
Distributed Caching Algorithms in the Realm
of Layered Video Streaming

Konstantinos Poularakis ,Member, IEEE, George Iosifidis,Member, IEEE,

Antonios Argyriou , Senior Member, IEEE, Iordanis Koutsopoulos , Senior Member, IEEE,

and Leandros Tassiulas, Fellow, IEEE

Abstract—Distributed caching architectures have been proposed for bringing content close to requesters, and the key problem is to

design caching algorithms for reducing content delivery delay, which determines to an extent the user Quality of Experience (QoE).

This problem obtains an interesting new twist with the advent of advanced layered-video encoding techniques such as Scalable Video

Coding. In this paper, we show that the problem of finding the caching configuration of video encoding layers that minimizes delivery

delay for a network operator is NP-Hard, and we establish a pseudopolynomial-time optimal solution by using a connection with the

multiple-choice knapsack problem. Next, we design caching algorithms for multiple network operators that cooperate by pooling

together their co-located caches, in an effort to aid each other, so as to avoid large delays due to fetching content from distant servers.

We derive an approximate solution to this cooperative caching problem by using a technique that partitions the cache capacity into

amounts dedicated to own and other operators’ caching needs. Trace-driven evaluations demonstrate up to 25 percent reduction in

delay over existing caching schemes. As a side benefit, our algorithms achieve smoother playback for video streaming applications,

with fewer playback stalls and higher decoded quality.

Index Terms—Distributed caching, cooperation, layered-video encoding

Ç

1 INTRODUCTION

1.1 Motivation

ON-DEMAND video is the driving force of the data tsu-
nami that we are witnessing nowadays [2], and one of

the main revenue sources for wireline and wireless network
operators and providers. Therefore, it is critical for network
operators to satisfy this increasing volume of video requests
with the minimum possible delay, since delay constitutes a
prime factor that determines the user quality of experience
(QoE). A method to achieve this goal is to cache video con-
tent as close as possible to end-users. Such distributed cach-
ing architectures have been proposed for content delivery
networks (CDNs) [3] and recently also for wireless mobile
networks [4].

A key challenge in these architectures is to design the
optimal caching policy: for a given anticipated video content
demand, determine which content should be placed in each

cache, so as to reduce the average video delivery delay1

over all requests. If these requests are not satisfied by the
locally available cache, content needs to be fetched from dis-
tant back-end servers, which induces significantly larger
delay. Optimal caching is a well known NP-hard problem,
and many heuristic or approximation algorithms have been
proposed to address it [3], [4], [6], [7].

Nevertheless, a specific aspect has been hitherto over-
looked. Today more often than not, networks deliver video
files that are encoded at different qualities to their customers.
Usersmay implicitly or explicitly ask for certain video quality
(e.g., certain resolution for YouTube videos [8]), while in other
cases the delivered video quality is determined by the user
equipment (e.g., based on themobile devicemodel and screen
size) or by the operator (e.g., based on agreements with con-
tent providers [9]). User mobility and the wireless channel
further increase the need to have different qualities for
streaming video to users. Depending on the wireless channel
conditions, it makes sense to dynamically adapt the quality of
the video stream, for example, high quality for good channel
conditions, lower quality as channel conditions deteriorate.

These developments together with stringent require-
ments for higher user QoE and advances in video-encoding
technology have led to the incorporation of advanced video
encoding techniques, which in turn, affect the performance
of existing caching algorithms. One such encoding tech-
nique is Scalable Video Coding (SVC) [10], which allows for
multiple spatial resolutions (frame sizes), different frame

� K. Poularakis and L. Tassiulas are with the Department of Electrical Engi-
neering, Yale Institute for Network Science, Yale University, New Haven,
CT 06520. E-mail: kpoularakis@gmail.com, leandros.tassiulas@yale.edu.

� G. Iosifidis is with the School of Computer Science and Statistics, Trinity
College Dublin, Dublin 2, Ireland. E-mail: giosifid@gmail.com.

� A. Argyriou is with the Department of Electrical and Computer Engineering,
University of Thessaly, Filellinon, Volos 382 21, Greece.
E-mail: anargyr@gmail.com.

� I. Koutsopoulos is with the Department of Informatics, Athens University of
Economics and Business, Athina 104 34, Greece. E-mail: jordan@aueb.gr.

Manuscript received 6 Apr. 2017; revised 1 Apr. 2018; accepted 10 June 2018.
Date of publication 26 June 2018; date of current version 4 Mar. 2019.
(Corresponding author: Konstantinos Poularakis.)
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2018.2850818

1. Video delivery delay refers to the time it takes from the moment
the first packet of a video has been transmitted by the source until all
the packets are delivered to the destination [5].

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 4, APRIL 2019 757

1536-1233� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2570-3813
https://orcid.org/0000-0003-2570-3813
https://orcid.org/0000-0003-2570-3813
https://orcid.org/0000-0003-2570-3813
https://orcid.org/0000-0003-2570-3813
https://orcid.org/0000-0002-2510-3124
https://orcid.org/0000-0002-2510-3124
https://orcid.org/0000-0002-2510-3124
https://orcid.org/0000-0002-2510-3124
https://orcid.org/0000-0002-2510-3124
https://orcid.org/0000-0001-7699-5276
https://orcid.org/0000-0001-7699-5276
https://orcid.org/0000-0001-7699-5276
https://orcid.org/0000-0001-7699-5276
https://orcid.org/0000-0001-7699-5276
mailto:
mailto:
mailto:
mailto:
mailto:

rates, or different signal-to-noise ratio (SNR) qualities. With
SVC, each video file is encoded as a set of segments, the
layers, which, when combined, achieve the requested video
quality. A user asking the lowest video quality receives
only the basic layer (layer 1), while users asking for higher
qualities receive multiple layers, starting from layer 1 up to
the highest necessary enhancement layer to achieve that
quality. Moreover, with SVC, the user device has the option
to adapt the playback quality of video stream by dynami-
cally adding or dropping layers (e.g., always streaming the
basic layer and optionally the enhancement layers).

SVC is considered today one of the emergingvideo technol-
ogies [11], and it is already used for video streaming [12], [13],
web services [14], and video storage [15], among other appli-
cations. For completeness, we stress that an alternative to SVC
technique is to perform transcoding of a video to lower bitrate
versions in order to satisfy user requests [16], [17]. Although
transcoding is often preferred in industry, it requires the real-
time processing of the videos in the network before delivered
to users. On the other hand, SVC alleviates the need for in-
network processing, requiring only from user devices to com-
bine the different layers together.

With SVC, it is possible to store different layers of a certain
video at different caches. For a user that requests a video at a
given quality level, the different required layers are received,
decoded and set to play at the same time, rather than serially. In
this setting, video delivery is constrained by the layer deliv-
ered last, and hence the video delivery delay metric is deter-
mined by the largest delay needed to deliver a layer among all
layers required from a cache or a back-end server.

Due to SVC, the repertoire of caching policies increases sig-
nificantly, as the caching decisions must be taken per layer
and not per video file, while the video delivery delay experi-
enced depends jointly on retrieval delays of all layers of the
video for the required quality. Hence all previous theoretical
results (e.g., approximation ratios [3], [4], [6], [7]) need to be
revisited, as those caching algorithms do not take into account
layered video content and interdependencies among different
layers that all need to be fetched, possibly from different
caches, so as to achieve the requested video quality.

Although the SVC caching problem has already been stud-
ied for various network architectures [18], [19], [20], [21], [22],
[23], [24], [25], [26] these pioneering works do not provide
optimal solutions and/or approximation ratio guarantees
against optimal caching policies. In this work, we fill this gap by
addressing precisely the problem of minimizing user perceived video
delivery delay for a network operator through optimized cach-
ing of layered video content.

Moreover, going one step further, we study the delay per-
formance benefits that may arise when different network
operators cooperate in caching. Today there exist many net-
work operators (e.g., Wireless Service Providers) that often
deploy their own caches in the same locations so that each of
them serves its users-clients. These caches may be amenable
to joint coordination. Thus, it is meaningful to explore the
possibility for a local cache that belongs to a certain network
operator to retrieve a video layer from the co-located cache
of another operator, instead of fetching it from a distant
server of its own, which would cause larger delay. In fact,
such cooperation scenarios between the caches attract
increasing interest, especially in the context of wireless

mobile networks [17], [27], [28]. However, the diverse user
demands that different network operators must serve render
this cooperative caching problem particularly challenging.
The second problem we tackle is to derive a joint caching policy of a
set of involved network operators that minimizes the total delivery
delay for all operators, considering the global content demand.

1.2 Methodology and Contributions

We consider a general (abstract) distributed caching architec-
ture comprising several local nodes with caching capability
such as mobile switching centers [27], cellular base sta-
tions [28] or mobile edge computing servers [17], in the prox-
imity of end-users. Requests for SVC-encoded video files at
different quality levels are randomly generated by users that
are associated to these local nodes. A request can be satisfied
by the local node if it has cached the complete set of requ-
ired layers. Otherwise, the missing layers are fetched from a
distant content server, and this introduces additional delay.

Our first goal is to design the optimal caching policy for
such a network, aiming to minimize the aggregate delay for
delivering requested videos to users. This is a challenging
problem since taking decisions per layer adds up to the complexity
of traditional caching problems where copies of the entire videos are
cached. We show that this problem is NP-hard and develop a
pseudopolynomial-time optimal aswell as a Fully Polynomial
Time Approximation (FPTA) algorithm using a connection
with themultiple-choice knapsack (MCK) problem [29].

Next, we introduce the problem of cooperation of differ-
ent network operators in such distributed caching architec-
tures, where the goal is to derive a joint caching policy that
minimizes total video delivery delay for all operators. We
assume that users of different operators request the same
set of video files (or, a common subset) with possibly differ-
ent rates and quality requirements. Therefore, the coopera-
tive policy may on average reduce the video delivery delay
for users of some networks, and increase it for some others.
Using a technique that partitions the space of a cache owned by
an operator into two parts, dedicated to own and other operators’
caching needs respectively, we present a solution algorithm
with established approximation ratio.

The contribution of this work can be summarized as
follows:

� Layered Video Caching. We model the problem that
designs per-video-layer caching policies, aimed at
optimizing the aggregate video delivery delay of users
in a distributed caching network. This is a problem
of increasing importance due to the momentum of
layered-video encoding, especially inmobile networks
where users often need to receive videos in different
qualities depending on the wireless channel condi-
tions. We reduce this to the MCK problem and pro-
vide a pseudopolynomial-time optimal and a FPTA
algorithm [29].

� Operator Cooperation. We propose cooperation poli-
cies among different network operators (e.g., Wire-
less Service Providers [17], [27], [28]) and formulate
the respective optimization problem for designing
the globally optimal caching policy. Using a novel
cache-partition technique, we establish an approxi-
mation algorithm that achieves at least half of the

758 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 4, APRIL 2019

optimal performance for a symmetric case with
equal transmission rates of the links between cache-
nodes.

� Benefits in Average Delivery Delay.We evaluate numeri-
cally the proposed schemes using system parameters
driven from real traces. We show that our approach
reduces average video delivery delay up to 25 percent
over existing schemes for typical cache sizes and video
popularity distributions.

� Benefits in Video Streaming Performance. Although the
proposed algorithms are not designed to directly opti-
mize performance metrics related to video streaming,
we show that in practical scenarios they can indeed
smoothen video playback by achieving fewer play-
back stalls and higher decoded quality. The benefits
are more pronouncedwhen the bandwidth capacity is
relatively low.

The rest of the paper is organized as follows. Section 2
describes the system model and formalizes the layered video
caching problem. Sections 3 and 4 describe our solution algo-
rithms when network operators serve their requests indepen-
dently from each other andwhen they cooperate respectively.
Section 5 presents the evaluation results, while Section 6
reviews our contribution compared to related works.We con-
clude ourwork in Section 7.

2 SYSTEM MODEL AND PROBLEM STATEMENT

Weconsider a general (abstract) network architecturewherein
a set K of K Network Operators (NOs), e.g., Wireless Service
Providers, provide internet access to their subscribers, or
users, distributed in a set M of M geographical regions. For
each region, eachNO has installed a cache at a certain location
along the path from its subscribers to the back-end content
server (e.g., at amobile switching center [27], a base station [28]
or a mobile edge computing server [17]). The NOs may act
independently or in cooperation as we will explain in the
sequel. An example caching network is depicted in Fig. 1 and
the key notation is summarized in Table 1.

2.1 Independent Caching by Network Operators

We first consider the case when NOs act independently from
each other and focus on a singleNO k 2 K and its subscribers.
We denote by N k the set of caches, or cache-nodes, of NO k,
each one located at a different region. The capacity of cache
n 2 N k is denoted by Cn � 0 (bytes). The average user

demand for each pre-recorded video in a set V ¼ f1; 2; . . . ; V g
of V video files and within a certain time period (e.g., a few
hours or days) is assumed to be fixed and known in advance,
as in [3], [4]. For example, the demand can be learned by ana-
lyzing previous time statistics of user request patterns to infer
future demand or by using machine-learning techniques [30].
We consider that each video is available at some specific qual-
ity levels, indexed in a list Q ¼ f1; 2; . . . ;Qg. Each quality
level may represent a different combination of temporal, spa-
tial and SNR qualities. With SVC, there is a set L of layers, Q
layers for each video, which when accrued realize the differ-
ent quality levels. Layer 1 by itself realizes quality 1, layer 1
combined with layer 2 realize quality 2, and so on. The size of
the lth layer of video v is denoted with ovl > 0 (bytes), which
typically decreaseswith l, i.e., ov1 � ov2 � � � � � ovQ [11], [31].

User requests for videos in V with possibly different quali-
ties arrive at the nodes in N k. For example, there may exist
Q ¼ 2 quality levels, and half of the users choose to request
videos at low-definition quality (q ¼ 1), while the other half
ask for high-definition (HD) quality (q ¼ 2), as in Fig. 1. The
user requests for different quality levels can also account for
the wireless channel conditions. For example, users in certain
regions may experience on average worse channel conditions
than in the other regions, and hence the average requested
video quality is lower in the former. To capture these factors,
we denote by �nvq � 0 the average user demand associated
with noden for the qth quality level of video v. In otherwords,
the �nvq values can capture both the expected preferences of
the users and the wireless channel conditions [22]. We define
the request vector for each cache noden, and the total demand
vector for NO k, respectively

�n ¼ ð�nvq : v 2 V; q 2 QÞ; ��k ¼
�
�n : n 2 N k

�
: (1)

In order to deliver to a user the qth quality of video v, all
layers of that video from layer 1 up to q need to be delivered,

i.e.,
Pq

l¼1 ovl bytes in total. In a video streaming system,

Fig. 1. A distributed caching architecture with K network operators and
M geographical regions. Each cache is connected with a back-end con-
tent server and possibly with other caches in the same region.

TABLE 1
Key Notations

Symbol Physical Meaning

K Set ofK network operators (NOs)
V Set of V video files
Q Set of Q qualities
L Set of L layers
M Set ofM geographical regions
N Set of cache-nodes
N k Cache-nodes belonging to NO k
Nm Cache-nodes located at regionm
Mn Region where cache-node n is located
Cn Cache capacity at node n (bytes)
�nvq Average demand at node n for video v at quality q
ovl Size of layer l of video v (bytes)
dn Per unit data delay for serving requests at node n

by a server
dnn0 Per unit data delay for serving requests at node n

by node n0
xnvl Caching decision for layer l of video v to node n
JkðxxkÞ The aggregate user delay for NO k in

independent setting
Jc
kðxxÞ The aggregate user delay for NO k in cooperative

setting

POULARAKIS ET AL.: DISTRIBUTED CACHING ALGORITHMS IN THE REALM OF LAYERED VIDEO STREAMING 759

segments of the different layers are received, decoded and set
to play at the same time, rather than serially. In this setting,
video delivery is constrained by the layer that is delivered
last, and hence the delay for delivering the entire video at the
given quality will be equal to the maximum delay needed for
each of these layers to be delivered.2

Ideally, the user would like to receive all the required
layers from the locally available cache-node n of NO k
which leads to the lowest delay possible. Without loss of
generality, we assume this reference delay to be zero. If a
layer cannot be found locally, node n can fetch it from a
back-end content server that contains all videos and layers.
Similarly to the works in [3], [4], [6], [7], [21] we consider
this fetching to induce on average a large per unit data
delay of dn seconds, which depends on cache location. In
other words, each layer requested from the server will be
delivered with an average rate that is constant and given by
1=dn. This for example can be realized by using parallel TCP
connections [32], one connection for each layer, with fixed
average bandwidth allocated per connection.

Let the binary decision variable xnvl indicate whether the
lth layer of video v will be placed at node n (xnvl ¼ 1) or not
(xnvl ¼ 0). Then, the caching policy for NO k is given by the
vector

xxk ¼
�
xnvl : 8n 2 N k; v 2 V; l 2 L�: (2)

Clearly, each node n 2 N k cannot cache more data than its
capacity, i.e., it should hold thatX

v2V

X
l2L

ovlxnvl � Cn: (3)

Our goal is to design the caching policy that minimizes the
aggregate video delivery delay3 for all users of NO k,
denoted by JkðxxkÞ

JkðxxkÞ ¼
X
n2N k

X
v2V

X
q2Q

�nvq � max
l2f1;...;qg

n
ð1� xnvlÞ � ovl � dn

o
; (4)

where the delay for delivering layer l of video v is zero if
this layer is cached at the local node n (i.e., xnvl ¼ 1); other-
wise the delay is ovl � dn. The delay for delivering the entire
video v at quality level q equals to the maximum of the
delays needed to deliver layers 1 to q.

2.2 Cooperative Caching Among Network
Operators

Let us now consider the case that the NOs have decided to
jointly coordinate their caches in the same region.4 There-
fore, one cache can send video layers to the other to satisfy
the other’s demand through wireline or wireless backhaul
links as it is described in [17], [27], [28]. Assume that each

NO in K serves requests for the same set V of videos.5 Nev-
ertheless, each NO has its own subscribers and may need to
serve different demand, i.e., ��k1 6¼ ��k2 . We define the set of
all cache nodes

N ¼
[
k2K

N k; (5)

and the total expected demand

L ¼
[
k2K

��k: (6)

If a layer cannot be found at the local cache node n, then n
can download it from another node n0 in the same region that
has already cached it. We denote with dnn0 the per unit data
delay incurred for this transfer, where it trivially holds that
dnn ¼ 0, 8n 2 N . As a last resort for node n, the content server
can deliver the layer with per unit data delay dn > dnn0 , 8n; n0

in the same region. Clearly, a usermay download the required
layers from different caches or servers. The user experienced
video delivery delay will be equal to the maximum of the
respective delays.

The objective of the cooperating NOs is to minimize the
total video delivery delay for satisfying the entire set of
requests L. We denote the joint caching policy by xx ¼ ðxxk :
k 2 KÞ. Then, the total delay can bewritten as

Jc
T ðxxÞ ¼

X
k2K

Jc
kðxxÞ; (7)

where

Jc
kðxxÞ

¼
X
n2N k

X
v2V

X
q2Q

�nvq max
l2f1;...;qg

Y
n0 2 N :
Mn0 ¼Mn

ð1� xn0vlÞovldn

8>>><
>>>:

þ 1�
Y

n0 2 N :
Mn0 ¼Mn

ð1� xn0vlÞ

0
BBB@

1
CCCAovl min

n0 2 N :
Mn0 ¼Mn; xn0vl¼1

fdnn0 g

9>>>=
>>>;
:

(8)

In the above expression,Mn 2 M indicates the region where
node n is located. Every required layer l 2 f1; . . . ; qg will be

delivered to local node n by the content server with per unit
data delay dn if none of the nodes in the same region with n

have cached it, i.e., if
Q

n02N :Mn0 ¼Mn
ð1� xn0vlÞ ¼ 1. Otherwise,

among the nodes that have cached l, the one with the lowest

delaywill deliver it.

2.3 Motivating Example

The benefits that such cooperation policies may yield can be
easily understood through the simple example in Fig. 2. There
exist V ¼ 2 videos and Q ¼ 2 quality levels. The latter can be
realized by combiningL ¼ 2 layers per video; l11; l12 for video
1, and l21; l22 for video 2. Each layer is of size 1 (based on some
normalized size scale). There is also a region with two nodes,
indexed by 1 and 2, that belong to two different NOs. Each
node is equipped with a unit-sized cache. The delay coeffi-
cients are: d1 ¼ d2 ¼ 2 and d12 ¼ d21 ¼ 1. The demand at node

2. We note that in a non-streaming system, the required layers could
be received serially (rather than in parallel) by the user. In this case, the
delay would be the sum (rather than the max) of the respective layer
delays.

3. We focus on the video delivery delay to study the impact of the
network on user service. The delay introduced by other applications
like decoding and buffering processes is neglected.

4. We note that still cache-nodes at different regions act indepen-
dently each other. This is because the regions are in general far away
each other and hence the delay required for exchanging content can be
very large in practice.

5. Our model captures also the case that the network operators pro-
vide different, yet overlapping sets of videos, in which case V stands
for the overlapping video set.

760 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 4, APRIL 2019

1 is given by: �111 ¼ 0, �112 ¼ 10, �121 ¼ 1, �122 ¼ 0, while at
node 2 it is: �211 ¼ 9, �212 ¼ 9, �221 ¼ 10, �222 ¼ 0.

Ideally, each node would store the two layers of video 1
(l11; l12) and the first layer of video 2 (l21) in order to serve all
its requests locally. However, this is not possible due to the
cache capacity limitations. When NOs operate independently
from each other, we can show that the optimal caching policy
dictates both nodes to cache l21. The total delay will be:
�112 � d1 þ �211 � d2 þ �212 � d2 ¼ 56. Here, we note that caching
l12 at node 1 would not improve user delay at all, since l11
layer would still be delivered by the content server yielding
�112 � d1 delay. However, if NOs cooperate, then the optimal
caching policy changes; it places l12 to node 1 and l11 to node 2.
Now, the cached layers are different between the two nodes.
Hence, they can be exchanged to reduce further delay. The
total delay will be: �112 � d12 þ �121 � d1 þ �212 � d21 þ �221 � d2 ¼
41 < 56.

Before we present our layer caching solutions, we remark
that ourmodel considers the delay required for delivering the
entire video at certain quality asked by the user. We choose
this metric (delay) for mathematical tractability in an optimi-
zation framework in a time-average sense, with the under-
standing that this metric and its optimization will also have
positive repercussions on QoE performancemetrics related to
video streaming. We explore this issue numerically in Sec-
tion 5 and further discuss it in the online Appendix [33].

3 INDEPENDENT CACHING BY NETWORK

OPERATORS

In this section, we address the layered video caching prob-
lem for the case that different network operators design
independently their caching policies. Specifically, each NO
k solves the following problem:

min
xkxk

JkðxxkÞ (9)

s:t:
X
v2V

X
l2L

ovlxnvl � Cn; 8n 2 N k; (10)

xnvl 2 f0; 1g; 8n 2 N k; v 2 V; l 2 L: (11)

3.1 Problem Decomposition

The local nodes of a NO k are in different regions and they
cannot send content each other. Hence, caching decisions at a
node n 2 N k do not affect the rest and the problem can be
decomposed into jN kj independent subproblems, one for each

node. For a specific node n 2 N k, we note that without cach-
ing the aggregate user delay would be

P
v2V

P
q2Q �nvqovldn

where l ¼ 1. This is because, all requests are served by the
remote server (with per unit data delay dn), and video deliv-
ery is constrained by the largest layer, i.e., layer l ¼ 1. Caching
can reduce the aggregate delay by serving a fraction of the
requests locally. Namely, caching only layer l ¼ 1 of a video
v ensures that the delay will be reduced by

P
q2Q �nvq � dn�

ðov1 � ov2Þ, since l ¼ 2 will be the layer delivered last. In the

same sense, caching both l ¼ 1 and l ¼ 2 layers, moves the bot-
tleneck point for video delivery to the layer l ¼ 3, thus reduc-
ing the delay by

P
q2Q �nvq � dn � ðov2 � ov3Þ more, and so on.

Hence, the equivalent problem of maximizing the delay savings
for node n (namedPn) can be expressed as follows:

Pn : max
xnxn

X
v2V

X
q2Q

�nvqdn
Xq
l¼1

ðovl � ov;lþ1Þ
Yl
i¼1

xnvi (12)

s:t: constraint: ð3Þ;
xnvl 2 f0; 1g; 8v 2 V; l 2 L; (13)

where xn ¼ ðxnvl 2 f0; 1g : 8v 2 V; l 2 LÞ, and, with a slight

abuse of notation, we set ov;lþ1 to be equal to zero for l ¼ q in

the above summation.
Subsequently, we characterize the complexity of problem

Pn, and present efficient solutions.

3.2 Complexity and Solution to Problem Pn

We first prove the intractability of the problem Pn in Theo-
rem 1.

Theorem 1. Problem Pn is NP-Hard.

Proof. We prove the NP-Hardness of the problem Pn by
reduction from the Knapsack problem, which is NP-
Hard [29]. The latter is defined as follows: Given a knap-
sack of capacity W , and a set of T items with nonnegative
weights w1 to wT and values p1 to pT , the objective is to
place in the knapsack the subset of items of total weight no
more thanW with the largest total value. Every instance of
the knapsack problem can be written as a special case of
the problem Pn, where there is one video for each item
(V ¼ T), each video has one quality level (Q ¼ 1), each
layer is of size equal to the weight of the mapped item
(ov1 ¼ wv, 8v 2 V) and the demand for each video is equal
to the value of the mapped item (�nv1 ¼ pv, 8v 2 V). Given
a solution to the problem Pn one can find a solution to the
knapsack problem of the same value by placing in the
knapsack the items corresponding to the layers placed in
the cache of node n. tu
The following lemma provides information about the

structure of the optimal solution.

Lemma 1. There is an optimal solution to Pn such that, if a layer
l is cached, then all the previous layers l0 < l of the same video
are also cached.

Proof. Let us assume that the optimal solution to problem Pn

caches at node n the layer l of video v without caching a
layer l0 < l of the same video. Then, removing l from the
cache nwould have no impact on the objective value of Pn,

Fig. 2. An example illustrating the benefits of cooperative caching for two
network operators.

POULARAKIS ET AL.: DISTRIBUTED CACHING ALGORITHMS IN THE REALM OF LAYERED VIDEO STREAMING 761

since the users that download l from n need to download
also l0 from the content server, which incurs delay
ovl0 � dn � ovl � dn. Filling the cache space left freewith a layer
of another -previously uncached- video would improve the
objective value ofPn. This contradicts the assumption. tu
Inspired by Lemma 1, we identify a connection of the

problem Pn to the following variant of the knapsack
problem [34]:

Definition 1 (Multiple-Choice Knapsack). Given R classes
E1, E2, . . ., ER of items to pack in a knapsack of capacity W ,
where the ith item in class Er has value pri and weight wri,
choose at most one item from each class such that the total
value is maximized without the total weight exceedingW .

Then, we describe the connection between Pn and MCK
problems in the following lemma.

Lemma 2. The problem Pn is polynomial-time reducible to the
problemMCK.

Proof. Given an instance of the problem Pn, we construct the
equivalent instance of the problem MCK as follows: There
is a knapsack of size equal to Cn and V item classes
E1; E2; . . . ; EV , one class for each video. Each class contains
Q items, one item for each quality. The ith item in class Ev

has aweight

wvi ¼
Xi

l¼1

ovl; (14)

and a value

pvi ¼
X
q2Q

�nvqdn
Xq
l¼1

ðovl � ov;lþ1Þ
Yl
j¼1

ð11fj2f1;2;...;iggÞ; (15)

where 11f:g is the indicator function, i.e., it is equal to 1 if the
condition in the subscript is true; otherwise it is zero. We

also set ov;lþ1 ¼ 0 for l ¼ q.

Eachmaximum-value solution to theMCK instance can
be mapped to a solution to the Pn instance of the same
value as follows: For each item i in class Ev packed in the
knapsack, place the i first layers of video v to the cache-
node n. Clearly, the obtained solution stores no more data
than the cache capacity and satisfies the property in
Lemma 1. By Eq. (15), the values of the items placed in the
knapsack are equal to the delay savings obtained by the
cached layers. Hence, the value of the solution to the prob-
lemPn is equal to the solution value of the problemMCK.

Conversely, for every feasible solution to the problem
Pn there is a feasible solution to the MCK instance of the
same value. That is, for each sequence of i layers of video v
placed in the cache-node n, we pack the item i of class v in
the knapsack. Clearly, the obtained solution packs nomore
item weight than the knapsack capacity, and at most one
item from each class is packed in the knapsack. tu
Lemma 2 provides a valuable result, since it paves the way

for exploiting a wide range of efficient algorithms that have
been proposed for problem MCK in order to solve problem
Pn. Specifically, althoughMCK isNP-hard, there exists a pseu-
dopolynomial-time optimal algorithm and a fully-polynomial-time
approximation algorithm to solve it [34]. Pseudopolynomial
means that the time is polynomial in the input (knapsack
capacity and itemweights), but exponential in the length of it

(number of digits required to represent it). The FPTA algo-
rithm finds a solution with a performance that is provable no
less than ð1� �Þ times the optimal, while its running time is
polynomial to 1

�, � 2 ð0; 1Þ. Therefore, the FPTA algorithm

complexity and performance are adjustable, which makes it
preferable compared to the first algorithm for large problem
instances. Hence, we obtain the following result:

Theorem 2. There exists a pseudopolynomial-time optimal algo-
rithm and a FPTA algorithm for problem Pn.

4 COOPERATIVE CACHING AMONG NETWORK

OPERATORS

In this section, we focus on the layered video caching problem
when multiple network operators come in offline agreement
to cooperate. We stress again that cooperation amounts to
putting together their local pools of resources (caches in our
case) in order to cache layered video destined also for users of
other network operators. The problem of determining the
caching policy that minimizes the total user delay of all NOs can
be expressed as follows:

min
x

Jc
T ðxxÞ (16)

s:t:
X
v2V

X
l2L

ovlxnvl � Cn; 8n 2 N ; (17)

xnvl 2 f0; 1g; 8n 2 N ; v 2 V; l 2 L; (18)

where x ¼ ðxnvl : 8n 2 N ; v 2 V; l 2 LÞ.

4.1 Problem Decomposition

Since content can only be transferred between nodes in the
same region, the above problem can be decomposed into M
independent subproblems, one for each region m 2 M. We
denote with Nm � N the set of nodes located at region m.
For a specific region m, we observe that the total user delay
without caching would be

Dm
wc ¼

X
n2Nm

X
v2V

X
q2Q

�nvqovldn; where l ¼ 1; (19)

since all requests are served with layer 1 (which is the larg-
est among all layers) downloaded by the content servers.
Caching can reduce the total delay by delivering some of
the required layers by the caches instead of the servers. We
can express the equivalent problem of maximizing delay sav-
ings for regionm (named Rm) as follows:

Rm : max
xmxm

Dm
wc �

X
n2Nm

X
v2V

X
q2Q

�nvq max
l2f1;...;qg(Y

n02Nm

ð1� xn0vlÞovldn þ ð1�
Y

n02Nm

ð1� xn0vlÞÞovldnn�
)

(20)

s:t:
X
v2V

X
l2L

ovlxnvl � Cn; 8n 2 Nm (21)

xnvl 2 f0; 1g; 8n 2 Nm; v 2 V; l 2 L; (22)

where xxm ¼ ðxnvl : n 2 Nm; v 2 V; l 2 LÞ. Here, a required
layer l of a video vwill be delivered to node n by the content
server with delay ovldn if none of the nodes have cached it,

762 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 4, APRIL 2019

i.e., if
Q

n02Nm
ð1� xn0vlÞ ¼ 1. Otherwise, among the nodes

that have cached l, the one with the lowest delay will deliver

it, i.e., the node n� ¼ argminn02Nm:xn0vl¼1fdnn0 g.

4.2 Solution to Problem Rm

Rm is a very challenging problem, since the already NP-Hard
problem Pn defined in the previous section is further per-
plexed in order to account for all the scenarios of cooperation
among the nodes in the same region, i.e., 8n 2 Nm. Namely,
each node should seek the best tradeoff between caching the
layers of the videos that are popular for its own users (optimiz-
ing local demand), and caching the ones that are frequently
requested by users of other nodes in the same region (optimiz-
ing global demand, i.e., the sum of local demands across nodes).
Subsequently, we present an algorithm that achieves an
approximation ratio for this important problem.

The algorithm partitions the cache space of each node
based on an input parameter F 2 ½0; 1	. At a high level, F repre-
sents the portion of each cache that is filled inwith globally pop-
ular video content (i.e., layers of videos that are popular with
respect to the global demand), while the rest 1� F portion is
filled in with locally popular video content (i.e., layers of videos
that are popular with respect to the local demand). Clearly, if
F ¼ 0, then each node n caches the locally popular video
layers independently from the others (i.e., by solving problem
Pn), while when F ¼ 1 all nodes put together their caches and
they fill in the union cache space with globally popular video
layers.

The proposed algorithm uses as components the solu-
tions to the following two problems:

1.MCKðmÞ: The instance of the problemMCK comprising

a knapsack of capacity F �Pn2Nm
Cn and V classes of items,

eachwithQ items. The ith item of the vth class hasweight

w0
vi ¼

Xi

l¼1

ovl; (23)

and value

p0vi ¼
X
n2Nm

X
q2Q

�nvqdn
Xq
l¼1

ðovl � ov;lþ1Þ
Yl
j¼1

ð11fj2f1;2;...;iggÞ: (24)

In the above expression 11f:g is the indicator function, i.e.,
11fcg ¼ 1 if condition c is true; otherwise it is zero, and
ov;lþ1 ¼ 0 for l ¼ q. Here, the ith item of the vth class corre-
sponds to the first i layers of video v.

2. PnðAnÞ: The instance of the problem Pn in which the
layers in the set An � L are already placed in cache n.

Problem MCKðmÞ represents the placement of globally
popular video layers in the F portion of the caches. To this
end, a knapsack is formed of size equal to the aggregate size
of these portions. The item values w0

vi and p0vi represent the
cache space needed and the possible delay savings of deliv-
ering the first i layers of video v from a cache instead of the
remote servers. Similarly, problem PnðAnÞ represents the
placement of locally popular videos in the remaining por-
tion (1� F) of the caches. To this end, it has to take into
account the placement of layers of globally popular videos
(set An), to avoid wasting resources in placing again the
same layers in the same cache.

We now present the proposed Layer-aware Cooperative
Caching (LCC) algorithm, which operates in two stages:

� Stage 1. Solve the problem MCKðmÞ. For each
item picked in the knapsack, place the corre-
sponding set of layers into the node n 2 Nm with
the highest local demand for the respective video.
Ensure at each step that at most F � Cn þ s
amount of data is placed at each node n, where s
is the maximum size of an item.

� Stage 2. For each node n 2 Nm, fill in its remain-
ing cache space by solving the problem PnðAnÞ,
where An consists of the layers placed at n in
stage 1.

Theorem 3 summarizes one of the main contributions of
this paper:

Theorem 3. LCC algorithm achieves an approximation ratio of
minfrm; r0m0g for the problem Rm, where

r ¼ F � sP
n2Nm

Cn
; m ¼ min

n2Nm

minn02Nmnnfdn � dnn0 g
maxn02Nmnnfdn � dnn0 g

;

r0 ¼ 1� F � 2s

minn2Nm
Cn

; m0 ¼ min
n2Nm

minn02Nmnndnn0
maxn02Nmnndnn0

:

The proof of Theorem 3 is deferred to the Appendix, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TMC.2018.2850
818. The tightness of the approximation ratio of LCC algo-
rithm depends on the delay coefficients (dn; dnn0 , 8n; n0 2
Nm), the cache sizes ðCn; 8n 2 NmÞ and the input value F . In

a symmetric case where dn ¼ d and dnn0 ¼ d0, 8n; n0 2 Nm it

becomes: m ¼ 1 and m0 ¼ 1. When additionally the caches are

relatively large, i.e., s
minn2Nm

Cn
! 0, setting F ¼ 0:5 yields an

approximation ratio of 0.5, i.e., LCC algorithm achieves at
least half of the optimal performance.

We note that F is passed as an input to LCC algorithm. A
reasonable choice for F is the value that yields the best pos-
sible approximation ratio. This requires solving the follow-
ing optimization problem

max
0�F�1

minfrm; r0m0g: (25)

Here, the objective function is pointwise minimum of finite
number of affine functions and therefore it is concave.
Hence, this problem can be solved using standard convex
optimization techniques [35].

The complexity of LCC algorithm stands for solving the
MCKðmÞ and the P ðAnÞ problems, 8m 2 M, n 2 Nm. Like
MCKðmÞ and Pn, the problem PnðAnÞ can be expressed as a
MCK problem, as we show in the following lemma, and
hence it can be solved in an efficient manner. Besides, these
problems can be solved in a distributed fashion which
reduces the overall complexity.

Lemma 3. Problem PnðAnÞ is polynomial-time reducible to the
problemMCK.

Proof. It is easy to show that the property in Lemma 1 holds
for problem PnðAnÞ, since it has the same objective with

POULARAKIS ET AL.: DISTRIBUTED CACHING ALGORITHMS IN THE REALM OF LAYERED VIDEO STREAMING 763

http://doi.ieeecomputersociety.org/10.1109/TMC.2018.2850818
http://doi.ieeecomputersociety.org/10.1109/TMC.2018.2850818

the problem Pn. Therefore, given an instance of the prob-
lem PnðAnÞ, we can construct the equivalent instance of
the problem MCK as follows: There is a knapsack of size

equal to Cn � jAnj, where jAnj denotes the total size of the
layers in An, and the item classes E1; E2; . . . ; EV , each

with Q items. The ith item in class Ev has a weight

w00
vi ¼

X
l2f1;2;...;ig;l =2 An

ovl; (26)

and a value

p00vi ¼
X
q2Q

�nvqdn
Xq
l¼1

ðovl � ov;lþ1Þ
Yl
j¼1

ð11fj2f1;2;...;iggÞ � ð11ff1;2;...;jg~AngÞ;

(27)

where 11f:g is the indicator function, i.e., it is equal to 1 if

the condition in the subscript is true; otherwise it is zero,
and ov;lþ1 ¼ 0 for l ¼ q. The reduction is similar to the

one in Lemma 2, differing in that here placing a sequence

of layers in the knapsack will not increase further the

weight and the value of the knapsack for the layers that

are already in it. tu
Finally, we note that the cooperative caching policy targets

the total (across all NOs) delay, and, hence, it may result in
increased aggregate delay for a certain NO, or in the best case,
in uneven delay reductions across the different NOs. Consid-
ering that delayperformancemay be directly translated to rev-
enue, someNOsmay be unwilling to endorse the cooperation.
This issue can be resolved through side-payments, or money
transfers, from theNOs that enjoy the largest delay reductions
to the NOs with fewer benefits in terms of delay reduction, or
even delay increases. We further discuss this issue in the
Appendix, available in the online supplementalmaterial.

5 TRACE-DRIVEN EVALUATION

In this section, we present the evaluation results of the
experiments that we have conducted to show the superior-
ity of the proposed algorithms over state of the art methods.
Specifically, we implement the following three caching
algorithms:

� Independent Caching (IC): Each NO serves only its
own subscribers. For each cache-node n, the caching
is performed independently from the rest, by solving
the problem Pn that is defined in Section 3.

� Layer-aware Cooperative Caching: The proposed coop-
erative algorithm in Section 4, according to which all
nodes dedicate a fraction F of their cache space for
storing layers of videos that are globally popular.
The remaining space is filled in based on the local
video demand.

� Femtocaching [4]: This cooperative caching algorithm
starts with all the caches being empty. Iteratively, it
performs the placement of a layer to a cache that
achieves the maximum performance improvement,
in terms of total delay (Jc

T). The procedure termi-
nates when there does not exist any cache space
available to store content.

We emphasize that the Femtocaching algorithm has been
extensively used as a benchmark by previous works. It is

well-known that this algorithm achieves near-optimal delay
for the traditional (layer-agnostic) video caching problem.
Therefore, a natural question is whether the efficiency of
Femtocaching is maintained or novel algorithms are needed
when the delivery of layered video is considered. Our eval-
uation study targets to answer this question.

Before we proceed with the evaluation results, we
remark that, in order to solve the problem MCK in IC and
LCC schemes, we used the Mosek Optimization Toolbox.
The execution time is in the scale of minutes. Our code is
written in C language in the Visual Studio 2010 environ-
ment and it is publicly available online in [36]. We expect
that the reproducibility of the results will encourage future
experimentation with video caching algorithms for the ben-
efit of the research community. In the sequel, we describe
the evaluation setup used in the later evaluations.

5.1 Evaluation Setup

The evaluation is carried out forK ¼ 3NOs and a single geo-
graphical region (M ¼ 1). Each NO has installed a cache of
capacity equal to C (bytes). The rate with which a layer is
delivered over the link between a content server and a cache
is 1=dn ¼ 1 Mbps, while between any pair of caches it is

1=dnn0 . As a canonical scenario we set 1=dnn0 ¼ 5 Mbps,

while our evaluation also covers the cases where: 1=dnn0 2
f1; 2; . . . ; 10g Mbps. We later explore the impact of dynamic
rate, where the rate varieswith the link load.

Requests for V ¼ 10;000 popular videos are randomly
generated by the users that are associated to the caches.
Each video is realized in Q ¼ 5 quality levels using SVC.
We set the sizes of the 50,000 respective layers randomly
using the real-world trace in [31]. This dataset contains
detailed information about 19 SVC-encoded popular movies
spanning 5 SNR quality levels (boxplot in Fig. 3). We believe
that this is representative of a realistic video delivery
system, since layer sizes span two orders of magnitude,
and videos of various source formats and publish times
are included. The time duration of each video is between
5.5 minutes and 111 minutes. The total size of the 50,000
layers is slightly lower than 10 TBs.

Following empirical studies inVoD systems,we spread the
user requests across the videos using a Zipf distribution, i.e.,
the request rate for the ith most popular video is proportional

Fig. 3. The cumulative size of the layers required at each quality level for the
videos in the library [32]. Each video is encoded into five quality levels corre-
sponding to different quantization parameters;QP 2 f20; 25; 30; 35; 40g.

764 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 4, APRIL 2019

to i�z, for some shape parameter z > 0 [37]. We further
spread the requests across the Q ¼ 5 quality levels uniformly
at random. Unless otherwise specified, we set: C ¼ 1 TB [3]
and z ¼ 0:8 [37], while we run the LCC algorithm for each
value of F at 0.1 granularity, and pick the value that results
the lowest total delay.

5.2 Benefits in Average Delivery Delay

We first explore the impact of varying the bandwidth rate
between the caches on the average (over all user requests)
video delivery delay. In the experiment in Fig. 4a, the rate
spans a wide range of values, starting from 1 to 10 Mbps,
reflecting different operating conditions.Wenote that the per-
formance of the IC algorithm is unaffected by this variation,
since the caches are excluded from transmitting content one
another. On the other hand, increasing the rate between
caches reduces delay for the cooperative caching algorithms
(Femtocaching and LCC), since the layers can be exchanged
faster between the caches. The proposed algorithm (LCC) per-
forms better than its counterparts for all the rate values. The delay
gains are up to 33 and 20 percent when compared to IC and
Femtocaching algorithm respectively.

We analyze the impact of cache sizes on performance in
Fig. 4b. As expected, increasing cache sizes reduces delay for
all the algorithms as more requests are satisfied without the
involvement of the content server. The proposed LCC algo-
rithm performs better than its counterparts for all the cache
sizes. The gains over IC algorithm increase with cache sizes
starting at 14 percent for 0.2 TBs and reaching 43 percent for
2 TBs. On the other hand, the gains over Femtocaching ini-
tially increase with cache sizes (from 10.5 percent for 0.2 TBs
up to 21 percent for 0.8 TBs), but then they slightly reduce

(down to 17.5 percent for 2 TBs). In other words, LCC initially
reduces delay at a higher pace than Femtocaching, but its perfor-
mance starts to saturate first as the cache sizes increase.

We show the impact of the Zipf shape parameter z on algo-
rithms’ performance in Fig. 4c. As the z value increases the
video demand distribution becomes steeper and a few videos
attractmost of the demand. On the other hand, a small z value
corresponds to an almost uniform video demanddistribution.
The delay decreases with z for all the algorithms, reflecting
that caching effectiveness improves with the steepness of video
demand distribution. LCC performs significantly better than
IC and Femtocaching for all the values of z. The gains over IC
are relatively stable over z (25-26 percent), while the gains over
Femtocaching steadily increase with z (from 7 percent for z ¼ 0:4
up to 25 percent for z ¼ 1:2).

In addition to delay, another metric of caching algorithm
performance is the cache hit rate, i.e., the percentage of video
data delivered by the caches instead of the remote servers.
To explore this, we repeat the evaluations and depict the
achieved cache hit rate in Figs. 5a, 5b, and 5c. We find that
the proposed algorithm (LCC) achieves higher cache hit rate than
its counterparts for all the scenarios. This, to some extent, indi-
cates that the optimization of the considered delay metric has pos-
itive implications on other metrics as well.

Another issue is the timescale that the caching algorithms
are applied. As the time passes, the demand for video con-
tent changes with new videos becoming popular and taking
the place of older videos in the library F . This content aging
process impacts the efficiency of the caching decisions.
Fig. 6 depicts the delay gains achieved by the three caching
algorithms when 0-10 percent of the most popular videos
are replaced with new (uncached) videos. Here, the new

Fig. 4. (a) The average video delivery delay achieved by IC, Femtocaching, and LCC algorithms as a function of (a) the delivery rate of the links
between caches, (b) the cache sizes, and (c) the shape parameter of the Zipf distribution.

Fig. 5. Cache hit rate achieved by IC, Femtocaching, and LCC algorithms as a function of (a) the delivery rate of the links between caches, (b) the
cache sizes, and (c) the shape parameter of the Zipf distribution.

POULARAKIS ET AL.: DISTRIBUTED CACHING ALGORITHMS IN THE REALM OF LAYERED VIDEO STREAMING 765

videos are positioned in the end of the demand vector
�n; 8n, i.e., they become the least popular videos. We find
that, although the gains decrease, the presented algorithms still
achieve significant gains. Depending on the scenario, injection
of new videos can take hours or days. Hence, proactive
caching can be a practical approach.

It would be also interesting to quantify the impact of failure
of a cache-node on the efficiency of the proposed caching algo-
rithms. Fig. 7 demonstrates that although the average delay
increases after a node failure, still significant benefits are
achieved. Importantly, the proposed caching algorithm (LCC)
continues to perform better than the other two algorithms.
Hence, our approach can be valuable even in these cases.

5.3 Benefits in Video Streaming Performance

The evaluation results presented so far focused on the delay
and cache hit rate associated to the delivery of videos at cer-
tain qualities asked by users. For video streaming applica-
tions, though, the user satisfaction depends on other metrics
as well. In such cases, the user watches the video at the same
time that it is downloaded. In order for playback to start there
is a need to buffer a certain number of video frames that can
be translated to either a portion of the file in bytes or seconds.
We call this the pre-buffering delay measured in seconds. Due
to network bandwidth fluctuations, the decodermight experi-
ence a buffer underrun which means that it requires data for
decoding and playback but they have not yet been received.
This is typically addressed with the undesired playback video
stalls. Using advanced video streaming mechanisms, like
dynamic adaptive streaming over HTTP (DASH) [38], video
quality can be dynamically selected to ensure continuous
playback. For example, if packets of a required layer aremiss-
ing from the buffer, DASH can avoid a playback stall by
decoding the video at a lower quality. In the extreme case that
the base layer (quality level 1) is missing, the video playback
will be inevitably stalled.

We implement such an adaptive video streaming mecha-
nism and compare the performance achieved by the presented
caching algorithms. Specifically, we consider a dynamic sce-
nario where one video request is generated every minute for
an overall period of 10 hours. The requests are distributed
across the videos, quality levels and local nodes as in the pre-
vious experiments. The bandwidth capacities of the links
between the caches and to the server are shared across the
requested layers. In otherwords, at each time the delivery rate

of a layer is not constant but it is given by the capacity of the
respective link over the number of pending requests. This
allows us to study the impact of bandwidth fluctuations. Each
requested layer will be delivered either by the server or by a
cache that has stored that layer. The decision is taken in a way
that ensures the highest bandwidth for the request. A
requested layer will not be set to play for the next second if the
layer’s portion that is already buffered is below the portion of
the video that is already played. More advanced scheduling
algorithms that adaptively determine the duration of the time
that the player should wait for more data are out of the scope
of this paper. Unless otherwise specified, we set the overall
bandwidth capacity of the server links to 10 Mbps each, and
100Mbps for the links between the caches.

Fig. 8a shows the percentage of video streams that are
played smoothly, i.e., without any playback video stalls or
quality degradations, for each caching algorithm.Here, differ-
ent pre-buffering delays are evaluated (from 20 to 200 sec-
onds). As expected, the number of smoothly played videos
increases with the pre-buffering delay for all the caching algo-
rithms. With LCC, more than 90 percent of the requested vid-
eos are played smoothly, while the respective values are
below 70 percent for the rest caching algorithms. Overall, LCC
achieves up to 45 percent more smoothly played videos than its
counterparts.

Moving one step further, we explore how the playback
time distributes across the different decoded video qualities
and video stalls. Fig. 8b shows the results for pre-buffering
delay equal to 100 seconds. With LCC, the video stalls take
5.5 percent of the playback time, which is 4 times lower
than Femtocaching, and 9.2 times lower than IC. Moreover,
with LCC, videos are played more often at the high quality
level (Q5) than with the rest algorithms. Particularly, the
playback time at Q5 is 16.6, 11.0 and 8.5 percent for LCC,
Femtocaching and IC respectively. Overall, with LCC video
playback is stalled for shorter time and videos are played at higher
quality than with the rest algorithms.

Finally, we quantify the exact number of times that videos
experience stalls during their playback. Fig. 8c shows the
respective Cumulative Distribution Function (CDF) for pre-
buffering delay equal to 100 seconds.Here, two different cases
are studied; when the rate between a cache and a server is 10
Mbps (top subplot) and 20 Mbps (bottom subplot). In both
cases, LCC achieves fewer playback stalls for more streams com-
pared to the rest algorithms. Certain videos experience hundreds

Fig. 6. Impact of content aging. Fig. 7. Impact of node failure.

766 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 4, APRIL 2019

of playback stalls, which means that these videos are stalled
during almost all their playback time (so they are not practi-
cally available for streaming). In the 10 Mbps case, about 5, 25
and 30percent of the streams experience over a hundredplay-
back stalls for the LCC, Femtocaching and IC algorithm
respectively. These numbers are drastically reduced in the 20
Mbps case; 2 percent for LCC and Femtocaching, and 6 per-
cent for IC. Overall, LCC achieves significantly fewer playback
stalls than the rest algorithms. The gains are more pronounced when
the bandwidth capacities are relatively low.

6 RELATED WORK

6.1 Online and Offline Caching

The schemes for caching content can be classified into online
(or reactive) and offline (or proactive). Online caching is a
popular technique that stores content in caches on-demand.
Examples include simple cache replacement algorithms
such as the Least Frequently Used (LFU) and Least Recently
Used (LRU), and other variants [39]. On the other hand, off-
line caching requires a priori knowledge of the popularity
distribution of content, and based on that it optimizes cach-
ing decisions. This work focuses on offline caching.

Offline caching is in general anNP-Hard problem.Optimal
solutions are limited to special cases with: (i) a few content
files [40], (ii) ultra-metric costs between cache-nodes [41], (iii)
single-hop groups of cache-nodes [42], and (iv) line caching
networks [43]. The proofs of optimality are based on totally
unimodular constraint matrices, reductions to variants of the
matching problem, or, of themaximum-flowproblem. For the
general case, approximation algorithms have been proposed
in [3], [4], [6], [7]. The approximation ratios are derived by
applying linear relaxation and rounding techniques, by
expressing the objective function as a submodular set function
or by dynamic programming techniques. Nevertheless, all the
above results are not applicable for the case of layered video
files, as in this case caching decisions are made per layer and
the delay metric is determined by the layer delivered last.
Hence, both the solution space and the objective function of the
caching problem are different.

6.2 Caching in Wireless Mobile Networks

Caching inwireless mobile networks is a relatively new trend.
The caches can be installed at several locations such as mobile
switching centers [27], cellular base stations [28] or mobile
edge computing servers [17]. Wireless mobile networks posse
several unique features that can affect the efficiency of the

caching policies. These include the (i) broadcast/multicast
nature of the wireless medium, (ii) interference between the
wireless links, and (iii) mobility of the end-users. Schemes that
design caching policies jointly with the multicast schedule
have been proposed in [44], [45]. A joint caching, channel
assignment and routing algorithm has been proposed in [28].
Here, the caching solution takes into consideration the inter-
ference graph that dictateswhich transmissions of cached con-
tent are blocked by other transmissions. A scheme that
combines caching with coordinated multipoint (CoMP) trans-
mission, an interference mitigation technique, was proposed
in [46]. In this case, the nodes can engage in CoMP and
increase throughput if the same file is cached at many nearby
nodes. Besides, a caching scheme that exploits predictions
about the future mobility patterns of the users has been pro-
posed in [47]. This scheme disperses parts of popular files to
many cache-nodes that are likely to be encountered sequen-
tially by the users as they move. Although the above works
revealed some fundamental differences between wireline and
wireless caching, they did not consider encoding of videos
into different qualities.

6.3 Caching of Encoded Video

The video caching problem attracts increasing interest. The
work of [16] and [17] proposed to serve the requests for dif-
ferent qualities of a video by caching a high bitrate version
of that video and do rate-down conversion (transrating) for
each request requiring a lower rate version. However, this
method requires to use a processing resource to do the con-
version at the cache side. If such a resource is not available,
all the possible bitrate versions of the video need to be avail-
able in the cache, which consumes significant amount of
cache space. An alternative method is to encode the video
into multiple SVC layers which when combined achieve the
requested video quality. SVC has been shown to improve
video streaming performance by always downloading the
base layer and optionally downloading the enhancement
layers when there is enough available throughput [48]. Vari-
ous schemes have been proposed for optimizing SVC video
streaming including dynamic quality control based on net-
work bandwidth conditions, user preferences and buffering
capacities of client devices [49], [50]. Nevertheless, these
works do not consider caching.

Exploiting SVC in video caching has been recently pro-
posed in several contexts including CDN [18], IPTV [19],
helper-assisted VoD [20], Software-defined RAN [21], Cloud-
RAN [22] and small-cell wireless networks [23], [24], [25],

Fig. 8. (a) Impact of pre-buffering delay on number of smoothly played videos. (b) Playback time distribution across video stalls and qualities (quality
1 (Q1) to quality 5 (Q5)). (c) CDF of number of playback stalls for 10 Mbps (top subplot) and 20 Mbps (bottom subplot) rate of server links.

POULARAKIS ET AL.: DISTRIBUTED CACHING ALGORITHMS IN THE REALM OF LAYERED VIDEO STREAMING 767

[26]. These works either compared SVC with other video
encoding technologies, or they proposed heuristic-based or
numerically evaluated layer caching schemes. For example,
the work of [24] considered the same delay objective as ours
and proposed a convex programming relaxation based heu-
ristic algorithm for a set of non-collaborating cache-nodes.
The work of [21] regarded the same delay metric as a con-
straint (instead of objective), and proposed a two-stage round-
ing heuristic algorithm thatmaximizes a reward function for a
set of collaborating cache-nodes. The work of [22] considered
an hierarchical setup where a parent node collaborates with
child nodes in caching video layers. For this special scenario,
an approximation algorithm was presented to maximize the
overall cache hit rate. The work of [25] studied the channel
diversity gains brought by caching the same layers in neigh-
bour base stations and proposed another heuristic solution.
Finally, the implications on security of layered video caching
were investigated in [26]. Deviating from the above, in this
work, we use a general (abstract) model that can potentially
apply to different network architectures, and provide layered
video caching algorithms that are provably optimal or have
tight approximation ratios.

7 CONCLUSION

We studied distributed caching policies for layered encoded
videos aiming to reduce the video delivery delay. The pro-
posed framework captures also cooperative scenarios that
may arise, and which can further improve the user-perceived
performance. To overcome the NP-Hardness nature of the
problem,we derived novel approximation algorithms using a
connection to a knapsack-type problem and a cache-partition
technique. The results demonstrated up to 25 percent delay
gains over conventional (encoding layer-agnostic) caching
schemes, as well as side benefits in QoE performance metrics
related to video streaming (e.g., fewer playback stalls and
higher decoded quality).

We believe that this paper opens exciting directions for
future work. Among them, it is interesting to relax the
assumption of constant delay parameters that is commonly
used in caching problems (e.g., see [3], [4], [6], [7], [21]) or
change the objective to directly optimize QoE performance
metrics related to video streaming and study how the results
are affected.

ACKNOWLEDGMENTS

Part of this work appeared in the Proceedings of IEEE Interna-
tional Conference on Computer Communications (Infocom), April
2016 [1]. K. Poularakis acknowledges the Bodossaki Foun-
dation, Greece, for a postdoctoral fellowship. G. Iosifidis
acknowledges support by a research grant fromScience Foun-
dation Ireland (SFI) under Grant Number 17/CDA/4760. The
research of I. Koutsopoulos was supported by AUEB-RC
under the internal project “Original Scientific Publications”.
The work of L. Tassiulas was supported by the US Office of
Naval Research (ONR) under awardN00014-14-1-2190.

REFERENCES

[1] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and
L. Tassiulas, “Caching and operator cooperation policies for layered
video content delivery,” in Proc. IEEE INFOCOM, 2016, pp. 1–9.

[2] Ericsson, “Mobility report,” Feb. 2018. [Online]. Available online:
https://www.ericsson.com/assets/local/mobility-report/
documents/2018/emr-interim-feb-2018.pdf

[3] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms
for content distribution networks,” in Proc. IEEE INFOCOM,
2010, pp. 1–9.

[4] N. Golrezaei, K. Shanmugam, A. Dimakis, A.Molisch, and G. Caire,
“FemtoCaching: Wireless video content delivery through distrib-
uted caching helpers,” inProc. IEEE INFOCOM, 2012, pp. 1107–1115.

[5] G. Almes, S. Kalidindi, and M. Zekauskas, “A one-way delay met-
ric for IPPM,” 2016. [Online]. Available: https://www.rfc-editor.
org/rfc/pdfrfc/rfc7679.txt.pdf

[6] I. D. Baev and R. Rajaraman, “Approximation algorithms for data
placement problems,” SIAM J. Comput., vol. 38, pp. 1411–1429, 2008.

[7] A. Khreishah and J. Chakareski, “Collaborative caching for multi-
cell coordinated systems,” in Proc. IEEE INFOCOM Workshops,
2015, pp. 257–262.

[8] YouTube, “Live encoder settings, bitrates and resolutions.”
[Online]. Available: https://support.google.com/youtube/
answer/2853702?hl=en, accessed on 2018.

[9] E. Wyatt and N. Cohen, NY Times, “Comcast and Netflix reach
deal on service,” Feb. 2014. [Online]. Available online: https://
www.nytimes.com/2014/02/24/business/media/comcast-and-
netflix-reach-a-streaming-agreement.html

[10] H. Schwartz, D. Marpe, and T. Wiegand, “Overview of the scalable
video coding extension of the H.264/AVC standard,” IEEE Trans.
Circuits Syst. Video Technol., vol. 17, no. 9, pp. 1103–1120, Sep. 2007.

[11] Cisco Webcasts, “Emerging video technologies: H.265, SVC, and
WebRTC,” 2014. [Online]. Available: https://www.ciscolive.com

[12] Vidyo. [Online]. Available: http://www.vidyo.com, accessed on
2018.

[13] RADVISION. [Online]. Available: http://www.radvision.com,
accessed on 2018.

[14] Nojitter, “Google, Skype, and WebRTC,” 2013. [Online]. Avail-
able: http://www.nojitter.com/post/240160776/google-skype-
and-webrtc

[15] Strech Inc. [Online]. Available: http://www.stretchinc.com,
accessed on 2018.

[16] H. A. Pedersen and S. Dey, “Enhancing mobile video capacity and
quality using rate adaptation, RAN caching and processing,”
IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 996–1010, Apr. 2016.

[17] T. X. Tran, P. Pandey, A. Hajisami, and D. Pompili, “Collaborative
multi-bitrate video caching and processing in mobile-edge com-
puting networks,” in Proc. IEEE 13th Annu. Conf. Wireless
On-Demand Netw. Syst. Services, 2017, pp. 165–172.

[18] F. Hartanto, J. Kangasharju, M. Reisslein, and K. Ross, “Caching
video objects: Layers versus versions?,” Multimedia Tools Appl.,
vol. 2, pp. 45–48, 2006.

[19] Y. Sanchez, T. Schierl, C. Hellge, D. Hong, D. D. Vleeschauwer,
W. V. Leekwijck, Y. Lelouedec, and T.Wiegand, “Improved caching
for HTTP-based video on demand using scalable video coding,” in
Proc. IEEE Consum. Commun.Netw. Conf., 2011, pp. 595–599.

[20] P. Ostovari, A. Khreishah, and J. Wu, “Multi-layer video stream-
ing with helper nodes using network coding,” in Proc. IEEE 10th
Int. Conf. Mobile Ad-Hoc Sensor Syst., 2013, pp. 524–532.

[21] S. Qin,M. Bennis, X. Chen, G. Feng, Z. Han, andG. Xue, “Enhancing
software-defined RAN with collaborative caching and scalable
video coding,” in Proc. IEEE Int. Conf. Commun., 2016, pp. 1–6.

[22] Z. Zhang, D. Liu, and Y. Yuan, “Layered hierarchical caching for
SVC-based HTTP adaptive streaming over C-RAN,” in Proc. IEEE
Wireless Commun. Netw. Conf., 2017, pp. 1–6.

[23] K. Poularakis, G. Iosifidis, A. Argyriou, and L. Tassiulas, “Video
delivery over heterogeneous cellular networks: Optimizing cost
and performance,” in Proc. IEEE INFOCOM, 2014, pp. 1078–1086.

[24] C. Zhan and Z. Wen, “Content cache placement for scalable video
in heterogeneous wireless network,” IEEE Commun. Lett., vol. 21,
no. 12, pp. 2714–2717, Dec. 2017.

[25] T. Zhen, Y. Xu, T. Yang, and B.Hu, “QoE-aware proactive caching of
scalable videos over small cell networks,” arXiv:1604.07572, 2016,
Available online: https://arxiv.org/abs/1604.07572

[26] L. Xiang, D. W. K. Ng, R. Schober, and V. W. S. Wong, “Secure
video streaming in heterogeneous small cell networks with
untrusted cache helpers” in Proc. IEEE Global Commun. Conf.,
2017, pp. 1–7.

[27] J. Dai, F. Liu, B. Li, B. Li, and J. Liu, “Collaborative caching in
wireless video streaming through resource auctions,” IEEE J. Sel.
Areas Commun., vol. 30, no. 2, pp. 458–466, Feb. 2012.

768 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 4, APRIL 2019

https://www.ericsson.com/assets/local/mobility-report/documents/2018/emr-interim-feb-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/emr-interim-feb-2018.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc7679.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc7679.txt.pdf
https://support.google.com/youtube/answer/2853702?hl=en
https://support.google.com/youtube/answer/2853702?hl=en
https://www.nytimes.com/2014/02/24/business/media/comcast-and-netflix-reach-a-streaming-agreement.html
https://www.nytimes.com/2014/02/24/business/media/comcast-and-netflix-reach-a-streaming-agreement.html
https://www.nytimes.com/2014/02/24/business/media/comcast-and-netflix-reach-a-streaming-agreement.html
https://www.ciscolive.com
http://www.vidyo.com
http://www.radvision.com
http://www.nojitter.com/post/240160776/google-skype-and-webrtc
http://www.nojitter.com/post/240160776/google-skype-and-webrtc
http://www.stretchinc.com
https://arxiv.org/abs/1604.07572

[28] A. Khreishah, J. Chakareski, and A. Gharaibeh, “Joint caching,
routing, and channel assignment for collaborative small-cell cellu-
lar networks,” IEEE J. Sel. Areas Commun., vol. 34, no. 8, pp. 2275–
2284, Aug. 2016.

[29] Y. Lien, “Some properties of 0-1 knapsack problems,” in Proc.
Conf. Combinatorics Complexity, 1987, pp. 1–25.

[30] E. Bastug, M. Bennis, and M. Debbah, “Anticipatory caching in
small cell networks: A transfer learning approach,” in Proc. 1st
KuVS Workshop Anticipatory Netw., 2014, pp. 1–3.

[31] Video Trace Library. [Online]. Available: http://trace.eas.asu.
edu, accessed on 2018.

[32] N. Bouten, S. Latre, J. Famaey, F. De Turck, and W. Van Leek-
wijck, “Minimizing the impact of delay on live SVC-based HTTP
adaptive streaming services,” in Proc. IFIP/IEEE Int. Symp. Integr.
Netw. Manage., 2013, 1399–1404.

[33] Appendix. [Online]. Available: https://www.dropbox.com/s/
43f7m31u35nqzfy/Appendix.pdf?dl=0, accessed on 2018.

[34] M. S. Bansal and V. C. Venkaiah, “Improved fully polynomial
time approximation scheme for the 0-1 multiple-choice knapsack
problem,” in Proc. SIAM Conf. Discrete Math., 2004, pp. 1–10.

[35] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[36] Publicly available code. [Online]. Available: https://www.
dropbox.com/s/s9yequ71ytlkylz/infocom16code.rar?dl=0,
accessed on 2018.

[37] M. Hefeeda and O. Saleh, “Traffic modeling and proportional par-
tial caching for peer-to-peer systems,” IEEE/ACM Trans. Netw.,
vol. 16, no. 6, pp. 1447–1460, Dec. 2008.

[38] T. Stockhammer, “Dynamic adaptive streaming over HTTP –:
Standards and design principles,” in Proc. Annu. ACM Conf. Multi-
media Syst., 2011, pp. 133–144.

[39] S. Li, J. Xu, M. Schaar, and W. Li, “Trend-aware video caching
through online learning,” IEEE Trans. Multimedia, vol. 18, no. 12,
pp. 2503–2516, Dec. 2016.

[40] M. Dehghan, A. Seetharam, B. Jiang, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal
routing and content caching in heterogeneous networks,” in Proc.
IEEE INFOCOM, 2015, pp. 936–944.

[41] M. Korupolu, C. G. Plaxton, and R. Rajaraman, “Placement algo-
rithms for hierarchical cooperative caching,” in Proc. 10th Annu.
ACM/SIAM Symp. Discrete Algorithms, 1999, pp. 586–595.

[42] M. Taghizadeh, K. Micinski, C. Ofria, E. Torng, and S. Biswas,
“Distributed cooperative caching in social wireless networks,”
IEEE Trans. Mobile Comput., vol. 12, no. 6, pp. 1037–1053, Jun. 2013.

[43] K. Poularakis and L. Tassiulas, “On the complexity of content
placement in hierarchical caching networks,” IEEE Trans.
Commun., vol. 64, no. 5, pp. 2092–2103, May 2016.

[44] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of cach-
ing,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May
2014.

[45] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas,
“Exploiting caching and multicast for 5G wireless networks,”
IEEE Trans. Wireless Commun., vol. 15, no. 4, pp. 2995–3007,
Apr. 2016.

[46] A. Liu and V. K. N. Lau, “Mixed-timescale precoding and cache
control in cached MIMO interference network,” IEEE Trans. Signal
Process., vol. 61, no. 24, pp. 6320–6332, Dec. 2013.

[47] K. Poularakis and L. Tassiulas, “Code, cache and deliver on the
move: A novel caching paradigm in hyper-dense small-cell
networks,” IEEE Trans. Mobile Comput., vol. 16, no. 3, pp. 675–687,
Mar. 2017.

[48] J. Famaey, S. Latre, N. Bouten, and F. D. Turck, “On the merits of
SVC-based HTTP adaptive streaming,” in Proc. IFIP/IEEE Int.
Symp. Integr. Netw. Manage., 2013, pp. 419–426.

[49] X. Wang, J. Chen, A. Dutta, and M. Chiang, “Adaptive video
streaming over whitespace: SVC for 3-tiered spectrum sharing,”
in Proc. IEEE INFOCOM, 2015, pp. 28–36.

[50] X. Li and B. Veeravalli, “A differentiated quality adaptation
approach for scalable streaming services,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 8, pp. 2089–2099, Aug. 2015.

[51] J. F. Nash, “The bargaining problem,” Econometrica: J. Econometric
Soc., vol. 18, no. 2, pp. 155–162, 1950.

Konstantinos Poularakis received the diploma,
MS, and PhD degrees in electrical engineering
from the University of Thessaly, Greece, in 2011,
2013, and 2015, respectively. Currently, he is a
post-doc researcher and a member of the Insti-
tute for Network Science, Yale University. His
research interests lie in the broad area of network
optimization. He has been honored with several
awards and scholarships during his studies, from
sources including the Greek State Scholarships
Foundation (IKY), the Center for Research and

Technology Hellas (CERTH), and the “Alexander S. Onassis Public Ben-
efit Foundation”. He received the Best Paper Award in IEEE Infocom
2017. He is a member of the IEEE.

George Iosifidis received the diploma degree in
electronics and telecommunications engineering
from the Greek Air Force Academy, in 2000, and
the MS and PhD degrees in electrical engineering
from the University of Thessaly, Greece, in 2007
and 2012, respectively. He worked as a post-doc-
toral researcher with CERTH, Greece, and Yale
University. He is currently the ussher assistant
professor in future networks with Trinity College
Dublin, and also a funded investigator with the
national research centre CONNECT in Ireland.

His research interests lie in the broad area of wireless network optimiza-
tion and network economics. He is a member of the IEEE.

Antonios Argyriou (S’99-M’06-SM’15) received
the diploma degree in electrical and computer
engineering from the Democritus University of
Thrace, Greece, in 2001, and the MS and PhD
degrees in electrical and computer engineering
as a Fulbright scholar from the Georgia Institute
of Technology, Atlanta, Georgia, in 2003 and
2005, respectively. Currently, he is an assistant
professor with the Department of Electrical and
Computer Engineering, University of Thessaly,
Volos, Greece. From 2007 to 2010, he was a

senior research scientist at Philips Research, Eindhoven, The Nether-
lands. From 2004 to 2005, he was a senior engineer with Soft.Networks,
Atlanta, Georgia. He currently serves on the editorial board of the Jour-
nal of Communications. He has also served as guest editor of the IEEE
Transactions on Multimedia special issue on quality-driven cross-layer
design, and hewas also a lead guest editor for the Journal of Communica-
tions, special issue on network coding and applications. He serves on the
TPC of several international conferences and workshops in the area of
communications, networking, and signal processing. His current research
interests include the areas of wireless communication systems and net-
works, and signal processing. He is a senior member of the IEEE.

POULARAKIS ET AL.: DISTRIBUTED CACHING ALGORITHMS IN THE REALM OF LAYERED VIDEO STREAMING 769

http://trace.eas.asu.edu
http://trace.eas.asu.edu
https://www.dropbox.com/s/43f7m31u35nqzfy/Appendix.pdf?dl=0
https://www.dropbox.com/s/43f7m31u35nqzfy/Appendix.pdf?dl=0
https://www.dropbox.com/s/s9yequ71ytlkylz/infocom16code.rar?dl=0
https://www.dropbox.com/s/s9yequ71ytlkylz/infocom16code.rar?dl=0

Iordanis Koutsopoulos (S’99-M’03-SM’13)
received the diploma degree in electrical and
computer engineering from the National Techni-
cal University of Athens (NTUA), Athens, Greece,
in 1997, and the MS and PhD degrees in electri-
cal and computer engineering from the University
of Maryland, College Park, College Park, Mary-
land, in 1999 and 2002, respectively. He is now
an associate professor with the Department of
Informatics, Athens University of Economics and
Business (AUEB), Athens, Greece. He was an

assistant professor (2013-2015) with AUEB. Before that, he was an
assistant professor (2010-2013) and a lecturer (2005-2010) with the
Department of Computer Engineering and Communications, University
of Thessaly, Volos, Greece. His research interests include network con-
trol and optimization, with applications on wireless networks, social and
community networks, crowd-sensing systems, smart-grid, and cloud
computing. He was the recipient of the single-investigator European
Research Council (ERC) Competition Runner-Up Award for the project
RECITAL: Resource Management for Self-coordinated Autonomic Wire-
less Networks (2012-2015). He is a senior member of the IEEE.

Leandros Tassiulas (S’89-M’91-SM’05-F’07)
received the PhD degree in electrical engineering
from the University of Maryland, College Park, in
1991. He is the John C. Malone Professor of
Electrical Engineering and a member of the Insti-
tute for Network Science, Yale University. His
research interests include the field of computer
and communication networks with emphasis
on fundamental mathematical models and algo-
rithms of complex networks, architectures and
protocols of wireless systems, sensor networks,

novel internet architectures, and experimental platforms for network
research. His most notable contributions include the max-weight sched-
uling algorithm and the back-pressure network control policy, opportunis-
tic scheduling in wireless, the maximum lifetime approach for wireless
network energy management, and the consideration of joint access con-
trol and antenna transmission management in multiple antenna wireless
systems. His research has been recognized by several awards including
the IEEE Koji Kobayashi Computer and Communications Award (2016),
the inaugural INFOCOM2007Achievement Award for Fundamental Con-
tributions to Resource Allocation in Communication Networks, the INFO-
COM 1994 Best Paper Award, a National Science Foundation (NSF)
Research Initiation Award (1992), an NSF CAREER Award (1995), an
Office of Naval Research Young Investigator Award (1997), and a Bodos-
saki Foundation Award (1999). He has held faculty positions with Poly-
technic University, New York, University of Maryland, College Park, and
University of Thessaly, Greece. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

770 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 4, APRIL 2019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

