 50 ms.

Other studies exploit UDP for transmission, to keep network
latency below one RTT. To handle the large bitstream, those

studies tend to convert PCs to a 2D format and incorporate reli-
ability mechanisms, such as Forward Error Correction (FEC),
to handle lost or late packets, especially in wireless networks.
In [10], the authors introduce a network coding module for
unequal error protection and FEC for 3D streams, which are
encoded in 2D format. In [11], the authors introduce a FEC
mechanism for stereoscopic 3D video, which consists of two
2D streams. In [12], the authors combine FEC with Scalable
Video Coding (SVC) to transmit panoramic video, which is 3D
spherical video converted into 2D. SVC is considered in [18],
where the authors propose a multicast PC streaming protocol.
The PC is encoded in different complementary layers that can
be combined to achieve different levels of QoS, thus adapting
to end-user needs and capabilities.

While UDP minimizes latency, it lacks the efficient control
mechanisms for high-bandwidth transmission that TCP offers.
Therefore researchers in [19] propose a best-of-both-worlds
solution which exploits QUIC.

III. EXPERIMENT SETUP

We developed and evaluated our PC streaming tool on a
simple setup that consists of two applications, a producer
and a consumer, running on different network nodes.1 The
producer captures, encodes, and transmits volumetric video
to the consumer, which receives, decodes, and renders the
stream. The nodes are connected in a peer-to-peer fashion
using a 5G SA network; there is no Selective Forwarding
Unit (SFU) between them, to keep communication latency
as low as possible. In the following, we discuss individually
the networking, streaming and software setup, and present the
performance metrics explored in this study.

A. Networking setup

The experiments took place at a private 5G testbed. The
site offers an area of around 500 m2 outdoor space which is
covered by a private 5G SA network configured in the 3.7-
3.8 GHz industrial spectrum. Band N78 has been exploited,
a mid-band 5G band that is one of the most widely deployed
for 5G due to its balance between coverage and capacity.
Experimenting in a private 5G SA testbed means that the
measurements are not affected by competing traffic, therefore
presenting more accurate and clear results which, in turn, offer
more trustworthy observations and conclusions.

The producer and consumer nodes were off-the-shelf Asus
TUF A15 Ryzen 9 laptops running Ubuntu 24.04. The two
nodes accessed the 5G network via the Gigabit Ethernet port
of two Teltonika RUTX50 modems. DHCP was enabled to
the modems, thus providing a private IPv4 address to the
connected nodes. In the 5G network, the modems were using
SIM cards that were assigned IPv4 addresses in a VLAN, that
rendered the two modems visible to each other. To enable peer-
to-peer connection at the producer and consumer nodes, port
forwarding was enabled in the modems to push all traffic from
the modem’s VLAN address to the private node’s address.

1Source Code is available at https://github.com/mmlab-
aueb/nmp/tree/master/volumetric streaming app .



PUBLISHED IN: PROCEEDINGS OF THE EUROXR 2025 CONFERENCE 3

Thereafter, the two nodes were able to exchange packets
using the VLAN addresses of their dedicated modems, without
requiring NAT traversal.

TABLE I
CONNECTION CHARACTERISTICS IN PEER-TO-PEER MODE.

Link 5G band Throughput (MBps) One-way latency (ms)
5G (SA) N78 20.1 12.2 (st.dev. 1)

The nodes had excellent signal quality, performing close to
the theoretical optimal, as presented in Table I, which shows
the characteristics of the peer-to-peer connection. The con-
nection measurements were made via the ping and iperf
Linux tools (using UDP), respectively.

It is worth noting that bandwidth measurements with
iperf yielded quite different results for different transport
protocols. Throughput using TCP was less than 8 MBps,
while UDP delivered 20.1 MBps (or, more than 160 Mbps).
After experimenting with our application, we discovered that
excessively bursty transmissions led to significant losses at
bitrates that were a fraction of the 5G link capacity; our video
encoder was very bursty, as it emitted a very large number
of packets after encoding each frame. We solved this problem
by adding a 1 µs latency between successive packets, thus
shaping our traffic. We assume that the buffers of the RUTX50
modems were not large enough to handle the burstiness of our
sender, or even common TCP connections that send packets
in groups, especially in the slow-start phase.

B. Streaming setup

The producer application (sender) was equipped with an
Intel RealSense D435i depth camera connected via a USB
type-C port. The consumer application (receiver) rendered
the video in the laptop display, rather than AR glasses, as
measuring latency when using glasses and headsets is very
challenging. Further details on the streaming parameters are
presented in the following subsection.

C. Software setup

1) Producer app: The Producer application is implemented
as a two-threaded C++ program, as shown in Fig. 1 (left
side); one thread handles frame capturing, PC conversion and
compression and the other thread handles PC transmission.
During initialization, the capturing thread connects to the depth
camera which is controlled via Intel’s librealsense SDK,2 and
enters its main loop, which includes the following stages:
capture a frame, encode it into a PC with the librealsense
SDK, convert it to a Draco PC, compress it with the Draco
library and push it to the other thread via shared memory. The
sequential execution of the main loop stages means that the
FPS rate is not fixed: it is determined by the processing latency
at the main loop. However, this design facilitates measuring
the latency of each individual stage.

During initialization, the transmission thread establishes a
UDP socket for sending. Then, upon receiving a compressed

2https://github.com/IntelRealSense/librealsense

PC from the capturing thread, it fragments it into 1400-byte
chunks that fit in network packets and sends them to the
receiver app. Transmission is achieved via UDP, exploiting a
custom lightweight transport protocol to enable PC reconstruc-
tion. The protocol defines two header fields, a 4-byte frame
sequence ID and a 4-byte chunk sequence ID, with a fixed
1400 byte payload. The receiver reconstructs the PC based
on the chunk ID, which is multiplied by the chunk size to
estimate the chunk’s position within the frame. The receiver
infers that a PC is “fully” transmitted when the first chunk for
the next frame ID arrives.

Note that the transmission of PCs in narrowband links, like
older Wi-Fi, can be significantly slower than the PC capture.
The communication of the two threads is based on a circular
buffer with a First-In-First-Out processing policy, which can
lead to latency build-up due to extensive buffering. Therefore,
our buffer size is limited to 10 PCs, dropping the oldest PC
when the buffer is saturated. This restricts the buffering latency
to 10 times the frame rate, which is roughly 0.33 s in case of
30 FPS.

a) Multithreaded compression: A PC can be broken into
independent sub-PCs that can be (de)compressed individually,
enabling parallelization and thus reducing overall compression
latency. The producer implementation supports parallel com-
pression of sub-PCs using multithreading, where each thread
executes the “Draco pointcloud” and “compression” tasks of
Fig. 1 for a different sub-PC. The use of multithreading is
optional and the number of threads is configurable; when
enabled, the Realsense PC is divided into N equally sized
sub-PCs, each assigned to one of the N threads, which then
generate N compressed Draco PCs. These are subsequently
reconstructed into a logically single PC and transmitted as
one PC. The structure of the logically single PC consists of
two fields per sub-PC: a 4-byte flag for sub-PC length and
a byte-array for the sub-PC. This operation is transparent to
all tasks but the compression and decompression, allowing
seamless adaptation to different thread counts.3

2) Consumer app: The consumer is implemented as a two-
threaded C++ program, as shown in Fig. 1 (right side); one
thread handles reception and the other thread handles PC
decoding and rendering. During initialization, the reception
thread opens a UDP socket for chunk reception and enters its
main loop, where it receives the chunks and reconstructs the
compressed Draco PCs. The PCs are pushed to the decoding
thread via shared memory. Reconstruction does not impose
any buffering latency, as each PC is pushed when the first
chunk of the next frame is received.

During initialization, the decoding thread creates a window
for rendering the PCs and enters its main loop, where it
waits for compressed PCs from the reception thread. When
a PC is pushed, it is decoded using the Draco library and
rendered using OpenGL. Currently, decoding and rendering (at
the consumer) are conducted sequentially by the same thread,
as these are faster than encoding (at the producer); this could
change to improve performance, if needed.

3To enhance resilience to lost chunks, it is advised to list the sub-PC lengths
in the first chunk of the PC, akin to an indexing table.
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Fig. 1. Processing pipeline at the Producer (left) and Consumer (right) apps; each horizontal plane represents a technological layer.

Rendering is based on OpenGL using the GLFW library4

in a 1280x720 window. For each point in the PC frame, the
consumer draws the coordinates and the color using functions
glVertex3fv and glTexCoord2fv, respectively. In addition, call-
back functions for mouse and keyboard events are imple-
mented, allowing the user to customize the PC projection in
real-time.

Currently, the consumer does not leverage multithreading
for decompression. When the producer uses multithreaded
compression, the consumer processes the individual sub-PCs
sequentially. While a multithreaded consumer could reduce
decompression latency, it would increase implementation com-
plexity. Our preliminary evaluation suggests that the potential
performance gain is limited in our setup; multithreaded de-
compression may be more beneficial in resource-constrained
devices, such as smartphones.

D. Scene and encoding setups

The PC frame in these experiments is captured at the default
resolution of the Intel D435i (848×480), which is roughly
0.4 M points. Each point is represented by its coordinates
(3×32-bit floats, quantized by Draco to 3×11-bit integers) and
its RGBA color (4×8-bit integers). Compression uses the Kd-
Tree Encoder with 16-bit quantization analysis of the Draco
library.

The efficiency of Draco compression depends on the prop-
erties of the scene. Under the same compression level, the size
of a compressed PC of a simple scene, e.g., a white wall 30 cm
from the camera, is a fraction of the size of a complex scene,
e.g., an overview of our 50 m2 lab. Therefore, to provide a
fair comparison of different encoding setups, all experiments
were conducted using the same camera angle. The scene is

4https://www.glfw.org/

close to what would be the case for music teaching, that is,
a relatively complex scene with 1-2 m depth, which produced
around 70% of the maximum PC size.

In the experiments, we test different encoding setups by
controlling four parameters. First, we test the Draco com-
pression levels, ranging from 1-10, with 1 being the fastest
and 10 the most compact. Second, we modify the size of the
PC stream, by dropping 25 or 50% of the points. Third, we
experiment with different numbers of compression threads to
reduce compression latency. Finally, we test performance with
and without color information; the latter is denoted as a color-
less PC.

E. Performance metrics
We analyze performance via the following metrics:
• Processing Latency (ms): The total time to process a PC.

At the producer, it shows the time from frame capture
until the PC is put in the network. At the consumer, it
shows the time from the receipt of the first chunk of the
PC until the OpenGL window renders the PC.

• Compression Latency (ms): The time required to com-
press a frame using the Draco library.

• PC Size (Bytes): The size of a (compressed) frame.
• Transmission latency (ms): At the producer, it shows the

total time to fragment a compressed PC into UDP chunks
and put in in network. At the consumer, it shows the time
for receiving all the chunks of a PC and reconstructing
them into a PC; due to the consumer’s design, this metric
shows the inter-PC arrival time.

• End-to-end latency (ms): The time from the frame capture
at the producer until the end of the rendering at the
consumer.

• Reliability (%): The percentage of entire PCs delivered
to the consumer without errors.
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a) Measurement method:: End-to-end latency and relia-
bility metrics are estimated post-experiment by jointly analyz-
ing the logs of the consumer and producer applications.5 The
clocks of the producer and consumer nodes are synchronized at
the millisecond level using the NTP protocol over a secondary
LAN connection specifically used for synchronization. The
producer logs the time of capturing a frame and the consumer
logs the time after a PC is rendered, thus allowing us to
estimate the “end-to-end” latency. To assess transmission
reliability, the producer and consumer log the hashes of the PC
transmitted and received, respectively. Although partial PCs
can be (partially) rendered, only flawless PC transmissions
are considered successful.

The other measurements are straight-forward. The C++
applications log the system time between the execution of
the different tasks to infer the individual latencies. Similarly,
the PC size is determined by measuring the number of bytes
pushed in the network.

b) Frame rate estimation:: The FPS rate is not adjustable
at the producer app; it depends on the processing latency, e.g.,
a processing latency of 33 ms leads to roughly 30 FPS. To
allow bitrate comparisons, we define the bitrate for 30 FPS
(bitrate30) as the product of the compressed frame size (in-
cluding transport overhead) with 30.

c) Deployability limits:: We define latency and bitrate
limits to assess the setup’s deployability over real networks.
In particular, the processing latency at both applications should
be less than 33 ms (for 30 FPS), the bitrate should be at most
20 MBps (the uplink of our 5G SA links) and the end-to-end
latency should be below 100 ms. Although these limits are
not absolute, e.g., the FPS rate can be increased by parallel
processing [3], they serve as a rough performance baseline.

IV. EVALUATION RESULTS

A. Draco compression

First, we explore the effect of Draco compression levels
on system performance. Figure 2 includes three sub-figures
that show the producer, consumer and shared metrics (from
left to right), respectively, for 10 compression levels. The
producer figure shows the PC frame size (right y-axis) and
the transmission, processing and compression latencies (left
y-axis) for different Draco compression levels in the producer
app. The results verify that lower levels of compression deliver
lower latencies and higher PC sizes, although the relation is
not linear; the performance difference is most evident between
levels 4 and 6. The results also reveal that the compression
latency is roughly 80% of the overall processing latency,
thus highlighting the importance of optimizing compression.
Regarding compression efficiency, the difference between the
fastest and slowest compression modes is 50% and 23% for
compression latency and PC size, respectively. The transmis-
sion latency is affected by the PC size, since larger PCs require
the emission of more UDP chunks. Due to the size of the
processing latency (80-144 ms), frames are skipped, leading

5The logs of the experiments presented in this paper are available at
https://zenodo.org/records/15736910

to a low FPS rate, which translates into a low bitrate (7.5-
14.1 MBps), that can be transferred effectively from the 5G
network. However, the (theoretical) bitrate30 of these setups is
31-34 MBps, which is far beyond the capacity of the 5G link.

The consumer figure shows that the impact of the Draco
compression level on the performance of the consumer appli-
cation is minor. Processing latency, which comprises decom-
pression and rendering latency, is almost indistinguishable for
all levels. We do not show the rendering and decompression
latencies separately, but they are roughly equal, each around
50% of the processing latency, or 25-30 ms. The transmission
latency at the consumer, which shows the inter-PC arrival time,
is identical to the processing latency at the producer, showing
that the latter controls the rate of transmission.

Finally, the shared metrics show that reliability ranges
between 96.8 and 98.3%, while end-to-end latency is 186-
310 ms. The former verifies that the network can handle the
low bitrate (7.5-14.1 MBps), required by our low effective FPS
rate. The latter suggests that achieving low-latency volumetric
streaming is feasible when sufficient network capacity is
available, indicating that bandwidth remains the most critical
challenge.

Overall, our measurements indicate that this basic setup
is not capable of delivering good quality ultra-low latency
volumetric streaming in the 5G testbed. The lowest bitrate30
that Draco can offer is roughly twice the available capacity, the
fastest processing latency at the producer is 2-3 times higher
than what is required for 30 FPS, and the lowest end-to-end
latency is twice the 100 ms deployability target.

B. Removing color information

To assess the impact of color, we repeated the previous
experiments, but discarding all color information before com-
pressing the PC at the producer. Figure 3 includes three
sub-figures that show the producer, consumer and shared
metrics (from left to right), respectively, for compression levels
4, 6 and 8. The producer figure shows the color-less PC
frame size (right y-axis) and the transmission, processing and
compression latencies (left y-axis). Comparing these results
against the results when color is included (Fig. 2), we can see
that color accounts for roughly 50% of the processing latency
and 66% of the resulting PC frame size and transmission
latency, suggesting that color-less PCs are fairly inexpensive
to compress and transfer. Regarding compression efficiency,
when color is omitted, the difference between compression
levels 4 and 6 is 28% and 3% for compression latency and
PC frame size, respectively, suggesting that compression levels
have a lower impact without color information. The bitrate30
of the color-less modes is roughly 12.5 MBps.

The consumer and shared metrics offers a similar image,
indicating that transferring color-less information is closer to
being deployable. In color-less PCs, the consumer processing
latency is 33 ms, supporting the 30 FPS goal, and the con-
sumer transmission latency is equal to the producer processing
latency, showing that the latter is the performance bottleneck.
Finally, the 5G link is not saturated, offering 98.4% reliability,
and 118-147 ms of end-to-end latency.
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Fig. 2. Producer (left), consumer (center), and shared metrics (right) against Draco compression level (1-10).

Fig. 3. Producer (left), consumer (center), and shared metrics (right) against Draco compression level (4-8) for color-less PCs.

Overall, operating in color-less mode significantly enhances
the setup’s deployability over real 5G networks, underscoring
the importance of developing more efficient color compression
methods for PCs.

C. Reducing PC resolution

A different method to reduce latency and throughput re-
quirements is to reduce the detail of the PC, therefore we
decrease the PC resolution by dropping 25% and 50% of the
points in each PC frame. The points are discarded before cre-
ating the uncompressed Draco PC at the producer; discarded
points are uniformly distributed in the PC. We repeated the
previous experiment with color information for compression
levels 4-8, plotting the results in Fig. 4 and Fig. 5, respectively.

Compared to the basic setup (Fig. 2), the data indicate
that reducing resolution leads to an almost linear decrease
in compression latency and PC size. Therefore, if an X%
reduction in the bitrate or latency is required, it can be
accomplished via a roughly X% reduction in the resolution
of the PC that is compressed and transmitted. The reduction
is evident in the producer, consumer and shared metrics;

reliability remains above 96% in all cases, showing that
the induced bitrate fits within the 5G link. Additionally, the
bitrate30 is within the deployability bandwidth limit for all
setups, except when compression level is 4 and resolution is
75% where the bitrate30 is 23.2 MBps.

By reducing the resolution of the PC, the bandwidth require-
ment is satisfied by the 5G network capacity. However, the
producer processing latency, which is higher than the 30 FPS
limit, remains a significant performance bottleneck. End-to-
end latency is close to the 100 ms limit, dropping to 112 ms
in the best case. Overall, the 50% resolution reduction helps in
rendering volumetric streaming realistic in 5G networks and
may be considered a justified trade-off. Of course, the impact
of this quality drop on QoE should also be investigated.

D. Multithreaded encoding

To reduce the processing latency and increase the effective
FPS, multi-threaded (de)compression is a promising mecha-
nism. In this section, we experiment with different numbers of
compression thread, namely, 2 and 3. For simplicity, we keep
decompression single-threaded, since the consumer node is not
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Fig. 4. Producer (left), consumer (center), and shared metrics (right) against Draco compression level (4-8) for 75% PC resolution.

Fig. 5. Producer (left), consumer (center), and shared metrics (right) against Draco compression level (4-8) for 50% PC resolution.

the latency bottleneck in our setup. The results are depicted in
Fig. 6 and Fig. 7 for 2 and 3 compression threads, respectively.

The most evident differences compared to the single-
threaded setup are found in the producer metrics. Specifically,
compression latency is linearly reduced, dropping by roughly
50% and 66% when 2 and 3 threads are exploited, respectively.
This result verifies that multithreading can effectively reduce
compression latency and, in turn, increase FPS. However, mul-
tithreaded compression penalizes compression efficiency, thus
delivering larger PCs. In particular, the PC size is increased
by up to 14% and 23% for 2 and 3 threads, respectively,
resulting in a bitrate30 of 31-38MBps. We hypothesize that
the compression of multiple smaller sub-PCs is less effective
than compressing a single large PC, since redundant or similar
points that span across the PC could be isolated into separate
sub-PCs. Altogether, by reducing the processing latency and
increasing the PC size, the producer transmission latency has
now become the performance bottleneck, requiring 49-60 ms.

Regarding the consumer metrics, the processing latency
is not affected, since decompression and rendering remain
single-threaded. We assume that equivalent reduction could be

achieved through multithreading in the decompression latency,
which accounts for roughly 50% of processing latency, that is
25 ms. On the other hand, the transmission latency (or inter-
PC time) is significantly reduced, led by the new performance
bottleneck, producer transmission latency.

Finally, the shared metrics provide interesting observations
in both end-to-end latency and reliability. First, end-to-end
latency is reduced by roughly 50% compared to single-
threaded performance, verifying that reducing the producer’s
processing latency can have a significant impact on overall
system performance. Second, in the case of compression level
4, the combination of low FPS and increased PC size produces
a bitrate of 21.2 MBps that exceeds the available bandwidth.
Consequently, severe packets loss is introduced, compromising
reliability by roughly 10% and raising end-to-end latency in
the order of seconds.

Overall, the use of multithreading in our setup is both a gift
and a curse. It significantly reduces the producer processing
latency, which is the performance and latency bottleneck, but
it also increases the PC size, thus requiring more bandwidth
resources than what the network can offer.



8 PUBLISHED IN: PROCEEDINGS OF THE EUROXR 2025 CONFERENCE

Fig. 6. Producer (left), consumer (center), and shared metrics (right) against Draco compression level (4-8) for 2 compression threads.

Fig. 7. Producer (left), consumer (center), and shared metrics (right) against Draco compression level (4-8) for 3 compression threads.

E. Combining methods

Each of the previous methods present apparent trade-offs
that limit their effectiveness. Combining different methods
may offer a more balanced solution, hence we experiment with
multithreaded encoding using 2 threads, and a 50% resolution
reduction. The results are presented in Fig. 8.

The results suggest that performance can be greatly im-
proved by combining multithreaded compression, to reduce
processing latency, and resolution reduction, to control the
traffic overhead caused by multithreaded compression. Specifi-
cally, the setup for compression level 4 is a promising solution
towards ultra-low latency volumetric streaming in real 5G
networks. The producer and consumer achieve a 30 FPS
streaming rate and the 5G network supports the produced
18.7 MBps bitrate (and bitrate30). Due to the deployable
bitrate, reliability is 97.2% but end-to-end latency is 128 ms,
near, yet above, the 100-ms deployability limit. It is worth
noticing that, even though decompression is single-threaded,
the multithreaded producer is still the performance bottleneck.

F. End-to-end delay variance

Finally, we delve deeper in end-to-end delay in order to
analyze and identify the key factors contributing to latency
exceeding the deployability limit. Figure 9 depicts the end-to-
end latency of the 1000 PCs for the setup that combines mul-
tithreaded compression and 50% resolution reduction (Fig. 8).
The results suggest that the minimum possible end-to-end
latency is roughly 80 ms. This coincides with the lowest
individual processing and transmission latency measurements
at the producer and consumer, which together sum to 80 ms as
well. However, end-to-end latency exhibits significant variance
in time (st.dev. is 40 ms), much larger than the variance of
producer and consumer processing latency. Thereafter, it can
be assumed that the network is not fast enough to steadily
deliver low-latency packet tranmissions. The induced bitrate
(18.7 MBps) approaches the maximum measured capacity of
the 5G network, indicating that the network is operating near
its highest theoretical performance.
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Fig. 8. Producer (left), consumer (center), and shared metrics (right) against Draco compression level (4-8) for 2 compression threads and 50% PC resolution.

Fig. 9. Variance of end-to-end latency of PCs.

V. CONCLUSIONS

We conducted a performance analysis of PC streaming for
real-time applications that require ultra-low latency in a private
5G SA network. Even though we only scratch the surface
of a multi-disciplinary topic which touches upon information
theory, multimedia, computer graphics and networking, we
provide some data points and future research directions for
making volumetric streaming practical in 5G networks. In the
following, we list the most notable outcomes of our work:

• Decompression performance is not significantly affected
by the Draco coder’s compression level.

• Assuming symmetric processing capabilities, the pro-
ducer (encoder) is the performance bottleneck.

• Color is a significant part of the traffic footprint and
the processing latency. Combining a color-less PC with
inexpensive color compression, such as JPEG, could be
a promising solution.

• Reducing PC resolution is effective in reducing commu-
nication cost. Techniques that identify and drop the most
“insignificant” points within the PC are expected to have
a positive impact.

• Multithreading can greatly reduce compression time, but
at the cost of inflating the bitrate.

• Scene complexity has a significant impact on perfor-
mance. If possible, simplifying the scene can a strong
effect in reducing bandwidth requirements.

• A combination of the previous methods can make volu-
metric streaming achieve sub-100 ms latencies in 5G SA
networks.

• Unregulated UDP and TCP can lead to underutilization
of the 5G resources.
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