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Abstract— Sharing economy is a game-changing business par-
adigm that is currently permeating several industrial sectors.
This paper aims to build a fundamental theory of the sharing
economy of the computational capacity resource of Cloud Service
Providers (CSPs). CSPs aim to cost-efficient serve geographically
dispersed customers that often request computational resource-
demanding services. The formation of CSP federations arises
as an effective means to manage these diverse and time-varying
service requests. In this paper, we introduce innovative federation
models and policies for profitable federations that also achieve
adequate QoS for their customers. Taking in account the flexible
cloud computing service model, we abstract the virtualized
infrastructure of each CSP to an M/M/1 queueing system, we for-
mulate the CSP revenue and cost functions, and we study the task
forwarding-based (TF) and the capacity sharing-based (CS) fed-
eration approaches. Under TF, each CSP may forward part of its
workload to other federated CSPs, while under CS each CSP may
share parts of its computational infrastructure with others. For
both approaches, we propose two operation modes with different
degree of CSPs’ cooperation: (i) the joint business mode, where
the CSPs fully cooperate: they jointly decide on the federation
policies that maximize the total federation profit which is shared
fairly among them; (ii) the reward-driven mode, where self-
interested CSPs participate in a game: they adjust their responses
to federation policies aiming to maximize their individual profits.
The results reveal that our policies lead to effective federations,
which are beneficial both for CSPs and for customers.

Index Terms— Cloud federation, cloud economics, games, shar-
ing economy, computational capacity, shapley value.

I. INTRODUCTION

SHARING economy is a game-changing business paradigm
that is currently permeating several industrial sectors, such

as transportation (e.g. Uber, Lyft), lodging (e.g. Airbnb), and
various online service exchange platforms. Resource feder-
ation and opportunistic resource sharing are the two main
facets of what is recently known as the sharing economy.
In resource sharing, the involved entities opportunistically
share their resources by directly trading their excess supply
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for others’ unsatisfied demand. On the other hand, in resource
federation, sharing is achieved by aggregating the demand
of many entities and by pooling their available resources.
This paper aims to build a fundamental theory of the sharing
economy of the computational capacity resource of Cloud
Service Providers (CSPs).

Cloud computing promises ubiquitous, convenient and
on-demand access to a shared pool of virtualized resources that
can be rapidly provided and released with minimal manage-
ment effort. Nowadays, the majority of application providers
are moving to the cloud, since they can take advantage of
its flexible and scalable resources and thus avoid investments
on costly hardware infrastructures. However, the broad range
of cloud-based applications today (VoD, on-line gaming, etc.)
exhibit high temporal variations of their workload, and require
high QoS (Quality of Service) for end-users that may be
dispersed in multiple geographical areas. In order to sat-
isfy the increasingly demanding performance requirements
of these applications, CSPs could invest on building addi-
tional infrastructures so as to achieve service coverage in all
geographical locations where significant demand is observed;
however, even market giants do not find such an approach
profitable [1]. Cloud federation is emerging as an effective
solution for expanding CSP’s geographic presence and cost-
effective servicing of customer requests in a manner that
respects QoS requirements. In a cloud federation, multiple
CSPs cooperate to seamlessly provide services to customers
that reside in the administrative domain of different CSPs.

Examples of federated clouds: Today, several academic or
commercial platforms already enable the realization of cloud
federations in practice. The OnApp Federation [2] is a network
of Infrastructure as a Service (IaaS) that connects multiple
CSPs running the OnApp cloud management platform. The
CSPs interact through the OnApp market, where they can sell
or buy computational resources on demand. Further, Arjuna’s
Agility framework [3] is a dynamic pool of IT resources that
are offered by different administrative domains within one or
multiple enterprises. EGI Federated Cloud [4] is a seamless
grid of academic private clouds and virtualized resources,
which is built according to open standards and focuses on the
computational requirements of the scientific community. Bon-
FIRE [5] offers a federated testbed that supports large-scale
testing of applications, services and systems over multiple,
geographically dispersed, heterogeneous cloud and network
testbeds. Finally, the CERN Openlab project [6] aims to build
a seamless federation among multiple private and public cloud
platforms on OpenStack.

Incentives for Cloud Federation: Cloud federation incen-
tivizes CSPs to participate due to potential CAPEX and OPEX
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reduction. CAPEX can be reduced since CSPs do not have
to over-dimension their infrastructures to serve the peaks of
demand, while OPEX (e.g. energy cost) can be lessened by
means of inter-CSP load balancing. In order to achieve the
above benefits, a cloud federation should comprise a set of
policies and rules that guarantee the high QoS as well as the
economic sustainability both of the federation as a whole and
of its participants individually. Thus, each CSP that joins a
federation should comply with associated policies and rules
that define how CSPs interact and cooperate in order to jointly
provide services and share profits.

Challenges: Central in cloud federations is the issue of
resource allocation and coordination, since CSPs have diverse
resources, and they serve customers with diverse needs in
different locations. The prime types of resources considered in
CSP federation are computational capacity (cycles) and stor-
age. In this work, we consider the coordination of allocation
of computational capacity among federated CSPs. The reason
is that computational capacity is far more challenging than
storage. First and foremost, a unit of computational capacity
is much more expensive than a unit of storage capacity, thus
it makes much more sense to focus on this resource. Second,
the dynamics of computational cycle allocation are more
involved due to time-varying workloads. Third, most of the
emerging applications involve computationally intensive tasks
that take significantly more time compared to other aspects
of such applications. There are several works in the recent
literature that look at resource allocation and deal with coop-
erative resource pooling [7]–[9], where CSPs aggregate their
computational resources in a virtualized infrastructure that
serves the needs of all CSPs’ customers, or resource trading
[10]–[13], where the CSPs make profit from contributing their
idle resources to server customers of other federated CSPs.

A. Our Contribution

In this paper, we build on and substantially extend our
prelude work [14], [15]. We model each CSP as an M/M/1
queue that also provides guarantee regarding the worst QoS
its customers may experience, and we provide mathematical
models for the CSP revenue and cost. In particular, we assume
that the cost of a CSP is due to the energy consumed by its
infrastructure, while its revenue arises from a QoS-dependent
pricing on its customers. We introduce two alternative cloud
federation approaches: (i) The task forwarding-based (TF)
cloud federation, in which the portion of request workload to
be transferred from each CSP to other federation participants
is decided (TF policy). (ii) The capacity sharing-based (CS)
cloud federation, in which the part of computational resources
of each CSP to be granted to other federated CSPs is decided
(CS policy).

For both TF and CS, we propose and analyze economic
policies for two different modes, namely the joint business and
the reward-driven federation modes. In a joint business feder-
ation, the participating CSPs cooperate to serve the aggregate
federation workload with the objective to maximize their total
profits. Then, these profits are shared among them based on
some rule agreed a priori in such a way that each individual
CSP benefits from the formation of the federation. We propose

the use of the state-of-art Shapley value notion (see [16]) as an
effective approach for the fair distribution of total profit. Due
to the high complexity of this approach as the number of CSPs
increases, we also introduce an alternative heuristic approach
that scales nicely without introducing additional complexity
and achieves comparable results.

In a reward-driven federation, the CSPs are again collabora-
tive with respect to service provisioning, however each of them
selfishly determines the level of its contribution to the federa-
tion by adjusting its own TF or CS policy. Each CSP aims to
maximize its individual profit; thus, a non-cooperative game
arises. However, we design this game in a way that the payoff
function of each CSP includes a reward mechanism that is
selected appropriately to incentivize the self-interested profit-
seeking CSPs to contribute to the federation. In particular,
we take that the Shapley value of each CSP is agreed to be its
payoff in this game. One of our main findings is that reward-
driven federation converges to a unique equilibrium that is
equivalent in terms of profits to a joint business federation.

The rest of this paper is organized as follows. In section II,
we present the model for one CSP. In section III, we present
the TF and CS federation approaches. For these approaches,
in section IV we define economic policies for the two different
federation modes. In section V we present our numerical
evaluation results. In section VI we overview the relevant state-
of-the art work, and in section VII we present our conclusions.

II. CLOUD SERVICE PROVIDER MODEL

A real-world public CSPs consists of multiple datacenters
with a number of physical hosts in each of them. The virtu-
alization technology of cloud computing allows both pooling
and slicing of the physical resources, thus enabling the flexible
resource provisioning and multi-tenancy over the physical
hosts. Specifically, each CSP offers public access to virtualized
computational and storage resources through the Internet in the
form of Virtual Machines (VMs) or Containers. Examples of
such IaaS platforms are the Amazon EC2, Google Compute
Engine, Microsoft Azure and IBM Cloud.

In our approach, we assume that customer-generated task
requests arrive at each CSP in the form of a stream. Each
request corresponds to single “task” regardless if this task
includes multiple jobs. The CSP that receives a request trans-
lates it into one or more VMs able to fulfill the respective
service. However, VMs are not in abundance, but they are
finite resources that are assigned on-demand to serve requests.
The flexible cloud computing service model can be effectively
captured by means of queueing theory. In particular, if we
assume that the whole infrastructure (i.e. physical servers) of
a CSP is virtualized and pooled by means of a central Resource
Orchestrator (RO), it can then be sliced into c identical VMs,
each of them having adequate computational capacity to serve
a task request to the required QoS. By intuition, this leads
us to the adoption of an M/M/c queueing system, where
all customers’ requests arrive to a single queue, each to be
served by one of the c identical VMs. However, in our work,
we abstract this multi-server model to a single-server M/M/1
queueing system, where the whole CSP infrastructure is pooled
into one omni-powerful server that is fully utilized when
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serving one-by-one the incoming service requests. While this
assumption should be understood as a modeling convention
that allows better mathematical treatment of our paper, it is
reasonable enough to capture reality and it is justified and
supported through a discussion in subsection II-A and our
numerical results in subsection V-B.1.

A. A CSP as an M/M/1 Queue

We abstract the service model of a CSP to a single-server
M/M/1 queueing system. In particular, assuming that the
infrastructure of a CSP i consists of Mi identical physical
servers of computational capacity Ci/Mi each, we assume
that the CSP performs pooling of these resources into a unified
virtual infrastructure of total capacity Ci. Hence, we assume
that the multi-physical server infrastructure of each CSP
behaves as a single-server system with computational capacity
Ci and utilization ρi.

We assume that service requests from the customers of CSP
i arrive to its RO according to a Poisson process of rate λi

(tasks/sec). Each of these tasks requires a random number
of operations in order to be executed. We assume that the
number of operations follows an exponential distribution with
mean number L operations/task. Thus, the average service rate
(in tasks/sec) for a CSP i is μi = Ci/L, and therefore the ser-
vice time of a task is exponentially distributed with mean 1/μi.
We assume that the task requests are not impatient, the prob-
ability to be withdrawn before served is assumed to be zero.

We use the average task completion time, i.e. the task
waiting time in the queue and its service time, as a proxy
for customers’ QoS. By standard queueing theory, the average
completion time di(·) for tasks served by the infrastructure of
CSP i is given by di(λi) = 1

μi−λi
. Note that the average rate

of incoming tasks must always be lower than the service rate
of the system (λi < μi), otherwise the CSP queue becomes
unstable. Given that di is increasing and convex in λi, as λi

approaches μi, the value of di increases without upper bound,
which is an undesirable situation for the customers. A CSP
that wishes to keep its quality at least acceptable should
avoid a very high utilization (ρi = λi

μi
) of its infrastructure.

To this end, we assume that each CSP takes into account its
customers’ SLAs and determines which is the worst tolerable
QoS level (e.g. the maximum average task completion time,
dmax

i ). Based on this QoS level, CSP i derives the maximum
acceptable utilization level of its infrastructure.

Next, we discuss and justify the main assumptions with
respect to the M/M/1 modeling:

• Poisson arrivals. Given that a typical cloud computing
system serves a large number of customers where each of
them may generate multiple computational tasks, is more
probable to have bursts of task requests with smaller inter-
arrival times than larger ones. Thereafter, we can assume
that the tasks arrive according to a Poisson process.

• Exponential service time. The time that a task spends
in the CSP’s system depends both on the waiting and
service time, i.e. on the number of existing tasks that
wait to be served, on the availability of resources when
the task arrives and on its size with respect to the

number of operations it entails. The majority of tasks
that arrive in a CSP queue usually demands a smaller
number of operation, while relatively fewer tasks require
a large number of operation. Hence, we assume that the
number of operations that a task requires is exponentially
distributed, and therefore its service time also follows an
exponential distribution.

• Single server abstraction. We argue that abstracting
the infrastructure of a CSP i to an M/M/1 queueing
system of capacity Ci, instead of an M/M/c system
with c servers of capacity Ci/c each, does not affect
the qualitative properties of the results of our analy-
sis. This happens because both models exhibit similar
behavior on the characteristics we are interested in. First
and foremost, the average task completion time in both
M/M/1 and M/M/c modeling approaches is a convex
and increasing function of the task arrival rate λi. This
observation, combined with the fact that in our model
we are only interested in the average completion time of
a task that enters our system, renders both M/M/c and
M/M/1 modeling approaches applicable. Further details
on the actual queueing that takes place in the system and
the performance of individual tasks does not affect the
behavior of the proposed models and policies, and thus
are not of our interest. Finally, the performance of an
M/M/c system approaches the one of M/M/1 under
heavy loads becoming equal when ρi

∼= 1.

In section V-B.1 we present numerical results demonstrating
that the use of the M/M/c model would have not affected the
qualitative outcomes of our analysis. Therefore, we proceed
with employing the M/M/1 model.

B. CSP Cost and Revenue

Energy Consumption Cost per Time Unit: The operational
expenses of a CSP include costs related to the power con-
sumption of its infrastructure, and the floor space, storage
and IT operations to manage this infrastructure. These costs
can be considered as fixed in a given time period except for
the power consumption of the infrastructure since it depends
on the CSP workload. Hence, we assume that the operational
expenses a CSP come primarily from energy consumption of
its infrastructure.

Given that the power consumption of a server includes
the power for its operation and that required for supportive
systems like cooling devices, the operational cost of a CSP is
determined by the utilization of its servers. The total power
consumption is a linearly increasing function of the utilization
factor of the server, ρ [17]. Specifically, the total consumed
power is the sum of server’s idle power and utilization factor-
dependent dynamic power consumption. The former one, W0,
is the power consumed when the server is powered on but
does not serve any tasks. The latter one is linearly increasing
in the server utilization ρ. If W1 is the total power of a server
when it is fully utilized (namely at ρ = 1), then the dynamic
power consumption ranges from 0 to W1 − W0.

Considering that a CSP maintains multiple physical servers
up-and-running to handle the incoming demand at any given
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time, the central RO performs a perfect slicing of the virtu-
alized pool of resources in order to evenly distribute the load
among physical servers. Thus, we reasonably assume that all
CSP servers operate at the same utilization level ρ.

To this end, the idle and dynamic power consumptions
of the entire infrastructure can be computed by aggregating
the corresponding power consumption patterns of all servers.
Then, if a CSP i has Mi servers, and if W0,ij and W1,ij

denote the idle and total power consumption of the j-th
server of CSP i, then the aggregate power consumption of
the CSP in Watts is

Wi(λi) = W0,i +
(
W1,i − W0,i

)λi

μi
, (1)

where W0,i =
Mi∑
j=1

W0,ij and W1,i =
Mi∑
j=1

W1,ij denote the

total idle and total power consumptions of i’s infrastructure.
If CSP i is supplied electricity at a price zi per KWatt·sec,
then the cost of energy consumption per unit of time (cash
outflow) is given by Ei(λi) = Wi(λi)zi.

Note that formula (1) could be broken down into the sum
of all individual servers’ power consumption (idle/dynamic)
in case of non-identical servers or not evenly distribute loads
among them.

QoS-Dependent Pricing: We assume that a CSP charges its
customers based on the offered QoS level and on the number of
received requests per customer. Recall that we use the average
task completion time (di, also referred to henceforth as delay)
as a measure for the QoS offered by a CSP. A CSP i sets
a price per task according to a pricing function pi(·), where
pi(·) is decreasing in di. Further, di is lower-bounded by the
expected service time dmin

i = 1/μi which corresponds to the
delay when no queueing of tasks occurs. Recall that dmax

i is
the worst QoS that a customer can tolerate. A pricing function
that satisfies the requirements above is

pi(λi) =
(
1 − di(λi) − dmin

i

dmax
i

)
qi, (2)

where qi denotes the price per task that i charges for offering
service in the best possible QoS, i.e. dmin

i . At the end of
this section we provide a discussion on pricing and potential
alternative function.

In practice, the pricing policy of each CSP is partly driven
by the competition in the market. In our approach, we assume
that each CSP has made a decision offline on its pricing func-
tion that already takes competition into account. Moreover,
we assume that CSPs cannot adapt their pricing functions and
also that their customers are committed by some contract and
therefore cannot change their serving CSP.

Revenue per Time Unit: The revenue of a CSP is generated
from charging tasks. Since CSP is committed to serve tasks
and there is no limit on the queue size, the tasks arrive in its
queue are always completely served. Recall that we assume
that the tasks are not impatient, thus the probability to be
withdrawn before served is zero. Consequently, the revenue
rate (cash inflow) in monetary units per unit of time for CSP

i is given by

Ri(λi) = λipi(λi). (3)

Net Profit per Time Unit: The profit (net cash inflow) that
i earns per time unit is

Pi(λi) = Ri(λi) − Ei(λi). (4)

Discussion I: QoS is an integral part of pricing in cloud
computing since a CSP takes into account the characteristics
(computation, memory, etc.) of a VM instance to determine
its price per time unit. Accordingly, our pricing function (2)
determines the price based on the customers’ average delay.
Note that alternative QoS-depended pricing functions could be
used. For instance, pi could be a convex function to the average
task completion time in order to capture that a marginal
change in delay is perceived more by the customers for smaller
values of delay. Such functions are pi(λi) = dmin

i

di(λi)
qi and

pi(λi) = 1

edi(λi)−dmin
i

qi. In general, there is broad variety of
functions that could be applied, however the characteristics of
the pricing function directly affects the properties of CSP’s
revenue function (3). Hence, when it comes to the formation
of federations that aims for profit maximization, pricing may
have an impact on the CSPs’ behavior. How the characteristics
of a pricing function affects the behavior of CSPs under our
federation models is discussed in Remark I in section III-B.

III. TWO FEDERATION APPROACHES

In this section we present the task forwarding-based and
capacity sharing-based federation approaches. These two
approaches represent the most important and common real-life
scenarios, wherein a CSP may carry out computational tasks
of customers of other CSPs or may share parts (slices) of its
spare computational resources (eg. at times of low demand)
to other CSPs to use it as if they were their own resources.
Although both TF and CS address the usage of computational
capacity of a CSP to serve the needs of other CSPs, they differ
substantially in the mathematical formulation, as well as in the
derived optimal policies and properties of equilibrium.

A. Task Forwarding-Based Federation Approach

In TF approach, each CSP may forward portions of the
tasks coming from its own customers (incoming task stream)
to other CSPs within the federation. The TF policy of each
CSP determines the portion of its incoming task stream to be
executed locally by its own infrastructure and the portions to
be forwarded to each of the other CSPs.

We consider a set N of N = |N | CSPs, and for each
CSP i ∈ N we define the probabilities αij for j = 1, .., N
(
∑
j

αij ≤ 1) that determine the probability for a task of

CSP i to be forwarded to a CSP j. As a consequence, these
probabilities determine the portion of its incoming tasks stream
that CSP i forwards to CSP j. The collective TF policy of all
CSPs forms an N × N dimensional matrix A, with entries
αij . We use vectors ai and a′

i to denote the i-th row and i-th
column of A respectively. The total rate of task streams that
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Fig. 1. TF approach for N CSPs, each of them is modeled as a M/M/1 queue. Each CSP may forward a portion of the task stream coming from its
customers to others and likewise it can receive task streams coming from customers of others. The forwarded tasks undergo a fixed average transfer delay.

CSP i forwards to others is
∑

j∈N\{i}
αijλi, while the aggregate

rate of task streams that CSP i receives from other CSPs
is

∑
j∈N\{i}

αjiλj . Fig. 1 depicts TF approach for N CSPs.

We assume that the tasks transferred from a CSP to another
experience an additional communication delay due to the inter-
mediate Internet links between corresponding datacenters and
possibly other factors associated with such a migration. For
each pair of CSPs i, j we define an a priory to resource allo-
cation average communication delay Dij . Note that Dii = 0.
As this communication delay increases, it deters CSPs from
outsourcing tasks since it becomes more beneficial to operate
the local resources in a higher utilization level than outsourcing
tasks to a remote CSP with a lower utilization level. The
impact of communication delay is studied in section V-B.6.

The task request arrival rate at the input of each CSP queue
now depends on the TF policies of all CSPs, namely on the
i-th column of matrix A (i.e. on vector a′

i), and it is defined as
λ′

i(a
′
i) =

∑
j∈N

αjiλj . Note that αii determines which portion

of the incoming task stream of i will be processed locally by
i’s infrastructure. The average completion time of tasks that
are served by the infrastructure of CSP i is now given by

di(a′
i) =

1
μi − λ′

i(a
′
i)

. (5)

A portion of the stream of tasks coming from customers
of CSP i may be served by other CSPs, thus the average task
completion time may depend on the average delay experienced
at multiple CSP queues. To this end, the average task comple-
tion time for customers of CSP i depends on all columns of
matrix A and is defined as

Ti(A) =
∑
j∈N

αij

(
dj(a′

i) + Dij

)
. (6)

It is important to stress the difference between Ti(·) and di(·).
di(·) is the average completion time for tasks that are served
by the infrastructure of CSP i, including those tasks generated
by customers of i and tasks from other CSPs’ customers. Ti(·)
is the average completion time of tasks that are generated by
customers of CSP i, regardless of whether they are ultimately
served by CSP i or by other CSPs.

In Section II, a complete characterization of a single CSP
was provided, however here we slightly augment our model
to fit the federation setup. The power consumption of CSP i’s
infrastructure is also affected by the TF policies of other CSPs
and is given by

Wi(a′
i) = W0,i +

(
W1,i − W0,i

)λ′
i(a

′
i)

μi
. (7)

Accordingly, the energy cost per unit of time is defined as
Ei(a′

i) = Wi(a′
i)zi. Furthermore, the customers of CSP i

should be charged based on Ti(·) rather than di(·) because
part of these tasks may be served from different CSP queues.
Hence, the pricing function becomes

pi(A) =
(
1 − Ti(A) − dmin

i

dmax
i

)
qi, (8)

while the revenue and profit per unit of time become
Ri(A) = λipi(A) and Pi(A) = Ri(A) − Ei(a′

i).

B. Capacity Sharing-Based Federation Approach

The CS approach relies on the computational resource
sharing among the federated CSPs, i.e. a CSP can grant part
of its computational capacity to others in the form of resource
slices. For each CSP i ∈ N we define probabilities βij for
j = 1, .., N (

∑
j

βij ≤ 1) that determine its CS policy. For

example, assuming that CSP i owns infrastructure of capacity
Ci, βijCi is the computational capacity that CSP i grants to
CSP j. Note that βii determines the part of local infrastructure
owned by CSP i which remains under the control of i. The CS
policies of all CSPs form an N × N dimensional matrix B.
Again, vectors bi and b′

i denote the i-th row and i-th column
of B respectively.

Under the CS approach, a CSP may have control over
multiple resource slices located on different CSPs. Again,
we assume that the RO of each CSP pools all these slices,
thus each CSP can be still considered as an M/M/1 queue. To
this end, the computational capacity of a CSP i depends on the
CS policies of all CSPs and its value is given by aggregating
the capacities of all resources that are pooled under its RO,
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Fig. 2. The CS approach for N CSPs, where a CSP is granted parts (slices) of other CSPs’ infrastructure to use them as its own. The RO of each CSP
aggregates the resources under its control into a virtual pool which can be modeled as a single-server M/M/1 queue.

namely C′
i(b

′
i) =

∑
j∈N

βjiCj , while the service rate of CSP i

is given by

μ′
i(b

′
i) =

C′
i(b

′
i)

Li
. (9)

Fig. 2 depicts the CS approach for N CSPs.
Given that we again abstract the infrastructure controlled

by a CSP to an M/M/1 system, we should consider that the
whole infrastructure as a unique system that serves all the
CSP’s workload. Hence, the task requests are proportionally
distributed in all parts of the controlled infrastructure. This
means that the portion of tasks requests being outsourced to

each of the remote resource slices is

�

j∈N\{i}
βjiCj

C′
i(b

′
i)

. Conse-
quently, the average completion time of tasks served by the
infrastructure controlled by CSP i is given by

T̃i(b′
i) =

1
μ′

i(b
′
i) − λi

+

∑
j∈N\{i}

βjiCj

C′
i(b

′
i)

Dij (10)

where the first term in the formula above is the average task
completion time given by standard M/M/1 queueing model,
while the second term captures the communication cost for
tasks transfered over the Internet to remote infrastructure that
is controlled by CSP i, but it is owned by others. If the
inter-CSP delay is neglected (i.e. Dij = 0, ∀i, j ∈ N ), then
the second term is omitted.

The different slices of infrastructure owned by a CSP may
be utilized and controlled by others. For instance, in Fig. 2,
the utilization of β12C1 slice is determined by the workload
of CSP 2, while the utilization of β11C1 slice is determined
by the workload of CSP 1. Thus, the average utilization of the
infrastructure owned by CSP i is given by

ρ̃i(B) =
∑
j∈N

βij
λj

μ′
j(b

′
j)

. (11)

We assume that the energy consumption cost of the
resources owned by a CSP is payed by the owner CSP,
even if these resources are utilized by others. Hence, this
cost is included in the compensation mechanism. The power
consumption of the infrastructure owned by a CSP i is
affected by the average utilization of the different slices of its

infrastructure ρ̃i(B) and thus it is a function of CS policy B,
W̃i(B) = W0,i +(W1,i −W0,i)ρ̃i(B). To this end, the energy
consumption of infrastructure owned by i is now given by
Ẽi(B) = W̃i(B)zi.

As in TF approach, the customers of CSP i should be
charged based on T̃i(·), hence the QoS-dependent pricing
function becomes

p̃i(b′
i) = 1 − T̃i(b′

i) − dmin
i

dmax
i

qi (12)

while the revenue is given by R̃i(b′
i) = λip̃i(b′

i). The profit of
CSP i per unit of time is given by P̃i(B) = R̃i(b′

i)− Ẽi(B).
Remark I. In CS federation, the capacity controlled by

a CSP can be expanded beyond its own Ci capabilities by
pooling resource slices granted from others. Hence, due to
the M/M/1 modeling the best possible QoS that a CSP
can provide to its customers can now become better than
dmin

i . Hence, the customer may have to actually pay a higher
price than qi. This observation combined with the adoption
of pricing functions that have certain characteristics may lead
the profit-oriented CS federation to an “unfair” state for the
customers. In fact, if the selected pricing function renders the
CSP revenues a convex function to the service rate μ′

i(b
′
i),

then the CS federation may be led to a state where the QoS
for a large portion of a customers is extremely high, while the
rest experience a QoS close to the worst acceptable. On the
other hand, a pricing function that renders the CSP revenues
non-convex to the service rate μ′

i(b
′
i) achieves load balancing

and a state where all customers experience a QoS close to the
federation’s average. Such types of “unfair” pricing functions
and potential ways to mitigate their impact are studied in
subsection V-B.8.

IV. FEDERATION MODES

For both federation approaches of section III, we propose
different modes under which a federation can be formed,
namely the (i) the joint business and the (ii) reward-driven
federation modes. The two modes differ in the level of coop-
eration among CSPs who may have common or conflicting
objectives, and in the type of private information that each
CSP makes available to others.
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A. Joint Business Federation

This mode is suitable for federations of fully cooperative
CSPs. The CSPs that participate in a joint business federation
comply to certain cooperation rules that have been agreed
a priori. These rules include: (i) technical alignment of their
infrastructure (ii) agreement to share key private information,
e.g. the values of their computational capacity Ci and average
request load λi, (iii) agreement on the common objective
of total federation profit maximization, and (iv) cooperation
in defining the appropriate policy for sharing the total profit
incurred from the federation. Next, we present the joint
business federation for the TF and CS approaches.

1) Task Forwarding-Based Joint Business Federation: The
CSPs that form an TF joint business federation cooperate and
jointly decide the collective TF policy A∗ that maximizes the
total profit of the federation. This globally optimal TF policy
is derived by solving the following maximization problem,

argmax
A

∑
i∈N

Pi(A)

s.t. αij ≥ 0, ∀i, j ∈ N ,∑
j∈N

αij = 1, ∀i ∈ N ,

Ti(A) ≤ dmax
i , ∀i ∈ N . (13)

The first two constraints are related to the splitting of CSP
i’s stream of task requests across all CSPs, while the third
constraints guarantees that the achieved QoS is better than the
worst acceptable dmax

i . We can solve this non-linear problem
by applying standard optimization methods, i.e. formation of
the Lagrangian and statement of the necessary and sufficient
KKT conditions that should be satisfied for optimality.

Our problem formulation guarantees that under the optimal
A∗ the total federation profit is maximized. Also, an important
property is that, under the optimal policy A∗, a CSP will either
forward or receive requests (never both). This has been proven
analytically and is demonstrated through numerical results in
section V. In the worst case scenario, i.e. A∗ = I (Identity
matrix), the total federation profit equals the aggregate profit
of CSPs in standalone operation. By standalone, we mean
that each CSP serves only the tasks coming from its own
customers. The third constraint of the maximization problem
guarantees the offered QoS of a CSP does not drop below the
worst acceptable, however the individual profit may in fact
deteriorate for one (or more) CSPs due to task forwarding
actions. Specifically, a CSP that only receives forwarded tasks
by others experiences loss because the extra workload will
downgrade the QoS of the CSP which leads to reduction in
revenues, while it will also increase its energy cost due to
the higher infrastructure utilization. (such a case always arises
for N = 2.) As a result, such CSPs will be unwilling to
comply with the federation, unless some rule is applied for
their compensation. Since the total profit of the federation
exceeds the aggregate profit of CSPs in the standalone mode,
CSPs that only forward tasks definitely have higher profit than
in standalone, thus they are able to compensate others.

2) Capacity Sharing-Based Joint Business Federation: All
CSPs cooperatively decide on a collective CS policy B∗ that

maximizes the total profit of the federation by solving the
respective maximization problem,

arg max
B

∑
i∈N

Pi(B)

s.t. βij ≥ 0, ∀i, j ∈ N ,∑
j∈N

βij = 1, ∀i ∈ N ,

T̃i(b′
i) ≤ dmax

i , ∀i ∈ N . (14)

Again, the first two constrains capture the partitioning and
sharing of resources to different CSPs while the third one
guarantees that the bound for the worst acceptable QoS is not
violated. Same as in TF approach, by solving this problem we
obtain the CS policies B∗ that maximize the total profit of
the federation, but there is no guarantee regarding the profit
of each individual CSP. To this end, we again have to define
fair profit sharing policies in order to ensure that non CSP
will incur losses. Appropriate such profit-sharing rules are
discussed below.

3) Profit Sharing Rules: As explained, profit sharing rules
should be applied on the total profit generated by federated
operation both for TF and CS approaches (output of the
maximization problems (13) and (14) respectively). Next,
we present two profit-sharing rules, the Shapley-value driven
and the activity-driven ones. In the former, we determine
the profit that a CSP should earn based on its marginal
contribution in the federation by making use of the Shapley
value [16].

Shapley value has been widely used in coalitional game
theory applications as a mechanism for sharing total utility
in a fair manner (e.g., [18]), however as the number of
players increases so does the computational complexity (the
computation of Shapley-value is in general #P-complete [19]).
Therefore, we propose an alternative heuristic technique of
polynomial complexity. In particular, in the activity driven
profit-sharing rule, the profit share that a CSP gets depends
both on its standalone profit and on the level of involvement
of the CSP in the task forwarding or capacity sharing actions
either as supplier or receiver. We first present both profit
sharing rules in the context of the TF federation mode and
we then point out the differences in CS.

a) Shapley value driven profit-sharing [16]. A characteristic
function υ(·) measures the benefit of a coalition, also called the
worth of coalition. In our approach, we take as characteristic
function the total profit that is generated from the federation
of a given set of CSPs under the optimal TF policy A∗ derived
by (13). In particular, the worth of coalition υ(·) for the set
of N CSPs is υ(N ,A∗) =

∑
i∈N

Pi(A∗). For a federation

of N CSPs, the Shapley value of each CSP is obtained by
calculating its average marginal contribution in all possible
sub-federations K ⊆ N . Therefore, we need to compute the
worth of coalition υ(K,A∗

K) for all possible subsets of CSPs
K. Note that K = |K| and A∗

K is the corresponding K × K
dimensional matrix of forwarding policies. In order to derive
the worth of coalition for all possible subsets K, we solve the
relevant optimization problems (13).
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Assuming that K ⊆ N \ {i}, the marginal contribution of
CSP i when it joins a sub-federation K is defined as

MCi(K,A∗
K , υ) = υ(K ∪ i,A∗

K∪i) − υ(K,A∗
K) (15)

Consequently, the profit share of a CSP i in the federation of
N CSPs in TF is given by its Shapley value defined as

ϕi(N ,A∗) =
∑

K⊆N\{i}

|K|!(N − |K| − 1
)
!

N !
MCi(K,A∗

K , υ)

(16)

where ϕi(N ,A∗) denotes the estimated marginal contribution
of CSP i over all possible subsets of K.

The only difference for applying this rule in CS is on the
definition of characteristic function: υ̃(N ,B∗) =

∑
i∈N

P̃i(B∗).

The marginal contribution M̃Ci(K,B∗
K , υ̃) and Shapley value

ϕ̃i(N ,B∗) formulas are adjusted accordingly. As the number
of CSPs increases so does the complexity of the Shapley value
estimation [19], therefore we propose the activity driven profit-
sharing policy as an alternative.

b) Activity driven profit-sharing. In this approach, a CSP i
gets at least the profit it had in standalone operation, while
the extra profit generated from the federated operation is
proportionally shared among N CSPs based on the percentage
of forwarded tasks that each of them forwarded or received.
We define the extra generated profit ΔP (A∗) by subtracting
the aggregate profit of CSPs in the standalone operation from
the total profit of federation

ΔP (A∗) =
∑
i∈N

Pi(A∗) −
∑
i∈N

Pi(I), (17)

where Pi(I) denotes the profit of CSP i in standalone opera-
tion. Consequently, the share of CPS i is determined by:

ξi(A∗) =
|λ′

i(a′∗
i ) − λi|∑

j∈N
|λ′

j(a′∗
j ) − λj |ΔP (A∗) + Pi(I), (18)

where |λ′
i(a

′∗
i )−λi|�

j∈N
|λ′

j(a′∗
j )−λj | is the proportionality parameter which

defines that a CSP who forwards or receives more tasks
compared to another, will get a proportionally larger share
of the extra generated profit.

In CS, the extra profit of a CSP is determined by the
CSP’s involvement in resource sharing action. Thus, the total
extra profit generated ΔP̃ (B∗) by the CS federated operation
is calculated by adjusting accordingly formula (17). Then,
we can calculate the profit share ξ̃i(B∗) of each CSP i by
adjusting formula (18). Note that the proportionality parameter

is now defined as |C′
i(b

′∗
i )−Ci|

�

j∈N
|C′

j(b
′∗
j )−Cj| . Note that in TF the

contribution of the CSP that forwards a task is considered
as equal to the contribution of the receiver, thus both will get
the same amount of extra profit. The same applies in the CS
approach for the CSP that either grants slices of infrastructure
to others or is granted ones. This assumption makes sense
because both the supplier and the receiver are important for the
completion of a task forwarding (or resource sharing) action,
and thus the generation of extra profit for the federation.

Remark II. The two profit-sharing rules differ on how
the level of a CSP’s contribution is perceived. In the activity
driven sharing rule the extra profit is distributed only among
the CSPs that are really involved in the task forwarding (or
resource sharing) actions of optimal policy, either as supplier
or receiver. On the other hand, Shapley value takes also into
account the potential contribution of a CSP in all possible sub-
federations. For more than two CSPs the two rules lead to
different distribution of profits as we will see in section V.
Finally, while the complexity of the Activity-driven profit
sharing rule is polynomial, the Shapley-value driven rule
belongs to the #P-complete class.

B. Reward-Driven Federation

Contrary to joint business mode, the reward-driven federa-
tion is suitable for selfishly acting CSPs. In this mode, each
CSP determines its individual TF or CS policy aiming to
maximize its profit, and thus a non-cooperative game arises.
However, the game has been designed in such a way that
motivates CSP to actively participate in the federation and
serve the common good too. In particular, the payoff function
of each CSP in this game incorporates the Shapley value as
the reward mechanism that incentivizes them to contribute
resources to the federation due to its fairness properties. Given
this payoff function, each CSP adjusts its strategy to maximize
its own payoff. Note that implementing Shapley value in a
distributed way does not always achieve welfare maximization
although it does in our case. It turns out that while CSPs act
selfishly the outcome of this game also leads to social welfare
maximization. Finally, the extent of the private information
that the CSPs should share with others can be less in the
present mode as we show below.

1) Task Forwarding-Based Reward-Driven Federation:
Since the CSPs have conflicting objectives, it is not sufficient
to define the individual profit of each CSP at the equilibrium
as its payoff function, i.e. Pi(A). Otherwise, selfish CSPs
would be able to forward tasks without cost, thus leading
the game to an equilibrium point where one or more CSPs
would have lower profit compared to that in their standalone
operation. As a result, CSPs that suffer losses would not
have the incentive to participate. To meet this participation
constraint for all CSPs (as also accomplished in the Joint
business federation) and also to achieve a fair allocation of
profits, it is announced to CSPs that their payoff from the
federation in this game is determined by a fair contribution-
based profit sharing rule, namely their Shapley value. Then,
CSPs are left to play the game and choose their own TF
policies.

Non-cooperative game. The set of players in this game is
N = (1, 2, ..N

)
. The individual TF strategy of a CSP i is

defined by the entries of i-th row ai of forwarding matrix A,
thus the set of CSPs’ strategies is A = (a1, a2, . . . ,aN ). For
CSP i we define by a−i the strategies of all other CSPs except
i. The payoff of each CSP in the game is determined by its
Shapley value, thus the set of payoffs under a set of given
strategies A is ϕ = (ϕ1(N ,A), ϕ2(N ,A), . . . , ϕN (N ,A)).

The game starts with each CSP operating in standalone
mode, A = I. CSPs play in a round robin fashion in
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each game iteration. In each step of the game, a CSP i
determines its best response to the policies of all other CSPs.
The best response of CSP i is a TF policy ai that maxi-
mizes its payoff ϕi(N ,ai,a−i). Therefore, i determines its
best response by solving the following optimization problem:
arg max

ai

ϕi(N ,ai,a−i). The constraints of this problem are

the same as in the optimization problem of equation (13).
In order to calculate its Shapley value, a CSP has to compute

its marginal contribution to all possible sub-federations K ⊆
N . For now, we assume that the necessary information for
this computation is available and the game is played only for
the full set N and not for subsets K. Below, in Remark II,
we discuss how the MC of CSP i in each sub-federation K ⊆
N \{i} can be obtained. The game continues until the system
reaches a Nash equilibrium (NE) A∗, where ∀i ∈ N and for
every possible strategy ai, ϕi(N ,a∗

i ,a
∗
−i) ≥ ϕi(N , ai, a∗

−i).
In order to prove that the game converges to a NE and to
characterize it, we employ the rationale followed in [18]:

Proposition I. If, in each step of the game, a CSP i
applies the individual forwarding strategy a+

i that maximizes
its payoff under Shapley value objective function, then the
game converges to a state where the individually optimal
strategies of all CSPs constitute the globally optimal solution
A∗, i.e. ∀i ∈ N , a+

i = a∗
i . This set of strategies is a NE.

PROOF: Given that under strategy a+
i the ϕi(N , a+

i , a−i)
of CPS i is maximized. Due to strong monotonicity of Shapley
value [16], the marginal contribution MCi(N ,a+

i , a−i, υ)
of CSP i is also maximized by strategy a+

i . From (15),
MCi is maximized when the total profit of the subset that
i joins is maximized. Consequently, in every step of the
game, a CSP adapt its forwarding policy towards the max-
imization of the total federation profit. Hence, the game
converges to the state A∗ where ∀i ∈ N , MCi(N ,a∗

i , a
∗
−i, υ)

and thus ϕi(N ,a∗
i ,a

∗
−i) are maximized This state is a NE

since none CSP can achieve higher payoff by changing its
strategy. �

2) Capacity Sharing-Based Reward-Driven Federation:
Every CSP that participates in a CS reward-driven federation
knows that its payoff is determined by its Shapley value, thus
each of them determines its CS policy aiming to maximize it.

Non-cooperative game. The only significant differences
compared to TF approach is on the strategies of the players and
their payoff functions. In particular, the strategy of CSP i is its
CS policy defined by the i-th row of global resource sharing
matrix B, while its payoff is given by ϕ̃i(N ,bi,b−i). There-
fore the best response of CSP i is determined by the following
maximization problem: arg max

bi

ϕ̃i(N ,bi,b−i). Following a

similar approach to the case of TF Reward-driven federation,
we can prove that the game converges to a unique NE B∗

which is also globally optimal.
Remark III. In order to determine its best response in

the previously presented games, each CSP should calculate
its Shapley value based on its marginal contribution in all
sub-federations K ⊆ N . There are two alternatives to obtain
this information: (i) All CSPs play recursive non-cooperative
games as above for all possible sub-federations. They start
playing these games from the smallest to largest subset, and

the output of each game is used as input to the larger ones.
(ii) Same as in subsection IV-A, each CSP solves the relevant
global optimization problem for all subsets K and uses the
results as input on determination of its best response in
a unique game for the full set of N CSPs. Note that in
the first approach, we have multiple games and thus higher
complexity, but CSPs should only reveal private information
that is limited to their profit in the standalone operation.
The second approach has lower complexity because we only
have one game. However, this approach has the drawback
that each CSP should reveal more private information that
includes its computational capacity and average task request
load, as done in joint business federation, in order for each of
the other CSPs to solve the optimization problem giving its
best response.

V. NUMERICAL EVALUATION

A. Simulation Setup

We simulate an environment of three CSPs that can oper-
ate under all presented federation approaches, modes and
policies.

CSPs dimensioning: CSPs are symmetric with respect
to their computational capacities, which equals C = 2
Tera·operations per second. This capacity corresponds to typ-
ical 100 servers and can support tasks of an average arrival
rate of 10 tasks/sec. However, this capacity is not fully utilized
since the highest infrastructure utilization is determined by
the worst acceptable QoS that each CSP guarantees to its
customers. To this end, we assume that all CSPs have the
same worst acceptable QoS dmax = 1 (sec/task).

Task request arrivals: We assume that CSPs 2 and 3 have a
fixed rate of incoming tasks λ2 and λ3, while λ1 takes values
in the range [1, λmax

1 ], where λmax
1 is extracted from dmax.

Since the CSPs are identical λmax
1 = λmax

2 = λmax
3 . We run

experiments of this type for different fixed values of λ2 and
λ3, both in the interval 1 to λmax

1 .
Task size: We assume that each task that arrive in a CSP

requires an average of L = 200 Giga·ops.
Power consumption: For the power consumption, we take

the idle and full utilization powers as W0 = 60 KWatt and
W1 = 400 KWatt. We assume that all CSPs pay the same price
to their electricity provider, namely z = 2.7·10−5 $/KWatt·sec.
This value corresponds to 0.1 $/KWh, which is a typical price.

Pricing: The three CSPs charge their customers according
to the same pricing function, with same maximum price q
$/task. In our experiments, we select the value of q by taking
as input the electricity price z. In particular, given the price z,
we find the value of q for which the profit of CSP becomes
zero when the utilization factor is 0.99. This guarantees that
the CSPs in standalone operation will have some profits for
any value of utilization up to 99%. Thus, the price per task in
our setup is q = 0.11 $/task.

Network delay: The additional communication delay D for
the task requests transfered over the Internet is taken to be
D = 10 msec. However, we also explore how different values
of it affect the impact of the TF and CS federation modes.
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Fig. 3. Average task completion time for a CSP under different utilizations
levels for both M/M/1 and M/M/c modeling approaches.

Fig. 4. Total profit of CSPs under M/M/c model and all modes of TF
federation, for λ2 = 7, λ3 = 4 and λ1 ∈ [1, 9]. Note that dmax = 1
(sec/task), which implies that the maximum arrival rate that a CSP can have
equals 9.

B. Numerical Results

1) Impact of M/M/1 Abstraction: In this paragraph, we jus-
tify through numerical results why abstracting a CSP to an
M/M/1 queueing system is equally reasonable to an M/M/c
modeling approach. As we already mentioned in section II-A,
we argue that both M/M/1 and M/M/c queueing systems
are applicable in our federation model since the average task
completion time in both modeling approaches is a convex and
increasing function of the task arrival rate λ, as illustrated
in Fig. 3. In order to further justify that our claim, we have
implemented and performed multiple experiments for TF fed-
eration mode under both M/M/1 and M/M/c. As depicted
in Fig. 4 and Fig. 5, our federation models and policies achieve
qualitatively the same outcome in terms of total TF federation
profit. This also applies for CS model considering results
related to the CSPs’ individual profits, TF/CS policies and
customers QoS. All these aspects are discussed to the reminder
of this section under M/M/1 model.

2) Total Profit: Figure 5 shows the total profit under
all operation modes, for fixed value of λ2 = 7, λ3 = 4
and for λ1 ∈ [1, 9]. Note that the arrival rate threshold of
each CSP is λmax

1 = 9. The results reveal that both the
TF and CS approaches can achieve significantly higher total
profit compared to the aggregate profit of CSPs in standalone
operation. The only case where the total federation profit can
be equal to the aggregate standalone profit is when all CSPs
have the same standalone utilization level because then, e.g
in TF, the optimal solution is A∗ = I. Furthermore, the total
profit of joint business and reward-driven modes appear to
coincide for both the TF and CS approaches and under all
possible values of λ’s. This happens because of the use of
Shapley value as a CSP’s payoff in the reward driven mode,

Fig. 5. Total profit of CSPs under M/M/1 model and all operation modes,
for λ2 = 7, λ3 = 4 and λ1 ∈ [1, 9]. Note that dmax = 1 (sec/task), which
implies that the maximum arrival rate that a CSP can have equals 9.

Fig. 6. Individual profit of CSP 1 under different TF federation operation
modes, for λ2 = 7, λ3 = 4 and λ1 ∈ [1, 9].

since Shapley value leads each CSP to act for the benefit of
the federation as a whole.

Comparing the two federation approaches, we notice that
the CS can achieve slightly higher total profit for all values of
λ’s. This applies because in CS federation we assume pooling
of both owned and shared resources. As we mentioned in
Remark I, this means that a CSP can scale up its infrastructure
and offer higher QoS compared to the standalone or TF
federation, thus generating higher revenues. Later in this
section we will show that this becomes more prominent if the
selected pricing function is “unfair” as defined in Discussion I.
Finally, the more diverse the CSPs’ standalone infrastructure
utilization values, the more pronounced the benefit of both TF
and CS federation modes. This is apparent in Fig. 5 where
the extra generated profit compared to standalone is higher
for (λ1, λ2, λ3) = (9, 7, 4) than for (λ1, λ2, λ3) = (8, 7, 4).

3) Individual CSP Profit: The individual profit of each
CSP in all federation approaches and modes is by design
higher than or at least equal to its profit in standalone
operation. Fig. 6 shows the individual profit of CSP 1 under
all possible operation modes in both TF approach. The results
show that the individual profits that a CSP earns under both
TF approach are always higher than its profit under the
standalone operation. The results are quite similar for CS
approach.

In addition, both for CS and TF approaches, the profit share
of each CSP is the same when the federation operates under
the reward-driven or under joint business mode with Shapley
value as profit sharing rule. This happens because of the use
of Shapley value as payoff function of each CSP in the game.

Comparing the two profit sharing policies of joint business
mode, we highlight the following: (i) The activity driven profit
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Fig. 7. CSPs’ optimal TF and CS policies, for λ2 = 7, λ3 = 4 and λ1 ∈ [1, 9]. The top part of Fig. 7a shows the sum of the probabilities that determine
the portion of tasks each CSP forwards under TF mode, while the lower part shows the sum of the probabilities are responsible for the portion received tasks.
Fig. 7b shows the sum of probabilities for the shared (top) and granted (bottom) capacity for each CSP under CS mode.

sharing policy favors the less utilized CSPs more than the
Shapley value driven one. This is seen in Fig. 6 for low values
of λ1, where the profit CSP 1 is higher under the activity driven
policy. (ii) The activity driven policy may give to a CSP just
the profit it had in the standalone operation. This happens
when a CSP does not participate in the forwarding/sharing
actions either as supplier or receiver.

4) TF/CS Policies: The results again show that the optimal
TF policy is the same for both joint business and reward driven
federation modes. Interestingly, the same applies to the optimal
CS policy. Fig. 7a is related to the TF approach and the optimal
TF policy. We observe that in the optimal TF policy either
the sum of the α probabilities that determine the portion of
tasks that each CSP forwards or the sum of the probabilities
are expressing the portion of forwarded tasks arrive at each
CSP queue will be equal to zero (can be both zero). This
means that every CSP either forwards or receives tasks but
never does both. The above observation also applies to the
CS approach (Fig. 7b), where a CSP that shares part of its
infrastructure does not utilize capacity of others. Furthermore,
we have observed that both in TF and CS approaches all
CSPs that forward tasks/grant resources have a utilization level
that is higher than the federation’s average, while CSPs that
receive tasks/share resources have a lower utilization than the
federation’s average.

5) QoS Level: For comparison purposes, we consider the
TF and CS QoS-optimal federation modes, which employ
those CS/TF policies that optimize the average QoS of the
federation. Fig. 8 shows the average QoS of whole federation
customers under all modes. The results reveal that under
both TF and CS approaches all modes achieve the same
performance in terms of QoS and outperform the QoS of
standalone operation. Interestingly, the performance of all
TF and CS modes are close to the respective QoS-optimal.
Regarding the QoS of individual CSP’s customers, it is close
to total average because both TF and CS federation achieves
load balancing.

6) Impact of Communication Delay: We now investigate
how the CSPs communication delay (D) affects the perfor-
mance of both TF and CS federation modes. Fig. 9 shows that
as D increases, the total profits of both TF and CS federation

Fig. 8. Customers’ QoS under different operation modes, for λ2 = 7,
λ3 = 4 and λ1 ∈ [1, 9]. Worst QoS threshold is set at dmax

i = 1 (sec/task).

Fig. 9. Total profit of CSPs under all operation modes, for λ1 = 2, λ2 = 7,
λ3 = 4, dmax = 0.5, and for D ∈ [5, 1200] msec.

modes diminish. Then D exceeds a certain value, the profits
of participating CSPs becomes equal to the one of standalone
operation. This happens because as D increases the CSPs
follow a more conservative TF (or CS) policies, thus under
very high values of D the optimal choice is to not forward
tasks (or share capacity) and fall back to standalone operation.
Consequently, network delay turns out to be an important
parameter for the effectiveness of both TF and CS modes.

7) Asymmetric CSPs: We also evaluate our models for
asymmetric CSPs with respect to their infrastructure dimen-
sioning. We run the same type of experiments considering
different sizes for the infrastructure of CSP 2. In particular,
we consider the following three setups of CSPs’ dimensioning
(C1, C2, C3) = {(2, 1, 2), (2, 2, 2), (2, 4, 2)}, where the values
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Fig. 10. Total CSPs profit all operation modes and “unfair” pricing.

refer to Tera·operations per second. Since we assume that the
power consumption of infrastructure is related to its compu-
tational capacity, the CSPs are also asymmetric with respect
to their power consumption. We consider the three following
pair of values for the idle and dynamic power consumption
of the CSP {(30, 200), (60, 400), (120, 800)}, for 1, 2 and
4 Tera·operations per second dimensioning respectively. The
arrival rates we consider in each setup are selected in way
that maintains the utilization level of each CSP regardless of
its dimensioning, e.g. if for C1 = 2 the arrival rate was set
λ2 = 6, then for C1 = 4 we should set λ2 = 12.

The results reveal that our models works perfectly also
for asymmetric CSPs. The impact of infrastructure asymme-
try is summarized in the following points: (i) In terms of
total federation profit, the benefit of TF mode remains the
same regardless of the infrastructure dimensioning when the
workload increases respectively. (ii) In terms of individual
CSP profits, the results show that large CSPs that have higher
standalone utilization compared to other federation members
can have more benefit than in the opposite case but the
federation remain beneficial for all participants.

8) Impact of “Unfair” Pricing Functions: In this paragraph
we investigate the impact of “unfair’ pricing functions (as
defined in Remark I) on the behavior of CSP under CS federa-
tion. A pricing function that satisfies this criterion, i.e. renders
the CSP’s revenue Ri a convex functions to service rate μi,
is pi(λi) = dmin

i

di(λi)
qi. The results reveal that by adopting such a

function, the CS federation can be lead to completely different
results both in terms of CSPs’ profits and customers’ QoS. As
shown in Fig. 10, the total profit of CSPs under CS federation
becomes significantly higher. This happens because now CS
federation abuses the “unfair” pricing function. In particular,
the optimal CS policy is to increase the infrastructure of the
CSP with the highest workload as much as possible, leading
to a really high QoS and thus price for the customers of
this CSP. On the other hand, the rest CSPs operate at the worst
acceptable QoS and their customers pay the minimum price.

The impact of “unfair” pricing on the behavior of CS
federation is summarized in the following points: (i) Under CS
joint business mode, the activity-driven profit sharing policy
now favors the CSPs with higher utilization (see high values
of λ1 in Fig. 11). (ii) In CS federation, the QoS and profit
optimization objectives are not aligned. Now, CS federation
can achieve higher profits than TF at the expense of lower
average QoS which in some case becomes worse than that
of standalone operation. In fact, the average QoS in now

Fig. 11. Profit of CSP1 under all operation modes and “unfair” pricing.

Fig. 12. QoS of CSP1 under all operation modes and “unfair” pricing.

driven by the worst acceptable QoS thresholds of CSPs. In the
optimal policy, two of the CSPs operate at the worst acceptable
QoS, while the third one operates at very high QoS. Fig. 12
shows that CSP 1 switches from the worst QoS level to a
very high one as its standalone workload increases. (iii) As
the QoS thresholds become tighter, the average QoS of the
CS approach improves but the generated profits decrease. The
existence of worst QoS threshold is vital for the CS approach,
otherwise the optimal CS policy would lead to the maximum
possible profit but also to unacceptable QoS. Next, we discuss
how the deficiency occurs by the “unfair” can be mitigated by
taking into account customers’ willingness to pay.

9) Restriction on Best Possible QoS and Customers’ Will-
ingness to Pay: In order to avoid an extremely high QoS and
an undesirably high price for the customers, each CSP could
define a best QoS threshold based on its customers’ willingness
to pay. That is when a customer sends a task request to a CSP,
he should also define the maximum price pmax he is willing
to pay for this task. For simplicity, let us assume that this is
the same for all customers. The CSPs should take as input this
pmax and estimate the T min above which is still beneficial to
work. Operating at better QoS level will not bring additional
profit because the customers are not willing to pay for it.
We performed multiple experiments by adjusting slightly our
models to introduce willingness pay dimension. The results
show that the TF approach is not affected by this new feature
of the model. On the other hand, the profitability and QoS of
the CS approach now depends on the new best QoS threshold
that is determined by customers’ willingness to pay, i.e. pmax.
Especially, the total profit of CS is slightly lower than before
but the QoS is slightingly better. This applies because the new
upper threshold on QoS places a restriction on how much QoS
can be “traded” for extra profit.
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VI. RELATED WORK

Architectural approaches of cloud federation. The authors
in [10] present the challenges of a utility-oriented cloud
federation and propose three basic entities for a market-based
cloud federation architecture; namely, the cloud exchange as
the entity that creates the market, a cloud coordinator per
CSP as seller, and a cloud broker per client as buyer. The
Reservoir model, a modular cloud architecture, is proposed in
[20]. In Reservoir, multiple CSPs collaborate in order to create
a virtual pool of resources that seems infinite. The authors
in [21] present the concept of cloud federation as service
aggregation and they present two modes of such a federation,
the redundancy and migration federations. In redundancy
federation, multiple CSPs come together and jointly offer a
service to achieve improved quality for a client, while in
migration federation a client is moved from an old service
to new one offered by another CSP due to improved quality
(this condition for migration constitutes the main difference
to our TF approach). Finally, the authors in [22] envision
the federation of CSPs as a vertical stack that fits on the
layered model of cloud computing (i.e. SaaS, PaaS and IaaS).
A service request may arrive in any layer of a CSP and
can be served either by local resources using delegation to
a lower layer or by another federated CSP using delegation to
a matching layer.

Cooperative inter-cloud resource allocation. The authors
in [23] and [24] propose cooperative price-based resource
allocation mechanisms in dynamic cloud federation platforms,
aiming to maximize the total utility of a federation. In [7], [25]
and [8], coalitional game theory is applied as a mechanism for
the dynamic formation of CSPs’ federations. Both these papers
have proposed algorithms that determine the optimal coalitions
for a set of CSPs, given their client-generated workloads.
A work that is also based on the coalitional game theory
was presented in [26], however this works is focusing in data
intense federations and incorporates trust models for the coali-
tion formation as well penalties for SLA violation. In [9] the
inter-CSP VM (virtual machine) migration is presented as an
alternative to resource over-provisioning. The authors propose
a global scheduler that decides whether a VM should migrate
or shut down, thus aiming to CSPs utility maximization.

Resource allocation among selfish CSPs. In [11], the feder-
ation among geo-distributed CSPs is investigated. The authors
design algorithms, based on double-auctions, for inter-cloud
VM trading in federations of selfish CSPs. A Stackelberg game
is presented in [12]; the game is between the Application
Service Providers (followers) that aim at optimizing their
offered QoS and the CSPs (leaders) that set prices of resources
to maximize their own benefit.The authors in [27] model each
CSP as a set of heterogeneous servers, each of them modeled
as an M/M/1 queue. Then, they formulate the problem of
resource allocation in a multi-CSP environment as a game
among selfish CSPs, where each CSP aims to maximize its
individual utility taking into account the customer SLAs. The
author in [13] investigates the interactions among CSPs as a
repeated game among selfish players that aim at maximizing
their profit by selling their unused resources in a spot market.
The model incorporates information for both historical and

expected future revenue as part of the resource trading deci-
sions, in order to simultaneously maximize the CSP revenue
and avoid future workload fluctuations.

Some of the works above provide an overview of the
architectural elements of a federated system, while others
consider the problem of resource allocation in inter-cloud
environments of either cooperative or selfish CSPs. Contrary to
most existing works, we provide policies both for cooperative
and the non-cooperative federated environments. Most of the
existing works do not take into account the QoS offered to
CSPs’ customers as the optimization objective. In our TF
approach, the federation policies are optimal with respect to
total profit; but they are also nearly optimal with respect to the
QoS offered to customers since profit and QoS optimization
are aligned objectives. In the CS approach, the worst QoS
threshold gives federated CSPs the ability to generate higher
profits by reducing the average QoS as close as possible to
the customers’ SLAs. Finally, our work abides to the general
trend observed in the area of cloud computing such “serverless
computing” which appears to be the service model that will
dominate the cloud market in the forthcoming years.

VII. CONCLUSIONS

In this paper, we built a fundamental theory of sharing
economy of computational capacity resources of CSPs. In par-
ticular, we introduced a queueing theory-driven model for
a CSP and we formulated its revenue and cost functions.
We defined two alternative approaches (TF and CS) for the
formation of cloud federations, and we introduced policies and
rules for two different federation modes. In the joint business
mode, the CSPs cooperate and jointly decide their TF/CS
policies aiming to maximize the total profit of federation.
In the reward driven mode, the CSPs participate in a non-
cooperative game where each of them determines its own
TF/CS policy aiming to maximize his own profit. However,
the game is designed in a way that motivates selfish CSPs to
contribute to the federation.

The numerical results showed that our models can con-
siderably increase the profit of the participating CSPs and
federation as a whole. An important outcome of our work is
that the reward-driven federation of selfish CSPs converges to
a unique equilibrium where the CSPs’ profits are the same as
in the cooperative joint business federation. This implies that
the optimal solution can be achieved both for cooperative and
selfish CSP groups. We also showed that the CS federation
approach can generate significantly more profit compared to
the TF under certain pricing function. However, in that case,the
QoS and profit optimization objectives under CS approach are
not aligned. This should be taken into account by CSPs aiming
to create a federation. Base on the CSPs interests (e.g. high
profit, high QoS, etc. ), the pricing function that they follow
can render both TF and CS federation approaches applicable,
or only one of them.

An interesting future direction is to generalize these models
in service provisioning environments, where the service provi-
sioned requires computational capacity, storage and bandwidth
resources which may be owned by different parties.
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