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Abstract—Despite their limited use in civilian applications,
Mobile Ad Hoc Networks (MANETs) set a promising paradigm
for decentralized and reliable communication in modern military
operations. Of paramount importance in such networks is the
capability of their routing protocols to react fast to network
topology changes (e.g., link breaks) without introducing excess
routing message overhead. Dynamically selecting the protocol
parameters to account for the instantaneous network topology
can bear important benefits to this end. The addition of the
Software Defined Networking (SDN) functionality to MANETs
provides the otherwise missing global network view that such
dynamic adaptations require and readily motivates the systematic
optimization of the routing protocol parameters.

In this paper, we follow a data-driven approach to decide
on the best configuration of key parameters of the Optimized
Link State Routing protocol version 2 (OLSRv2), a widely
adopted routing protocol for (tactical) MANETs. We employ
simple machine learning methods on a rich measurement dataset
created with the CORE/EMANE emulator so as to train models
that predict the protocol responsiveness and incurred overhead
in different topologies and with different protocol configurations.
Subsequently, we use the derived mapping between OLSRv2
responsiveness, overhead and MANET features to decide on the
best OLSRv2 protocol parameter configuration. Our experimen-
tal results demonstrate that this approach can achieve up to
17.27% better responsiveness compared to using OLSRv2 current
default parameter values, at the same overhead. Equivalently,
with the optimized configuration, OLSRv2 can work at 15.55%
lower overhead than with the current default values, without any
loss in responsiveness.

Index Terms—Optimized Link State Routing version 2 (OL-
SRv2), Mobile Ad Hoc Networks (MANETs), Machine Learning,
Emulation, Data-driven optimization.

I. INTRODUCTION

Mobile Ad Hoc Networks (MANETs) have emerged, after
years of research, as a promising solution for decentralized
communication in tactical operations. However, their perfor-
mance is highly dependent on the underlying routing protocols,
which must be capable of (a) efficiently adapting to the
dynamic topology of the network and promptly recovering
from link breaks, in line with operational requirements, while
(b) avoiding excessive routing overheads, in terms of protocol
messages that need to be exchanged by network nodes to
compute, set up and maintain routing paths in the network.

The Optimized Link State Routing protocol version 2
(OLSRv2) has been widely adopted in MANETs as a way
to compromise these requirements. The protocol operates in
decentralized manner and leverages the Multi-Point Relay

(MPR) node concept to rationalize the overhead of message
flooding in the network [1] [2]. However, there is still con-
siderable room for improvement, particularly in the direction
of systematically optimizing the parameters of the protocol
that determine its responsiveness to the topological changes
and/or the resulting routing message overhead. Dynamically
adapting those parameters in response to topology and traffic
patterns in the MANET can have a significant impact on both
aspects of the MANET performance. Even a modest reduction
in message overhead could be of much importance, especially
in bandwidth-limited tactical environments.

Research work over the last decades has looked into the
question of optimal routing protocol parameterization. Re-
searchers have sought optimal values for OLSR protocol
parameters either by devising simple analytical models [3] [4]
or by combining simulations with metaheuristic optimization
algorithms [5]. These studies have addressed different types of
MANETs, such as vehicular ad hoc networks in [5], tactical
MANETs in [6], and they have focused on various aspects
of the MANET performance such as overhead, end-to-end
delay of data traffic and responsiveness to topology changes.
A common drawback of these studies is that they focus
almost exclusively on the OLSR parameterization, either fully
disregarding the impact of node mobility or considering it
in a static simplified manner [3]. As a result, the proposed
optimizations can hardly apply to different time instants of
a given MANET, let alone across MANETs with different
mobility patterns.

In MANETs, the topological information is fragmented
across the network nodes and the distributed operation of
the OLSRv2 protocol makes the coordination of the MANET
nodes towards common settings a hard task to achieve.
However, in MANETs with Software Defined Networking
(SDN) capabilities, the situation is different. Earlier work in
the literature has analysed the benefits of SDN for tactical
MANETs, including the potential for global optimization of
routing paths and the provision for policy-based routing, in
particular in coalitional networks, where the “need-to-know”
principle needs to be operationalized (see [7] and references
within). However, it is argued that when the SDN Control
Plane messages propagate through the same wireless links
as the Data Plane packets, centralized SDN routing under-
performs distributed MANET routing, especially in large and
highly dynamic MANETs. We argue in this paper that a



side benefit of introducing SDN functionality in MANETs is
precisely the capability of collecting topological and traffic
information centrally and subsequently leveraging it towards
dynamically configuring the OLSRv2 protocol parameters.
This yields more degrees of freedom in control for better
tactical network operation. For example, when the user data
traffic load is higher, a configuration could be chosen that,
for the current topology, keeps the message overhead within
predefined acceptable bounds, while not penalizing heavily the
protocol responsiveness.

Methodologically, our work draws on experimentation with
an emulator and Machine Learning (ML). First, we use the
CORE/EMANE network emulator to generate records of the
OLSRv2 protocol responsiveness and routing message over-
head, as we vary protocol parameters and mobility/topology
properties. The experimentation with the emulator and the
data generation process are phased, starting from a simple
controlled experiment with a few nodes and scaling up to
the Anglova traces [8], a celebrated benchmark for tactical
network operations’ scenario. These datasets are then used
for training prediction models of the protocol responsiveness
and overhead. We test various regressors, both linear and non-
linear ones, and assess their training accuracy. In a final step,
we generate another set of testing data, different from the
one used for training the models, and use them to assess the
prediction accuracy of these models. More importantly, we use
these data to demonstrate how the prediction models can be
used to choose OLSRv2 parameters that can better trade the
protocol responsiveness with its overhead requirements when
compared to its default parameters.

The remainder of the paper is organized as follows. Section
II-A provides some background on the OLSRv2 protocol,
insisting on key parameters and how they relate to its main
tasks. Section II-B summarizes related work on OLSR param-
eter optimization. In section III, we describe our experimental
methodology and the way we construct the datasets for training
our ML-based models. In sections IV and V we derive our
models and present additional experiments that evaluate the
models on different (test) datasets. We conclude the paper in
section VI.

II. BACKGROUND AND RELATED WORK

A. The Optimized Link State Routing protocol version 2

OLSRv2 [2], is a proactive link-state (LS) routing protocol,
the successor to the widely deployed OLSR version 1 [1] for
wireless Ad Hoc Networks. OLSRv2 retains basic mechanisms
and algorithms defined for its predecessor, while introducing
several enhancements to it. One example is the adoption of a
more modular structure, where, for instance, the responsibility
for the exchange of HELLO messages is delegated to the
independent Neighbour Discovery Protocol (NHDP) [9]. A
second addition is the inclusion of link quality measurements
for assessing the reliability and stability of wireless links.
These measurements typically concern metrics such as packet
loss and latency and help the protocol to dynamically adapt

to changing network conditions and select the most reliable
paths for data transmission.

Use of MPR nodes: OLSRv2 leverages the concept of
‘Multipoint Relay (MPR)’ node to reduce its routing message
overhead. In typical LS protocols, nodes exchange topological
information by flooding the network. As a result, each node
receives the same message multiple times from different nodes
so that many of the involved link transmissions are redundant.
With MPR nodes in place, each network node n selects a
subset of its 1-hop neighbour nodes that collectively provide
node n with two-hop paths to all its symmetrically connected
2-hop neighbour routers. This set of 1-hop neighbour nodes
forms the MPR set of node n. Hence, each MANET node
determines its own MPR set and a single node may serve as
MPR node for none, one, or more other network nodes, which
are called its MPR selectors. There are two types of MPRs in
OLSRv2, namely flooding MPRs and routing MPRs, which,
in principle, may be different for each MANET node (see [10]
for a detailed explanation).

Dissemination of topology information: OLSRv2 uses two
types of routing packets to disseminate topological informa-
tion: HELLO messages and Topology Control (TC) messages.
Each network node n, broadcasts HELLO messages that list
the identifiers of all nodes from which n has recently received
a HELLO message as well as the “status” of the links. These
messages are only processed by the 1-hop neighbors of n;
they are not forwarded further. Each router sends HELLOs
either periodically, every hl int seconds, or upon certain
events such as when it first becomes active or when a link is
discovered or lost [9]. Through HELLO messages, the nodes
check the availability of (bidirectional) connectivity to their
1-hop neighbours, discover their 2-hop neighbours, and signal
their selection of flooding and routing MPRs.

TC messages on the other hand, allow each node to con-
tinuously track global changes in the network topology. They
are sent periodically, every tc int seconds, or in response to
a change in the router node or its advertised 1-hop neighbour-
hood. They are broadcast to all other network nodes through
flooding MPRs. TC messages carry link-state information in
a reduced form. Each node holding the role of the routing
MPR for at least one other node, advertises at least the links
between itself and the nodes that selected it as MPR, in order
to allow all other nodes to calculate shortest paths to those
nodes through itself.

B. Related work

Interestingly, most studies focusing on the proper tuning
of the protocol parameters. address the original version of
OLSR. Table I summarizes the works that attempt to determine
appropriate values for some OLSR protocol parameters.

Toutouh et al [5] combine offline metaheuristic optimization
algorithms such as Particle Swarm Optimization (PSO),
Differential Evolution (DE), Genetic Algorithms (GA) and
Simulated Annealing (SA) with ns-2 simulations in searching
for optimal OLSR parameterizations for Vehicular Ad hoc
Networks (VANETs). They study how the routing overhead



correlates with the performance that data traffic achieves over
the network, experimenting with eight protocol parameters,
namely hl int, tc int, refresh int, willingness,
neighb hold time, top hold time, mid hold time,
dup hold time. The definition of these parameters can be
found in [1]. The four algorithms above drive the search for
new candidate vectors of the eight protocol parameter values,
which are then assessed over predefined scenarios. Three
performance metrics are used, namely, the end-to-end delay,
the packet delivery ratio and the relative network overhead,
defined as the ratio of routing packet transmissions over
the number of delivered data packets. A weighted sum of
those metrics then yields the fitness score of the candidate
solution and triggers another iteration of the respective
metaheuristic algorithm. In a second step, the optimized
protocol parameterization is validated in a broader set of
scenarios. The resulting values for the hl int, tc int and
top hold time (see Table II) are higher than the ones
recommended in [2].

In [3], Hosek et al. present an analytical model subject
to certain assumptions about the speed of nodes’ movement
(10m/sec), the link BER (10−3) and the node transmission
range (200m). The model which is used to propose a different
set of recommended values for four main OLSR parameters
that are also relevant for OLSRv2, i.e., hl int, h hold time,
tc int, top hold time, with values shown in Table II. The
OPNET Modeler simulation environment is used to compare
the performance of OLSR under both default and optimized
parameters, in a scenario with 72 mobile nodes and 5 traffic
flows over a square area of 25km2. The paper reports up to
40% reduction of the total routing overhead, without penalties
for the end-to-end delay experienced by data traffic.

In [4], Gómez et al. study the impact of six OLSR pa-
rameters (the four in Table II plus the refresh interval and
top hold time), on Route Change Latency (RCL), a newly
introduced measure of the protocol’s responsiveness to route
changes. RCL is measured at the receiver side, as the total time
that elapses from the moment when the last packet before the
link failure is received till the moment the first packet after
the route change is received. They analytically approximate
RCL in a simple 4-node diamond topology as the sum of four
delays: (i) the initial delay to detect the lost neighbour, (ii) the
time spent at the node that detects the loss to recalculate a new
MPR and signal it to its neighbours, (iii) the time it takes for
the nodes to be informed about the changes and (iv) the time
until the new route is actually activated and used. The authors
experiment with three OLSR configurations and report a pure
tradeoff between RCL and routing message overhead.

Maret et al. in [6] study the Directional AirTime (DAT)
metric, the link quality metric that is used in OLSRv2 to
assess the quality of links and calculate routes. They compare
three options to compute the actual value, based on hopcount,
expected number of transmissions (TxCount) and expected
transmission time (RxAirTime). The three implementations of
the OLSRv2 are compared against a benchmark centralized
protocol, called Omniscient Dijkstra Routing (ODR) that holds

perfect information about the network. They use the EMANE
emulator to experiment with a reliable messaging service in
tactical scenarios but also simple urban ones with static nodes.
They find it challenging to single out one of the three options
in terms of Round Trip Time and Message Completion Ratio
performance.

III. DATA COLLECTION EXPERIMENTS

A. CORE/EMANE emulator and OLSRv2 implementation
The emulation platform that we used for our experiments,

integrates two open-source emulators, the Common Open
Research Emulator (CORE) and the Extendable Mobile Ad-
hoc Network Emulator (EMANE), [11], [12]. CORE relies
on Linux Namespaces and can emulate realistic network
topologies, protocols and devices such as routers, switches,
and hosts. EMANE on the other hand, offers a pluggable Layer
1 (PHY) and Layer 2 (MAC, including TDMA) architecture
that allows experimentation with PHY and MAC protocols.
We used the CORE-EMANE environment to generate training
data for our prediction models. The radio propagation model
implemented in the emulator is the two-ray model. This does
not account for more dynamic and distance-independent fading
effects, so that the link quality variations are primarily due to
variations of the physical distance between the link end points,
as opposed to fades due to multipath propagation.

We utilize the OLSRv2 implementation provided by the
OLSR.org Network Framework. This framework offers a mod-
ular approach for building network applications through its
collection of plugins, also known as subsystems. We use the
FF DAT Metric Plugin1, which implements the Directional
Airtime metric in OLSRv2. The plugin incorporates loss rate
and link bit-rate to calculate a cost value for links between
routers, which denotes the seconds per bit consumed by
incoming frames. Details can be found in [13].

B. OLSRv2 protocol parameters
The goal of the experimentation is to identify optimal

parameter sets for the OLSRv2 protocol in tactical scenarios,
which best trade off the protocol responsiveness to topological
changes with the subsequent overhead in terms of messages
that need to be exchanged in the network. The main protocol
parameters in this context are:

• the time interval between successive HELLO messages
(hl int)

• the time interval between successive Topology Control
messages (tc int)

• the length of the sliding window (Lw) which marks the
time interval over which the link quality measurements
are averaged when calculating the FF DAT metric.

Intuitively, as the frequency of the topology dissemination
messages increases, the protocol responsiveness should im-
prove at the expense of additional routing message overhead.
Likewise, while not having impact on the protocol overhead,
higher values of Lw delay the protocol response to topological
changes for the sake of higher route stability.

1http://www.olsr.org/mediawiki/index.php/FF DAT Metric Plugin.



TABLE I: Characterization of literature on the OLSRv2 protocol.
Study ver. OLSR parameters Performance metric Methodology
Toutouh et al. v1 hl int, tc int, refresh int, willingness, neighb hold, end-to-end delay, packet delivery ratio Metaheuristic algorithms

top hold, mid hold, dup hold (normalized) routing message overhead and ns-2 simulations
Hosek et al. v1 hl int, tc int, neighb hold, top hold Routing message overhead, Simple geometry analysis

end-to-end delay and OPNET simulations
Gomez et al. v1 hl int, tc int, refresh int, willingness Route change latency, Analysis and

neighb hold, top hold probability of link/path availability testbed experiments

TABLE II: Recommended (in [5], [3]) or tested values (in [4]) for OLSR/OLSRv2 parameters in literature.

RFC’s Default Toutouh et al. [5] Hosek et al [3] Gomez et al. [4]
OLSR OLSRv2 DE PSO GA SA #1 #2 #3

hl int [s] 2 2 8.48 8.91 8.57 9.01 3 0.5 0.5 4
tc int [s] 5 5 7.25 7.19 5.3 6.75 6 1.25 2.5 10

willingness 3 7 0 1 1 0 3 3 3 3
top hold time [s] 15 15 99.06 72.7 67.62 80.97 12 3.75 7.5 20

(a) Original routing path. (b) Local recovery of the routing path. (c) Source recovery of the routing path.

Fig. 1: Controlled experiments: local and source recovery of the routing path.

C. Experiments

We carry out two types of experiments; in both types, we
let hl int take values in [1, 7] sec with a step of 1 second,
tc int take values in [3, 11] sec with a step of 2 seconds and
Lw range in {8, 16, 32}. Depending on the experiment type,
we vary additional parameters, as we explain below.

1) Controlled link breaks: In this set of experiments, the
network topology is semi-static and shown in Fig. 1. The
network comprises seven nodes; five of them, nodes n1, n2,
n4, n5 and n6, are stationary, while nodes n3 and n7 move
and, as a result, certain links break. We assume a constant
UDP traffic flow of 100 kbps between the source node n1 and
the destination node n4. The experiments proceed through the
following distinct phases:

• Baseline routing phase: all nodes are static and the n1 →
n4 traffic flow is routed through nodes n2 and n3, as
shown in Fig. 1a.

• Local recovery of the routing path: at time t1, n3 moves
away and eventually link (n2, n3) breaks. The path is
locally restored through a new link (n2, n7), as shown in
Fig. 1b.

• Source recovery of the routing path: finally, at time t2 >
t1, node n7 moves away and the link (n2, n7) breaks.
A new path between n1 and n4 is established, this time

through nodes n5 and n6, see Fig. 1c. The term ”Source”
indicates that the initial path is now completely modified,
only the source and final destination are preserved.

The experiments are repeated for different speeds and
directions of movement of the two mobile nodes, n3 and n7.
In particular, the two nodes move at three different speeds
(20, 40, and 60 km/h) and in four different directions (up,
down, right, left). Multiplying the 105 different protocol
parameterization (hl int, tc int, Lw) combinations, with the
12 different (direction, speed) combinations, we get an overall
of 1260 experiments for each of the two routing path recovery
settings (local, source).

2) Trace-driven link breaks: The second type of experi-
ments is based on the Anglova scenario [8], a well-established
benchmark scenario that is widely used in military operations.
Specifically, we explore the troop deployment vignette, where
the 24 nodes (Company 1) are deployed over an approximate
2km by 2.5km area. This deployment generates dynamic
connectivity patterns among nodes as they move with speeds
ranging from 0 to 55 km/h. The 105 different combinations
for the OLSRv2 parameters are also relevant for this type of
experiments. The node movement pattern is fully determined
by the Anglova mobility traces and we can vary the density of
links between nodes by manipulating their transmission power



Fig. 2: Distribution of node degrees (number of OLSRv2
neighbour nodes) in the ANGLOVA trace for different values
of the node transmission power.

(tx power). Fig. 2 plots the distribution of neighbors across
the network nodes for 4 different tx power values.

Contrary to the controlled link break experiments, for the
Anglova traces we need to search for instances of link
breaks. Hence, we first run an experiment for a given set
of (hl int, tc int, Lw, tx power) parameters, we log down
statistics of the node degree distribution (average, avg(d) and
standard deviation, std(d)), and then we parse offline the
generated logs of the nodes’ routing tables to identify link
break events, their time epochs and how the network responded
to them. We then re-run the experiment and introduce short-
lived traffic flows traversing paths that include the broken
links. These flows send small packets every 5 milliseconds,
starting shortly before the link breaks and stopping a few
seconds after a flow path is recovered. These packets serve as
probes that allow us to more accurately measure the response
time of the OLSRv2 protocol.

D. Performance metrics

In all experiments, we compute two quantities: the Route
Change Latency (RCL) and the Routing Message Overhead
(RMO), which serve as measures of the OLSRv2 protocol
responsiveness and overhead, respectively. RCL denotes the
amount of time the OLSRv2 protocol needs to detect a link
break, identify a new path to the destination and activate it. We
calculate it for the probe flows as the negative time difference
between the arrival time of the last received packet before
a link break and the arrival time of the first packet after
the flow path is recovered. RMO corresponds to the traffic
load due to the control messages exchanged by the OLSRv2
protocol entities to maintain the network topology and derive
forwarding paths. To measure it, we collect all the distinct
control packets transmitted within a time period of x seconds
(default x = 30) and determine the sum of their sizes. The
RMO is then calculated in terms of bits per second.

IV. MACHINE LEARNING PREDICTION MODELS FOR
OLSRV2 PERFORMANCE

A. Controlled link breaks

The controlled link break experiments yield some first
insights into the way the routing protocol and node mobility
parameters affect the two performance indices. Fig. 3 plots
indicative RCL vs. RMO tradeoff curves as we vary the
three OLSRv2 protocol parameters hl int, tc int and Lw.
Intuitively, increasing the frequency of HELLO and TC mes-
sages makes the protocol more responsive but also wastes
more bandwidth. The depth of link quality measurements’ av-
eraging, on the other hand, affects the protocol responsiveness
but has negligible impact on the routing message overhead.

The effect of the routing protocol and node mobility pa-
rameters is more evident in the statistical models of RCL
and RMO. We trained least square-based Linear Regression
models, with the OLSRv2 and mobility parameters as predictor
variables and RCL and RMO as response variables. For the
local recovery scenario, the regression equation for RCL turns
out to be:

RCLl = −3.396 + 3.664 · hl int+ 0.658 · tc int

+0.098 · Lw − 0.014 · speed (1)

and the routing message overhead equation is

RMO = 15.714− 1.169 · hl int− 0.563 · tc int (2)

whereas for the source recovery scenario, the regression equa-
tion for RCL is

RCLs = −4.165 + 3.724 · hl int+ 0.794 · tc int

+0.091 · Lw − 1.279 · dir right (3)

and the one for the routing message overhead is identical
to equation (2) except for a 0.07 difference in the intercept
term. The regression model parameters and fitness for the two
equations are given in Tables III and IV.

We can see from equations (1)-(3), that the impact of the
mobility parameters (node speed and direction of movement
of mobile nodes n3 and n7) on the routing message overhead
is negligible. A small effect on the protocol responsiveness is
recorded for the movement speed in the case of local recovery,
i.e., the response time decreases by a tenth of second when
the speed grows by 10km/h. This effect disappears in the case
of source recovery. On the other hand, in this latter case we
record an effect due to the direction of movement. Namely,
when the mobile nodes move to the right, accelerating the
rate of distancing from the other link endpoint (node n2), the
response time is approximately 1.28 smaller on average. The
length of the link quality measurements’ averaging window
increases the response time, by approximately 1 second when
it increases from 8 to 16 and another 1.5 seconds when it
further increases to 32.



(a) Speed: 20 km/h, Direction: Down, Hello Interval: 3 s (b) Speed: 60 km/h, Direction: Right, Topology Control Interval: 7 s

Fig. 3: Controlled link breaks: RCL vs. routing overhead.

TABLE III: Regression coefficient estimates, their standard
errors (SE) and statistical significance (p-values): controlled
link breaks, local path recovery.

RMO RCL
Term Estimate (SE) t Ratio Estimate (SE) t Ratio
Intercept 15.714 (0.113) 138.5* -3.396 (0.335) -10.12*
hl int -1.169 (0.017) -68.74* 3.663 (0.037) 99.11*
tc int -0.563 (0.012) -46.85* 0.658 (0.026) 25.18*
Lw 0.098 (0.007) 13.23*
speed -0.014 (0.005) -3.17**

R2 = 0.85, RMSE = 1.21 R2 = 0.9, RMSE = 2.62
* p-value < 0.001, ** p-value < 0.002

TABLE IV: Regression coefficient estimates, their standard
errors (SE) and statistical significance (p-values): controlled
link breaks, source path recovery.

RMO RCL
Term Estimate (SE) t Ratio Estimate (SE) t Ratio
Intercept 15.64 (0.154) 101.9* -4.165 (0.325) -12.82*
hl int -1.169 (0.017) -68.64* 3.724 (0.042) 87.68*
tc int -0.563 (0.012) -46.78* 0.794 (0.03) 26.44*
Lw 0.091 (0.009) 10.66*
direction -1.279(0.147) -8.69*(RIGHT)

R2 = 0.85, RMSE = 1.21 R2 = 0.87, RMSE = 3.01
* p-value < 0.001

B. Trace-driven link breaks

Tables V and VI report the outcome of the training processes
for different regression models. When looking into the two
tables, we can note the following:

• The topological features (avg(d), std(d)) do not con-
tribute much to the model capability to explain the
variance in RCL. Starting from the full feature set, we
can sequentially eliminate these two features (column 3
in Table V) with minimal penalization in terms of root
mean square error (RMSE) and coefficient of determi-
nation (R2). On the contrary, they are indispensable for
predicting the routing message overhead with reasonable
accuracy (compare columns 2 and 3 in Table VI).

• Applying regularization (columns 4-8 in Table V and
columns 5-6 in Table VI) does not seem to improve
the model fitting accuracy. In contrast, accounting for
interaction effects (column 4 in Table VI) does yield an
accuracy gain.

• Even higher accuracy is achieved with non-linear models

such as regression trees. The accuracy gain (reduced
RMSE, higher R2) comes at the expense of model
complexity. Both the model computations needed and the
state that has to be stored increase fast with the number
of splits allowed when constructing the trees (columns
7-10 in Table VI).

V. USE OF THE PREDICTION MODELS DURING PROTOCOL
OPERATION AND PERFORMANCE EVALUATION

The prediction model(s) that emerged out of the training
process in section IV-B are stored at a central node in
the MANET. In SDN-enabled MANETs, a natural candidate
location is the SDN Controller. The Controller stores up-to-
date information about global network topology and ongoing
traffic flows, which together with the model state, can drive
the dynamic adaptation of the OLSRv2 protocol parameters.

Algorithm 1 Dynamic adjustment of OLSRv2 protocol pa-
rameters
Input: Topology information, routing message overhead con-

straint RMOmax, prediction models PRCL, PRMO

Output: Optimal OLSRv2 protocol parameter tuple
(hl int∗, tc int∗, L∗

w)

Step 1: Process current topology information to compute
the average and variance of node degree ( ̂avg(d), ̂std(d))
Step 2: Generate the set S of all possible combinations of
parameter values (hl int, tc int, Lw, ̂avg(d), ̂std(d))
Step 3: Identify the subset Sc ⊆ S of combinations for
which the PRMO-predicted RMO ≤ RMOmax

Step 4: Within the set Sc find the combination
(hl int∗, tc int∗, L∗

w,
̂avg(d), ̂std(d)) that minimizes the

predicted RCL
Step 5: Return (hl int∗, tc int∗, L∗

w)

Algorithm 1 illustrates the process, for identifying the
protocol parameters that minimize RCL subject to a maximum
RMO. The algorithm consists of five steps. In the first step,
Algorithm 1 processes the current topology information that
becomes available by the SDN Controller and computes the
topology-related features of the prediction models, ̂avg(d)
and ̂std(d). Then, it constructs the set S of all possible
combinations of

(
OLSRv2 parameters, ̂avg(d), ̂std(d)) and,



TABLE V: Coefficient estimates for different linear regression variants on RCL : trace-driven link breaks (p-value < 0.001
for all estimates).

Term Ordinary Least Stepwise Lasso Ridge Elastic Nets
Squares (OLS) remove terms (α = 0.25) (α = 0.5) (α = 0.75)

Intercept -5.939 -4.937 -5.934 -5.939 -5.894 -5.921 -5.93
hl int 3.225 3.225 3.225 3.225 3.219 3.223 3.224
tc int 0.565 0.565 0.565 0.565 0.563 0.565 0.565
Lw 0.142 0.142 0.142 0.142 0.142 0.142 0.142

avg(d) -0.167 - -0.167 -0.168 -0.166 -0.167 -0.167
std(d) 0.623 - 0.622 0.624 0.619 0.621 0.622
R2 0.811 0.807 0.811 0.811 0.811 0.811 0.811

RMSE 3.29 3.33 3.293 3.286 3.293 3.292 3.293

TABLE VI: Regression models for predicting RMO : trace-driven link breaks (p-value < 0.001 for all estimates).

Term OLS Linear OLS Linear Stepwise Linear Lasso Ridge Regression trees (max split=x) Random Forest
(3 protocol terms) (all 5 terms) add terms x = 10 x = 25 x = 40 Regression

Intercept 29.44 9.848 -3.616 9.849 9.848

N/A N/A N/A N/A

hl int -3.389 -3.388 0.41 -3.386 -3.388
tc int -0.334 -0.336 -0.337 -0.336 -0.336
Lw 0.071 0.071 0.070 0.071

avg(d) 2.143 3.92 2.143 2.143
std(d) 0.206 0.206 0.206

hl int · avg(d) -0.433
R2 0.424 0.758 0.805 0.758 0.758 0.714 0.782 0.811 0.992

RMSE 8.02 5.2 4.67 5.21 5.2 9.131 5.31 4.01 1.79

in step 3, it identifies the subset Sc of those that satisfy the
constraint on the maximum tolerated RMO, RMOmax. This
constraint may take into account specific policies and/or the
current utilization of the network by user data traffic. It may
become stricter under heavier data traffic load and be relaxed
under lighter traffic load. The derivation of subset Sc involves
repeated invocations of the prediction model PRMO. Then, in
the fourth step, the prediction model PRCL is called once for
every combination in Sc. The tuple that results in the minimum
RCL value is returned by the algorithm. Whenever this tuple
differs from the one returned in the previous execution of the
algorithm, the new tuple can be disseminated to the MANET
nodes for activation. This can be achieved via additional
headers in the SDN control plane messages sent by the SDN
controller to the SDN entities (switches) at the MANET nodes.

The following remarks about the algorithm are in place:

• The algorithm can be executed either periodically or upon
an alert that the network topology has changed, e.g.,
when the SDN Controller identifies changes in the nodes’
neighborhood sizes.

• Steps 3-5 outline exhaustive enumeration as a naive solu-
tion for the underlying constrained optimisation problem
(“Find the protocol parameter combination that mini-
mizes RCL subject to the constraint on the RMO”).
For simple linear or even convex prediction models, we
can leverage smarter optimization techniques.

• The setting of the OLSRv2 parameter Lw (the length
of the averaging window) introduces a trade-off between
responsiveness and stability. Smaller Lw values accelerate
the link quality estimation process but result in higher
variance in the obtained estimates. This could be taken
into account in step 4, e.g., by favoring feasible solutions
with higher Lw values.

In what follows, we highlight the performance gains that are
achievable through this dynamic adaptation of the OLSRv2
configuration.

A. Evaluation

We conduct experiments involving the same 24 nodes in
the Anglova trace, only this time we set their txpower to
three values that are different from those used in the model
training phase. Hence, we generate different tactical MANET
topologies for the evaluation phase. We run a first set of
experiments, measuring RCLdefault and RMOdefault values
under the OLSRv2 protocol parameter values recommended
in RFC 7181 [2]. We then repeat those experiments two times,
with OLSRv2 protocol parameter values selected by Algorithm
1, with Random Forest Regression [14] and Lasso [15] as the
prediction models for RMO and RCL, respectively.

First, we run Algorithm 1 with the RMOmax constraint set
to RMOdefault, thus asking how much gain can we get in terms
of RCL if the routing message overhead is no more than the
one under the default recommended OLSRv2 parameters. We
measured an average 17.27% improvement in RCL values,
while incurring only a marginal 0.03% increase in RMO.

The second time, we adapt Algorithm 1 to run with a
constraint RCLmax = RCLdefault on the route change la-
tency time and seek an OLSRv2 parameter combination that
minimizes RMO. Essentially, we ask how much we can
save in terms of routing message overhead if we match
the RCL value obtained under the recommended OLSRv2
parameters. We measured an average 15.55% reduction in
overhead, accompanied by a 1.29% increase in RCL.

In terms of prediction accuracy over this testing dataset,
the RCL prediction model achieved R2 = 0.716, RMSE =
0.917 in the first set of testing runs and R2 =



0.711, RMSE = 0.653 in the second one. The RMO
model resulted in R2 = 0.911, RMSE = 2.128 and R2 =
0.947, RMSE = 2.203, in the two sets of testing experiments,
respectively.

VI. CONCLUSION AND FUTURE WORK

Our work is an empirical study of data-driven OLSRv2
protocol parameterisation for simultaneously controlling the
protocol responsiveness to topology changes and its over-
head in terms of routing messages. We harness data from
controlled experiments and the well-known Anglova traces
to train machine learning models that capture the impact of
mobility of tactical nodes and protocol parameters on OLSRv2
performance. We developed an algorithm that leverages these
models to dynamically adjust protocol parameters based on
real-time information about the network topology and routing
message overhead constraints. The algorithm is shown to be
better in trading the two protocol performance indicators,
namely its responsiveness and the accompanying overhead.
The findings of this study advance our understanding of
OLSRv2 performance under various scenarios and enable
better decision-making in optimizing the routing operation in
tactical networks.

A critical assumption underlying our work is the exis-
tence and operation of the SDN layer. This is responsible
for collecting and maintaining global information about the
network topology, which is fed as input to our algorithm. The
specifics of the SDN layer, e.g., the number of SDN controller
nodes has an impact on the amount of additional messaging
needed to update the OLSRv2 agents on tactical nodes with
the derived set of parameters. A hierarchical structure with
multiple SDN controllers, each associated with a subset of
tactical nodes, would reduce the amount of messages that need
to be exchanged in the tactical network. In this paper, we have
not elaborated on this aspect, which has been treated in the
SDN literature, e.g., [16].

One direction of extending this work relates to the feature
selection process for the prediction models. Our prediction
models can be enhanced with additional variables that impact
the routing protocol responsiveness and overhead, such as traf-
fic load patterns. We also intend to explore more sophisticated
machine learning models such as Deep Learning ones.

Our research highlights the potential of using data from a
real system (Anglova traces) to drive experimental studies with
a static digital replica of the system (CORE/EMANE emulator
implementation) and, then, use the outcomes of these studies
to inform the real system parameters. The natural evolution
of the concept is the creation of a tactical MANET Digital
Twin. With a dynamic digital replica of the real network within
an emulator such as CORE/EMANE, the prediction models
for the OLSRv2 parameter optimisation could be continuously
updated in real-time. This online training process would boost
the models’ responsiveness and adaptability to constantly
changing environmental conditions, thus paving the way for
truly efficient, adaptive tactical ad hoc networks. The challenge
that has to be overcome relates to the implementation of the

interfaces to/from the real world and the conversion of the
emulator into a Digital Twin.
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