
PUBLISHED IN: PROCEEDINGS OF THE IEEE MOCS 2024 1

Certificate Management for Cloud-Hosted Digital
Twins

Nikos Fotiou∗, Chalima Dimitra Nassar Kyriakidou†, Athanasia Maria Papathanasiou†, Iakovos Pittaras†,
Yannis Thomas†, George Xylomenos†

∗ExcID, Athens, Greece
fotiou@excid.io

†Mobile Multimedia Laboratory
Department of Informatics, School of Information Sciences and Technology

Athens University of Economics and Business, Greece
{dnassar,sissypapathanasiou,pittaras,thomasi,xgeorge}@aueb.gr

Abstract—A key enabler for the digitization of physical de-
vices is digital twining technology. A digital twin is a virtual
representation of a physical object (or a collection of physical
objects) that allows their integration into cyber systems. Digital
twins are usually hosted in cloud environments, which provide
high availability and resilience to failures. This integration creates
new opportunities and enables new capabilities, but it also raises
security concerns. In this paper, we design a digital certificate
management solution that allows building trust on digital twins
independently of their network location. Our solution allows
digital twins to securely receive certificates, which can be used
to digitally sign data at the application layer. Our scheme does
not depend on the certificate infrastructure used to secure the
communication between end-users and the (cloud-hosted) digital
twins. Our solution is feasible, realistic and resilient against key
breaches, with a marginal communication overhead. Finally, our
scheme automates the process of certificate issuance for digital
twins, thus enabling very fast key and certificate rotation.

Index Terms—Digital Twins, OpenID Connect, TUF, X.509.

I. INTRODUCTION

As the Internet of Things (IoT) becomes an integral com-
ponent of our life, the Digital Twin (DT) paradigm becomes
even more important. A DT is a virtual representation of a
physical object, system, or asset [1] that allows its integration
into cyber systems enabling the “I” in the IoT. In order to
provide high availability and resilience to network errors,
DTs often operate in a powerful and secure network location,
“hosted” by trusted third parties (e.g., cloud providers). There
are already providers that offer such services, such as Amazon1

and Microsoft2. For example, in a smart city transit monitoring
system, city buses, trams and, even, public electric bikes,
can periodically upload their status to a DT hosted in a
public cloud, allowing traffic monitoring applications constant
access to their status, as well as enabling long-term traffic
data mining via machine learning algorithms. While these
(complex) systems provide increased flexibility and advanced
monitoring capabilities, they create new security and trust
challenges and are often the target of cyberattacks [2].

The need for real-time synchronization of information, the
open communication environment, and the, possibly sensitive,

1https://aws.amazon.com/iot-twinmaker/
2https://azure.microsoft.com/en-us/products/digital-twins/

information exchanged between the DT and its physical coun-
terpart, highlight the need to ensure their secure communi-
cation. In this context, it is crucial for end systems twinned
with a DT to be able to verify the integrity and authenticity
of received messages. This requires establishing robust trust
relationships with DTs, an aspect that many existing systems
neglect, considering it something that happens “out-of-band”.
As a result, in many existing systems, the authentication
of and interaction with DTs pose significant challenges, as
they typically rely on outdated methods, such as hard-coded
credentials, static passwords, or simple access control lists
installed at the factory, which are hard or impossible to update.
These approaches lack the necessary flexibility, scalability,
and resilience against the sophisticated attacks which are
commonplace against cloud providers.

To address these challenges, in this paper we focus on
DT identification and authentication, designing a secure and
resilient certificate management mechanism that allows cloud-
hosted DTs to obtain short-lived, and easily rotated, certificates
for digitally signing data. Our solution achieves the following:

• It removes the need for DTs to store any secrets.
• It is resilient against malicious Certificate Authori-

ties (CA), allowing explicit definition of trusted CA keys.
• It enables automated certificate issuance, thus allowing

the frequent rotation of signing keys.
• It has minimal overhead and it builds upon existing

standards and protocols.
The remainder of the paper is organized as follows. Sec-

tion II presents background information and related work in
this area. Section III details the design of our solution, while
Section IV discuses its implementation and evaluation. Finally,
Section V concludes the paper and discusses future work.

II. BACKGROUND AND RELATED WORK

Various definitions have been proposed for DTs, with the
most widely-adopted comprising three main components: a
Physical Object (PO), a Virtual Object (VO), and a mapping
between them, which may be one-sided or bidirectional,
depending on the system [3]. DTs are commonly utilized
for continuous monitoring of network infrastructure; often,



2 PUBLISHED IN: PROCEEDINGS OF THE IEEE MOCS 2024

machine learning algorithms analyze historical data patterns
to predict future trends and anticipate performance failures.
Moreover, DTs are utilized to enhance network optimization
efforts by leveraging data-driven analytics to reduce network
latency, increase system speed, and address potential errors
or malfunctions in physical devices. Finally, DTs can serve
as security implementation tools, conducting risk assessments
using real-world data without impacting actual devices.

DT technology has been studied in many security-sensitive
domains. Lai et al. [4] use DTs in a traffic control system,
where they introduce a privacy-preserving protocol. The proto-
col includes a group signature scheme, which is responsible for
authenticating data sources and enabling efficient revocation
and privacy protection. This approach ensures the secure
storage of data generated from vehicles on cloud service
providers, once synchronized with their DTs. In the data
sharing phase, the authors employ Attribute-Based Access
Control (ABAC), in which the parameters of specific sub-
policies are stored during their first decryption and re-used
when the same access control sub-policy is relevant again, so
as to reduce computational overhead.

Liu et al. [5] leverage DTs to construct a cloud scheme for
healthcare data. Their framework enables real-time monitor-
ing, diagnosis, and prediction, using data collected from med-
ical devices, which are transmitted across wireless networks
to a cloud server, where a DT is responsible for authorizing
users and granting them access to the server’s medical data.

Patel et al. [6] propose a user-centric approach to enable
privacy-preserving authorization in cloud-based DTs, by lever-
aging Decentralized Identifiers (DIDs) and Verifiable Creden-
tials (VCs). In particular, they design three protocols: secure
access to a DT’s data, command execution on the physical
object and recovery in case of private key loss. Similarly,
Thakur et al. [7] propose a three-factor authentication scheme
for cloud-based DT environments and Chen et al. [8] propose a
privacy-preserving protocol for mutual authentication between
vehicles, with a DT representing the whole network.

Another framework, proposed by Xu et al. [9], introduces
an authentication protocol for secure communication between
autonomous vehicles and DTs that consists of two parts: intra-
twin authentication and inter-twin authentication. For intra-
twin authentication, when an autonomous vehicle joins the
system, it establishes a connection with the central author-
ity to obtain information about its personal DT, and they
authenticate each other using pseudonyms generated by the
aforementioned authority. In inter-twin authentication, after the
DT authenticates with the vehicle, it communicates with the
central authority to obtain a group certificate.

These systems aim to protect data in transit, implementing
end-user authentication and access control under the assump-
tion that DTs are secure and trusted. In contrast, our solution
does not assume implicitly trusted DTs; instead, it provides
mechanisms that allow end-users to reliably determine whether
they are interacting with a trusted DT or not.

Our solution relies on X.509 certificates issued to entities
that present a valid OpenID identity token. Recent efforts [10],
[11] try to remove the need for a CA, using OpenID identity to-
kens directly as digital certificates. Although these approaches

do result in faster processing, they require new tooling for
signing and verifying data. Furthermore, OpenID tokens often
include additional information that may be sensitive, hence
these approaches introduce privacy threats.

Finally, recent efforts [12], [13] attempt to reduce the
amount of trust in (automated) CAs that use OpenID identity
tokens for issuing certificates. These approaches, however,
require modifications to OpenID endpoints. Our solution is
compatible with these approaches and can benefit from a set-
up where these solutions are deployed at OpenID endpoints.

III. DESIGN

Our system considers the following (digital) entities (see
also Fig. 1): a device owner that owns IoT devices, a cloud
provider that operates a network of nodes, a digital twinning
platform that provides Digital Twin (DT) functionality, a
consumer that accesses DTs, and a Certificate Authority (CA)
responsible for issuing digital certificates used by DTs to
sign data at the application layer. In the smart city transit
monitoring system example, the device owner is a company
(or multiple companies) operating buses, trams and/or electric
bikes, while the consumer is the city agency that monitors
transit operations. The cloud provider and the CA are pub-
licly available services, while the digital twinning platform is
software (possibly, off the shelf) that implements DTs.

Our design considers the following identities. An owner is
identified by a URL, referred to as OwnerURL. Usually, this
URL is the prefix of the (HTTPS) URL used by a consumer
to access the DTs of the corresponding owner. Similarly, a CA
is identified by a URL referred to as CAURL. Finally, each
digital twinning platform instance is identified by a unique
identifier, referred to as InstanceID.

From a high level perspective, the defined entities interact
with each other as follows. The digital twinning platform
implements an API that is used by IoT devices to update the
state of their corresponding DT and by consumers to access
the state of a DT, or receive events related to it. Our design
is oblivious to this API; our implementation builds on ETSI’s
NGSI-LD API [14] to provide this functionality. An instance
of the digital twinning platform trusted by a device owner
is executed in one or more nodes of a cloud provider. This
instance obtains a digital certificate by a CA trusted by the
device owner and uses that certificate to sign the responses
sent to a consumer. Our goal is to enable consumers to verify
the authenticity, provenance, and integrity of these responses
in a secure and efficient way.

A. Trust relationships

Our system considers the following trust relationships (see
also Fig. 1). Consumers are pre-configured, using out-of-
band mechanisms, with the OwnerURL of each trusted de-
vice owner. We also assume that device owners know the
InstanceID of the DT platform instances. An InstanceID
can be verified and attested by a cloud provider. Examples
of identifiers that can be used as anInstanceID are the
digest of the platform’s binary, a workload identifier (e.g.,
SPIFFE, Kurbenetes pod identifier), and others. An attestation



PUBLISHED IN: PROCEEDINGS OF THE IEEE MOCS 2024 3

CA

IoT

Consumer

Node

Device Owner

Owns

Cloud 
provider

Operates

Knows

Issues

Platform

DT

Trusts

Hosts

Provides

Trusts

Fig. 1. System entities and their relationships.

of an InstanceID is signed by a key controlled by the cloud
provider and trusted by the device owner. This allows the
device owner to verify that the DT platform instance hosted
by the cloud provided is a trusted piece of software.

In the following, we define a mechanism that allows an
instance of a DT platform to prove to a consumer that it is
authorized to provide DT functionality for the IoT devices of
a device owner. This authorization is proved through a digital
certificate that binds OwnerURL to a public key controlled by
that platform instance; the certificate is issued by a CA trusted
by the device owner. Our solution allows: a) a consumer to
learn the CAs that a device owner trusts, and b) an instance of
a platform executed in a cloud provider trusted by the device
owner to obtain a digital certificate from a CA that is also
trusted by the device owner.

B. Trusted CA management

In our solution we are using The Update Framework
(TUF) [15] enhanced with [16] to disseminate the public keys
of the CAs trusted by a device owner. Note that TUF is a
general purpose framework, thus our solution can be extended
to allow dissemination of other trusted resources. In TUF, a
device owner maintains a repository where the public keys
of all trusted entities are stored: the files that include these
keys are the target files. Moreover, this repository includes
metadata files that protect its state. Using TUF, a consumer
can securely access and verify target files, thus learning the
public keys of the entities trusted by a device owner.

In TUF, a device owner defines four roles: Root, Targets,
Snapshot, and Timestamp. Each role is associated with a
number of keys: the keys of the Root role are securely
transmitted using out-of-band mechanisms to consumers. Each
role is responsible for the following files (see also Fig. 2):

• The Root role generates and signs the root.json
metadata file. This file specifies the keys of each
other role, as well as the number of keys re-
quired to sign each role’s metadata file. This file
can be versioned. New versions of root.json

root.json
targets

targets.json

snapshot.json

timestamp.json

Signing Keys

Version

Version

CA_1.pem

CA_2.pem

Hash

Hash

Fig. 2. TUF repository structure.

are named VERSION_NUMBER.root.json where
VERSION_NUMBER is an integer that is always increased
by one. A consumer downloads the latest version of
root.json simply by increasing a counter N one by
one and testing if the file N.root.json exists.

• The Target role generates and signs the targets.json
metadata file. This file lists the hashes and sizes of target
files. This file can be also be versioned. The current
version of the targets.json file is specified in the
snapshot.json file.

• The Snapshot role generates and signs the
snapshot.json metadata file. This file lists
the version numbers of the root.json and
targets.json files. This file can also be versioned.
The current version of snapshot.json is specified in
the timestamp.json file.

• The Timestamp role generates and signs the
timestamp.json metadata file. This file lists
the hash, size, and version of the snapshot.json
file. This file is not versioned. It is frequently re-signed,
and has a short expiration date.

A consumer can securely learn the public keys of the CAs
that a device owner trusts as follows. Initially, it retrieves the
latest version of root.json and verifies it using the pre-
configured keys of the root role. From there, it extracts and
stores the public keys of the other roles. Next, it downloads
timestamp.json, verifies it, and extracts the current ver-
sion of snapshot.json. Following a similar approach, it
downloads the latest versions of snapshot.json and then
of targets.json. After verifying them, it downloads the
target files and examines if their hashes match the values
included in targets.json. Note that consumers that have
already performed these steps once, can determine if the target
files have been modified by simply downloading the latest
timestamp.json file.



4 PUBLISHED IN: PROCEEDINGS OF THE IEEE MOCS 2024

Platform Node Owner

Request attestation

Attestation

/authorize 
client_id=<PlatformID>
client_secret=<attestation>
[...]

id_token=<identity token>
[...]

Fig. 3. Platform bootstrapping.

C. Platform bootstrapping

The purpose of the platform bootstrapping process is to
enable a DT platform instance to authenticate itself to a device
owner and receive an identity token, thus allowing it to operate
DTs on behalf of the device owner. As we discussed in the
previous section, each device owner knows the InstanceID
identifiers of all available platforms. An identity token proves
that this specific DT platform instance is trusted by the device
owner. Identity tokens are issued using OpenID Connect [17].
Accordingly, a device owner acts as an OpenID Connect
Provider and implements all necessary HTTP endpoints re-
quired by the OpenID Connect Core and OpenID Connect
Discovery [18] specifications. The bootstrapping process is
implemented as follows.

Initially, a digital twinning platform instance requests from
the node where it is hosted an attestation that acts as a proof
of the platform’s identifier (InstanceID). This attestation
is signed with a key controlled by the cloud provider and
trusted by the device owner. Our design is oblivious to the
attestation type and the attestation method generation, e.g.,
an attestation can be generated by the TPM of the node, a
Virtual Machine provider, or a container framework. The only
requirement of our solution is for the attestation to include a
unique identifier that can be used to prevent attestation re-use.
Then, the attestation is used as a client secret by the platform
instance to receive an identity token from the device owner
using OpenID connect. These steps are illustrated in Fig. 3.

In more detail, the DT platform instance sends the received
attestation to the authorization endpoint of the device owner.
The owner verifies that (a) the attestation includes a trusted
InstanceID, (b) it has not been re-used, and (c) it has
been signed by a trusted cloud provider. Then, it generates
the identity token which is an OpenID id_token (i.e., a
signed JSON Web Token). The claim values that the identity
token must include in our solution are given in Table I.
The identity token is signed using a JSON Web Key (JWK):

TABLE I
CLAIM VALUES OF IDENTITY TOKENS GENERATED IN OUR SYSTEM.

claim value
jti A unique identifier for preventing token re-use
sub InstanceID
iss OwnerURL

aud CAURL

Platform CA Owner

CSR, id_token

Get /jwks

Verification keys

Verify id_token

X509 Certificate

Fig. 4. Certificate issuance.

the corresponding public key can be retrieved from the jwks
endpoint of the device owner [18]. In our solution, the key
used to sign identity tokens is rotated frequently.

D. Certificate issuance

The purpose of this process is to enable a DT platform
instance to receive an X.509 certificate from a CA that binds
a public key controlled by that instance to the OwnerURL of
a device owner. This certificate enables this platform instance
to provide DTs that are securely (and verifiably) twinned to
the devices of OwnerURL.

First, the DT platform instance has to obtain a fresh identity
token using the previous protocol. Then, it generates a public-
private key pair, which will be used for signing data. Finally,
it creates a Certificate Signing Request (CSR) and sends it
to the CA together with the identity token (see also Fig. 4).
The CA then verifies that the identity token has not been re-
used, includes the correct claim values (as specified in Table I),
and has not expired. Then, the CA retrieves from the jwks
endpoint of the device owner the appropriate verification key
and validates the signature of the identity token (the process
of locating the jwks endpoint is described in the OpenID
Connect Discovery specifications [18]). If all the verifications
are successful, the CA issues the requested X.509 certificate.

The issued certificate’s subject alternative name (i.e., who
the certificate is issued for) matches the sub claim from the
identity token. Additionally, the certificate includes an X.509
v3 extension field that matches the provider of the identity
token (i.e., the OwnerURL included in the iss claim of the
identity token). These certificates are short-lived in our solu-



PUBLISHED IN: PROCEEDINGS OF THE IEEE MOCS 2024 5

tion, to enforce frequent key rotation; in our implementation,
a certificate has a lifetime of only 10 min.

E. Signing and verification

Our solution assumes a system where consumers request
data related to an IoT device and these requests are handled
by a platform instance that responds based on the status of the
corresponding DT. Responses are signed using an ephemeral
private-public key pair generated by the platform instance.
In order for a signature to be verifiable by a consumer,
the generated public key must be included in a valid X.509
certificate issued using the processes described in the previous
section. To summarize, the platform instance must obtain a
valid identity attestation from the hosting node, exchange it
with an identity token from the device owner, and send this
token together with a CSR to a trusted CA. Our solution is
not bound to any specific digital signature mechanism; our
implementation uses JSON Web Signatures, as well as signing
schemes that enable selective data disclosure [19].

On the other hand, the only trust relationship that consumers
establish is with the device owner. Therefore, upon receiving
a signed response, they use their trust relationship with the
owner as the “root of trust” and try to verify the digital
signature included in the received item. In order to do that,
they must first retrieve the public key(s) of the CA(s) trusted
by the device owner, using TUF and the approach described in
section III-B. Then, they examine if the certificate of the signer
(which, in our implementation, is included in the signed item
itself) has been issued by a trusted CA. Finally, if all checks are
successful, they verify the signature using the latter certificate.

IV. IMPLEMENTATION AND EVALUATION

Our implementation includes a custom-made platform that
implements ETSI’s NGSI-LD API. Instances of the digi-
tal twinning platforms are executed in a docker container.
Platforms are identified using SPIFFE3 and attestations are
generated using SPIRE4. We also implemented a custom-made
OpenID provider used by device owners. Finally, as a CA we
use a local instance of Fulcio5, which is part of Sigstore [20].6

A. Performance evaluation

Performance-wise, the goal of our system is to enable fast
and automated certificate issuance to platform instances. In
order to measure the time required to issue a certificate, we
considered a scenario where the device owner’s OpenID com-
ponents are hosted by the same cloud provider as the digital
twinning platform. On the other hand, we would expect the CA
to be a public service located in another network. In order to
approximate the time required to receive a certificate from the
public CA, we measured the time needed to interact with the
public instance of Fulcio.7 Table II presents a breakdown of

3https://spiffe.io/
4https://spiffe.io/docs/latest/spire-about/
5https://github.com/sigstore/fulcio
6A proof-of-concept implementation of the entire system is available at

https://github.com/mmlab-aueb/certificate-management
7https://fulcio.sigstore.dev

TABLE II
TIME IN MS REQUIRED FOR ISSUING A CERTIFICATE.

Process Time (ms)
Attestation issuance 1

Identity token issuance 4
Certificate issuance 390

the time a DT platform instance spends on the various phases
of receiving a certificate, obtained in a desktop PC using an
Intel i5 processor and 8GB of RAM, running Ubuntu 22.04.
We can see that a certificate is issued in less that 0.5 seconds,
even assuming a remote public CA.

B. Security evaluation

For the security evaluation of our system, we adapt the
threat model of [20]. Specifically, we consider powerful adver-
saries that are capable of both compromising components in
our system and performing man-in-the middle attacks. How-
ever, we assume that attackers cannot control the attestation
mechanism of the cloud provider and cannot control all root
keys used by the device owner to sign the root TUF metadata
file. Finally, we assume that an attacker cannot have access to
the certificate signing key of the trusted CA. We now discuss
the impact of different types of compromises.

1) Man-in-the-Middle attacks: An attacker that intercepts
the communication between a DT platform instance and a con-
sumer, could replace the transmitted response with a tampered
one. However, the consumer will detect this attack, since the
signature will be invalid. On the other hand, an attacker that
is able to intercept the communication between a DT platform
instance and the device owner could use the identity token to
request a certificate. In order to mitigate this attack, identity
tokens should be bound to a key controlled by the platform
instance. This can be achieved by leveraging the nonce-based
mechanism used in [21] or by using the OAuth 2.0 DPoP (as
specified in RFC 9449).

2) Platform compromise: An attacker can compromise a
platform instance before execution or during runtime. If a
platform is compromised before running, then (and depending
on the platform identification attestation method used) it may
result in receiving an invalid attestation that will be rejected
during the OpenID connect flow with the device owner. On the
other hand, a compromised running instance of the platform
may be able to receive a valid certificate and create fake signed
responses. In that case, responses generated by other instances
of the same platform will not be affected.

3) OpenID provider compromise: An attacker that controls
the OpenID provider of a device owner can issue valid identity
tokens to its own (malicious) platforms. If consumers are
convinced to use these platforms, then they will receive fake
responses. By using solutions such as Certificate Transparency,
a device owner can detect that certificates are issued on its
behalf for platform identifiers it does not control.

4) Malicious CA: An attacker can create a malicious CA,
which can be trusted in the Web PKI model, and issue cer-
tificates to its (malicious) platforms. However, in our system



6 PUBLISHED IN: PROCEEDINGS OF THE IEEE MOCS 2024

consumers are using the TUF metadata in order to learn the
CAs that the device owner trusts. Furthermore, and due to the
security properties of TUF (detailed in [16]) a device owner
can recover even if all metadata files are compromised, as long
as its root signing keys remain safe. In our implementation we
are using 5 root signing keys which are kept offline.

V. CONCLUSIONS

In this paper we presented a certificate management solution
for cloud-hosted Digital Twins (DTs) used to represent IoT
devices. Our solution allows DTs to obtain digital certificates
in a secure, automated, and fast manner, thus allowing frequent
key and certificate rotation. These certificates prove that the
DTs are securely bound to IoT devices operated by a trusted
device owner. Our solution removes the need for DTs to store
secret information, therefore they can be safely hosted in
public cloud systems. It also builds on existing protocols and
cryptographic primitives, hence it is realistic and feasible.

Future work in this area includes the integration of trans-
parency services (e.g., certificate transparency and software
supply chain transparency logs). With these services, issued
certificates and metadata about signed “artifacts” are im-
mutably recorded in append-only auditable logs. This not only
improves the auditability of the architecture but also enables
early detection of key breaches (since attackers are forced to
record information in the log). Such services also provide
timestamping of signatures, enabling signature verification
even after signing keys have been rotated. Timestamping is
useful in scenarios where a digital signature has to be verified
after some time (e.g., to verify the signature of an item
retrieved from a cache).

ACKNOWLEDGMENT

The work reported in this paper has been partly funded
by the EU’s Horizon 2020 Programme through the subgrant
Secure Named Data Sharing (SNDS) (NGISARGASSO-2023-
CALL1-9-SNDS) of project NGI SARGASSO (grant agree-
ment No 101092887).

REFERENCES

[1] Y. Wang, Z. Su, S. Guo, M. Dai, T. H. Luan, and Y. Liu, “A survey on
digital twins: Architecture, enabling technologies, security and privacy,
and future prospects,” IEEE Internet of Things Journal, vol. 10, no. 17,
pp. 14 965–14 987, 2023.

[2] T. Miller, A. Staves, S. Maesschalck, M. Sturdee, and B. Green,
“Looking back to look forward: Lessons learnt from cyber-attacks on
industrial control systems,” International Journal of Critical Infrastruc-
ture Protection, vol. 35, p. 100464, 2021.

[3] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,” IEEE
Internet of Things Journal, vol. 8, no. 18, pp. 13 789–13 804, 2021.

[4] C. Lai, M. Wang, and D. Zheng, “SPDT: Secure and privacy-preserving
scheme for digital twin-based traffic control,” in Proceedings of the
IEEE/CIC International Conference on Communications in China
(ICCC), 2022, pp. 144–149.

[5] Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, R. Liu, Z. Pang,
and M. J. Deen, “A novel cloud-based framework for the elderly
healthcare services using digital twin,” IEEE Access, vol. 7, pp. 49 088–
49 101, 2019.

[6] C. Patel, A. Pasikhani, P. Gope, and J. Clark, “User-empowered secure
privacy-preserving authentication scheme for digital twin,” Computers
& Security, vol. 140, 2024.

[7] G. Thakur, P. Kumar, S. Jangirala, A. K. Das, Y. Park et al., “An effective
privacy-preserving blockchain-assisted security protocol for cloud-based
digital twin environment,” IEEE Access, vol. 11, pp. 26 877–26 892,
2023.

[8] C.-M. Chen, Q. Miao, S. Kumar, and T.-Y. Wu, “Privacy-preserving
authentication scheme for digital twin-enabled autonomous vehicle envi-
ronments,” Transactions on Emerging Telecommunications Technologies,
vol. 34, no. 11, p. e4751, 2023.

[9] J. Xu, C. He, and T. H. Luan, “Efficient authentication for vehicular
digital twin communications,” in Proceedings of the IEEE Vehicular
Technology Conference (VTC-Fall), 2021, pp. 1–5.

[10] F. Baldimtsi, K. K. Chalkias, Y. Ji, J. Lindstrøm, D. Maram, B. Riva,
A. Roy, M. Sedaghat, and J. Wang, “zklogin: Privacy-preserving
blockchain authentication with existing credentials,” arXiv preprint
arXiv:2401.11735, 2024.

[11] J. Primbs and M. Menth, “Oidc2: Open identity certification with openid
connect,” IEEE Open Journal of the Communications Society, vol. 5, pp.
1880–1898, 2024.

[12] K. Merrill, Z. Newman, S. Torres-Arias, and K. R. Sollins, “Speranza:
Usable, privacy-friendly software signing,” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2023,
pp. 3388–3402.

[13] Z. Newman, “Reducing trust in automated certificate authorities via
proofs-of-authentication,” arXiv preprint arXiv:2307.08201, 2023.

[14] Context Information Management (CIM) ETSI ISG, “NGSI-LD API,”
ETSI, Group Specification CIM-009v161, 2022.

[15] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable
key compromise in software update systems,” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2010, p.
61–72.

[16] T. K. Kuppusamy, V. Diaz, and J. Cappos, “Mercury: bandwidth-
effective prevention of rollback attacks against community repositories,”
in Proceedings of the Usenix Annual Technical Conference, 2017, p.
673–688.

[17] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore,
“OpenID Connect Core 1.0 incorporating errata set 2,” OpenID Connect
WG, Specification, 2023, https://openid.net/specs/openid-connect-core-
1 0.html.

[18] N. Sakimura, J. Bradley, M. Jones, and E. Jay, “OpenID Connect Discov-
ery 1.0 incorporating errata set 2,” OpenID Connect WG, Specification,
2023, https://openid.net/specs/openid-connect-discovery-1 0.html.

[19] N. Fotiou, Y. Thomas, and G. Xylomenos, “Data integrity protection for
data spaces,” in Proceedings of the ACM EUROSEC Workshop, Athens,
Greece, 2024.

[20] Z. Newman, J. S. Meyers, and S. Torres-Arias, “Sigstore: Software
signing for everybody,” in Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2022, p. 2353–2367.

[21] E. Heilman, L. Mugnier, A. Filippidis, S. Goldberg, S. Lipman,
Y. Marcus, M. Milano, S. Premkumar, and C. Unrein, “Openpubkey:
Augmenting openid connect with user held signing keys,” Cryptology
ePrint Archive, 2023.


