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ABSTRACT
Energy demand forecasting at the household level is an important
issue in smart energy grids to facilitate applications such as res-
idential Demand Response (DR). However, if a separate machine
learning model is trained for each house, the erratic nature of some
consumers will lead to significant inaccuracies for the respective
models, while predictions for new households with scarce data will
not be possible to generate. In this work, we propose an approach
with a single deep learning model that is trained on multiple house-
holds, which can create hourly energy consumption forecasts for
individual households. We present a novel architecture that com-
bines a Recurrent Neural Network (RNN) encoder and a Multilayer
Perceptron (MLP). Our approach captures both the impact of past
consumption time-series and that of energy profiles on future en-
ergy demand. Our model incorporates energy profiles to derive
different characteristics between consumers, and it features a "dou-
ble" clustering procedure that is specially designed for a mixture of
time-series and non-time-series data. Experiments with real smart
meter data show that the proposed neural network architecture
achieves high performance in predicting energy consumption both
for known and new consumers not present in the training dataset,
with a Mean Absolute Percentage Error (MAPE) of 10.1% and 12.5%
respectively.
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• Computing methodologies → Machine learning; • Hard-
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1 INTRODUCTION
Energy demand forecasting is a crucial component of many smart
grid applications in order to ensure grid stability by balancing en-
ergy supply and demand. Short-Term Load Forecasting (STLF) refers
to energy consumption predictions with a granularity ranging from
a few minutes up to several hours or even days, while Long-Term
Load Forecasting (LTLF) refers to granularities of over two weeks
[13]. STLF is utilized by applications and services such as Demand
Response (DR), hour-ahead scheduling, and day-ahead scheduling
[13]. DR programs are designed to change the consumption profile
of energy consumers in order to avoid demand-supply imbalances,
through incentive mechanisms such as dynamic pricing or through
direct automated control of appliances [6]. STLF is also crucial
for energy markets since market players need to provide accurate
supply/demand bids for the day-ahead and real-time markets [8].

Consequently, energy demand needs to be predicted at the indi-
vidual consumer level since accurate forecasts can improve energy
market and DR mechanisms through better targeting consumers
for DR events based on their predicted consumption. Other appli-
cations of household-level demand forecasting include consumer
targeting for energy efficiency campaigns and smart meter fault
detection.

A common approach in the literature is to train an individual
consumption forecasting model for each house with historical data
collected from smart meters [22]. However, a machine learning
model trained on data from a single household cannot generalize well
enough and cannot make good enough predictions for new consumers
that are not included in the training dataset [22]. On the other hand,
it is not possible to train a new model for each new household if
historical consumption data are not available for it, which is the so
called cold-start problem.

Furthermore, energy consumption forecasting at the household
level is by definition a difficult task due to the involved energy
demand uncertainty, which mostly depends on the behaviour of
consumers. In other words, despite the fact that the single-model-
per-household approach has achieved accurate demand forecasting
in the literature, there are cases where in the presence of erratic
consumers with completely unpredictable consumption patterns,
even the most powerful deep learning models fail to perform ac-
curately. In such cases, a single deep learning model trained on
a large number of households can effectively discover common
patterns between consumers and provide accurate forecasts even
for households with erratic energy demand patterns.

Moreover, an electricity retailer might want to acquire individual
predictions for a large number of households, e.g. hundreds or even
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thousands of residential customers in order to increase the impact
of a DR program. However, the approach of an individual model for
each consumer might be computationally demanding since demand
variability and uncertainty require the use of resource-consuming
deep learningmodels, which often need individual hyper-parameter
tuning to perform accurately on each house [22].

For the aforementioned reasons, in this work we design and
validate an approach with a single deep learning model architec-
ture trained on consumption data from multiple houses. The goal of
the proposed approach is to distinguish the energy demand pat-
terns between different households and conduct predictions for any
electricity consumer, by constructing an energy profile for each
household. Energy profiles have been used in the literature to train
clustering and classification models [3], [14], [15], [12], but they
are not used as as a direct input for a deep learning model that
predicts energy consumption for individual houses. Specifically,
such a model should achieve "generalization", meaning that it will
be able to accurately predict the future consumption of houses on
which it is trained, while it should also achieve "representativeness"
in the sense that it will be capable of predicting the future energy
demand of new (unseen) houses with a few days’ data.

In our architecture, we utilize a "double" clustering procedure
where the time-series features of each profile (e.g. daily load profiles)
are used for consumer clustering with a version of k-means for time-
series data and the rest of the profile features are used with classical
k-means. The derived distances from each cluster centroid for each
household act as encodings of the energy profiles and are used as
an additional input for the deep learning consumption forecasting
model. Our architecture features a novel RNN encoder and MLP
neural network architecture that captures the effect that both past
consumption and energy profiles have on future energy demand, thus
achieving greater prediction performance than the state-of-the-art
approaches in hourly household demand forecasting for individual
households with a single model. Furthermore, our neural network
architecture along with the derived combination of input features
leads to a model capable of making individualized predictions even
for unseen houses. To summarize, the contributions of this work
are the following:
• We introduce a novel neural network architecture with a
combination of an RNN encoder and an MLP for individual
household energy consumption forecasting.
• We propose the utilization of energy profiles as additional
input features to the deep learning architecture, enabling
it to learn the differences between individual consumers’
energy consumption patterns.
• We extend the model’s ability to distinguish different energy
demand patterns among individual households by proposing
a "double" clustering approach on the energy profiles.
• We validate the proposed approach with energy consump-
tion data from real households, with the experiments show-
ing that the model achieves both "generalization" (by making
accurate hourly forecasts on test data with a𝑀𝐴𝑃𝐸 of 10.1%
for houses included in the training set), and "representative-
ness" (by conducting accurate predictions for completely
new households, with a𝑀𝐴𝑃𝐸 of 12.47%).

The rest of the paper is organized as follows: in section 2, prior
related work is discussed and the novelty of our work is high-
lighted. In section 3, a brief background presentation is conducted.
In section 4, the proposed approach is explained in detail, while
in section 5, the experimental setup and results are presented and
discussed. Finally, in section 6 we conclude and summarize this
work’s contributions and highlight future directions.

2 RELATEDWORK
A commonly used approach for predicting the future energy con-
sumption of a household or a building is to train a machine learn-
ing model with historical smart meter data specifically from this
household. Various machine learning algorithms have been studied
for this purpose [1], [2], [10], [19], [20], [21], [26], [28], showing
promising results regarding the prediction performance for a sin-
gle house/building, with neural networks generally achieving the
highest accuracy. However, as discussed earlier, a model trained to
conduct forecasts for a single household/building cannot provide
predictions for new houses. If these houses do not have sufficient
historical data to train new models for them, the cold-start problem
will emerge.

Another approach to tackle the problem of household energy
demand forecasting is to train a single machine learning model
with historical consumption data from multiple households. The lit-
erature is significantly sparser on this approach. In [22], the authors
developed a general purpose time-series probabilistic forecasting
model named DeepAR using Autoregressive Recurrent Networks,
which is capable of predicting a future portion of a time-series with
a single encoder-decoder neural network. The proposed model as-
sumes a probability distribution for the data and learns its mean and
standard deviation for each time slot, while also using a set of time-
dependent covariates as an input. In their evaluation, the authors
conducted experiments with datasets from many domains, includ-
ing household energy consumption forecasting, where the model
achieved a Root Mean Squared Error (RMSE) of 1.0 on predicting
the hourly energy demand for the next 24 hours.

Our approach differs from that in [22] since we propose a simpler
deep learning architecture with an RNN encoder and an MLP that
is specially designed for the task of deterministic individualized
household energy demand forecasting by integrating energy pro-
files and consumer clustering in the model’s inputs. Contrary to
[22], our model focuses on predicting the energy consumption for
a single time slot without having to assume a probability distribu-
tion for the data, instead of forecasting the energy consumption’s
probability distributions for a time window. This leads to a lighter
architecture, which however seems capable of achieving better per-
formance in terms of single prediction point accuracy (since we
report lower RMSEs). Furthermore, even though determining the
probability distribution forecast for an individual consumer would
be a plus, this does not seem to be a current requirement in the
energy sector for DR programs.

In [25] the authors use Dynamic TimeWarping (DTW) to cluster
24-hour load curves instead of houses, originating from a dataset
of approximately 1000 households with a time horizon of 22 days,
resulting to 20 clusters. Then, each load curve is encoded with the
nearest cluster centroid, in terms of DTW distance, and Markov
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models are trained to conduct next day load curve forecasting. This
approach achieved lower DTW-error compared to prior works,
while the prediction was extended to appliance-level consumption.

In [23], a pooling-based deep RNN is proposed for household
demand forecasting. The authors use the term "pooling" to intro-
duce a set of input features that consists of a batch of randomly
selected load profiles from other "neighbouring" households. The
proposed pooling strategy achieves an improvement of 6.96% (com-
pared to not using the model) in terms of prediction performance
while avoiding overfitting. In [18] a transfer learning approach
is introduced to tackle energy demand forecasting for multiple
houses. More specifically, k-means is used to cluster apartments
based on their daily load profiles, while a separate "base" RNN is
trained on each cluster centroid’s profile. Each trained RNN is uti-
lized as a base model to train an individual neural network for each
apartment through Transfer Learning, which clearly goes beyond
the setting of one model trained on multiple houses. Experiments
with 15-min consumption data from two buildings consisting of 96
and 91 apartments respectively show that the proposed approach
achieves greater performance in terms of computational time and
forecasting error compared to training a separate RNN model for
each apartment, with a 𝑀𝐴𝑃𝐸 of 34.3% and 41.07% for the two
buildings respectively.

Our work differs from [25], [23], and [18] since we use con-
sumer energy profiles along with distances from cluster centroids
as additional inputs for the demand forecasting model to learn
how to distinguish consumption patterns and characteristics be-
tween different consumers. Furthermore, we propose a novel neural
network architecture for energy demand prediction that captures
the effect of both past consumption with an RNN encoder compo-
nent and energy profiles with an MLP component. This leads to a
MAPE of 10.1% for already seen houses and 12.47% for new/unseen
households, meaning that the proposed approach achieves both
"generalization" and "representativeness".

3 BACKGROUND
3.1 Deep learning
A neural network consists of neurons organized in layers, with each
neuron having a feature vector 𝒙 as an input from the previous
layer and outputting a value calculated as:

ℎ𝑛 = 𝑓 (𝒘𝒏
𝑇 𝒙 + 𝑏𝑛), (1)

where ℎ𝑛 refers to the 𝑛-th neuron of this specific layer,𝒘𝒏 is the
weight vector, 𝑏𝑛 is the bias term, and 𝑓 (·) is the activation function.
The model learns the weight and bias parameters of each neuron
using backpropagation [27] on the training data, which are iterated
several times, while each full iteration is defined as an epoch. During
each epoch, the training set is split into mini-batches and the error
gradient ∇𝐸 (𝒘) is computed for each mini-batch according to a loss
function 𝐸 (·), the network’s output, and the real labels. The error
gradient is distributed to all neurons utilizing the chain rule and the
weights are updated with an optimizer such as Stochastic Gradient
Descent (SGD), which uses the following rule: 𝒘 ← 𝒘 − 𝜂∇𝐸 (𝒘),
where 𝜂 refers to the learning rate selected.

Figure 1: Proposed approach flow.

A neural network variant which also keeps an internal mem-
ory that captures the temporal characteristics of input feature se-
quences, is called a Recurrent Neural Network (RNN). RNNs are
utilized in various applications that use time-series data, such as
energy consumption measurements. The most popular RNN cell
versions are Long Short-Term Memory neural networks (LSTMs)
and Gated Recurrent Units (GRUs). The two variants have shown
similar performance in many problem settings, and GRUs are more
efficient in terms of computations since they use fewer parameters
[7].

3.2 Clustering
A clustering algorithm groups a set of objects based on their fea-
tures, in order to have similar objects on the same cluster and
dissimilar ones to different clusters, based on a predefined distance
measure. The most popular clustering algorithm is k-means with
Euclidean distance (2), which iteratively places each data point into
the closest cluster, while the number of clusters 𝑘 is predefined. The
Euclidean distance for two feature vectors 𝒙,𝒚 ∈ R𝑛 is defined as:

𝑑 (𝒙,𝒚) =

√√
𝑛∑
𝑖=1
(𝑥𝑖 − 𝑦𝑖 )2 . (2)

A variant of k-means that is utilized to cluster time-series data
based on their curve shape, uses Dynamic Time Warping (DTW)
distance [4], [25] as a similarity measure, instead of Euclidean
distance. A warping path on a 𝑛 ×𝑛 matrix needs to be defined as a
sequence 𝑝 = (𝑝1, . . . , 𝑝𝐿) where 𝑝𝑙 = (𝑖𝑙 , 𝑗𝑙 ) and 𝑙 ∈ [1 : 𝐿], with
𝑝1 = (1, 1), 𝑝𝐿 = (𝑛, 𝑛), 𝑖1 ≤ 𝑖2 ≤ . . . ≤ 𝑖𝐿 , and 𝑗1 ≤ 𝑗2 ≤ . . . ≤ 𝑗𝐿 .
Furthermore, the cost of a warping path 𝑝 for two feature vectors
𝒙 and 𝒚 is defined as:

𝑐𝑝 (𝒙,𝒚) =
𝐿∑
𝑙=1
(𝑥𝑖𝑙 − 𝑦 𝑗𝑙 )2, (3)

and the DTW distance between 𝒙 and 𝒚 is defined as:
𝐷𝑇𝑊 (𝒙,𝒚) = 𝑐𝑝∗ (𝒙,𝒚), (4)

where 𝑝∗ = arg min 𝑐𝑝 (𝒙,𝒚) is the warping path with the lowest
possible cost, which is found using dynamic programming [4], [25].

4 PROPOSED APPROACH
The approach that is proposed in this work is depicted in Fig. 1.
It takes advantage of household energy profiles to learn the dif-
ferences between the consumption patterns and characteristics of
individual consumers. Then, a "double" clustering procedure is con-
ducted to group households with similar energy profiles, leading
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Table 1: Energy profile features used in our approach.

IDs Profile feature Description Type
1-24 24h load profile Hourly average normalized consumption (24 features) Time-series
25 mean Mean consumption Non-time-series
26 var Consumption variance Non-time-series
27 max Maximum consumption Non-time-series
28 min Minimum consumption Non-time-series
29 min_over_mean min / mean Non-time-series
30 mean_over_max mean / max Non-time-series
31 𝑃𝑅1 (Relative average consumption 1) 𝑃1 / mean Non-time-series
32 𝑃𝑅2 (Relative average consumption 2) 𝑃2 / mean Non-time-series
33 𝑃𝑅3 (Relative average consumption 3) 𝑃3 / mean Non-time-series
34 𝑃𝑅4 (Relative average consumption 4) 𝑃4 / mean Non-time-series
35 weekend_weekday_difference_score 1

4
∑4

𝑗=1
|𝑃𝑊𝐷 𝑗−𝑃𝑊𝐸 𝑗 |

𝑃 𝑗
Non-time-series

36 mean_relative_std 1
4
∑4

𝑗=1
𝜎 𝑗

𝑃 𝑗
Non-time-series

37 seasonal_score 1
4
∑4

𝑗=1
|𝑃𝑊𝑗−𝑃𝑆 𝑗 |

𝑃 𝑗
Non-time-series

to an encoding for each energy profile based on its distance from
each cluster’s centroid. Both the energy profiles and the cluster-
ing distances are used as additional input features for the neural
network that predicts the hourly energy demand for individual
households. Moreover, a novel RNN-encoder-based deep neural
network architecture is proposed to further increase the predictive
performance of the model, in terms of both "generalization" and
"representativeness".

4.1 Household energy profiles
An energy profile is essentially a vector of features consisting of
multiple characteristics and statistics calculated from the avail-
able consumption data of a household, which can be categorized
as either time-series or non-time-series features. The time-series
features of an energy profile can include ordered statistics for spe-
cific time periods, such as average hourly energy consumption (24
features). The rest of the profile features are described as non-time-
series features and can include any other statistic derived from the
consumer’s consumption data. In this work, the energy profiles’
non-time-series features include a set of statistics proposed by [3],
[14], and [15]. Specifically, these features consist of: consumption
figures (i.e. aggregates of consumption during different periods of
the day), consumption ratios (features calculated as the ratio of two
consumption figures), and statistical features (e.g. mean, variance,
etc.).

The energy profiles we use also include a set of features proposed
by [12], namely relative average power in each period of the day,
mean relative standard deviation, seasonal score (to capture the
seasonality observed in the data), and weekend vs weekday score.
The periods in which each day is divided are: overnight (period
1, 22:00-6:00), breakfast (period 2, 6:00-9:00), daytime (period 3,
09:00-15:00), and evening (period 4, 15:00-22:00). Similarly to the
notation of [12], for each consumer, we define 𝑃 𝑗 as the mean power
consumption and 𝜎 𝑗 as the standard deviation for each time period
𝑗 ( 𝑗 = 1, 2, 3, 4). Furthermore, the mean power consumption during
summer and winter for each time period 𝑗 is defined as 𝑃𝑆 𝑗 and 𝑃𝑊𝑗

respectively, while the mean power consumption during weekends
and weekdays for each time period 𝑗 is defined as 𝑃𝑊𝐸 𝑗 and 𝑃𝑊𝐷 𝑗

respectively. The complete energy profile we consider for each
household in this work is presented in Table 1.

4.2 Household "double" clustering
Clustering of residential energy consumers is a common approach
in the literature to assign consumers with similar consumption
characteristics into groups. Most approaches use classic clustering
algorithms such as k-means with Euclidean distance, which is not
always the most appropriate approach when the clustering inputs
include time-series features.

Specifically, classical k-means with Euclidean distance is not
invariant to minor time shifts since it measures point-to-point dis-
tance, meaning that two 24-hour load curves with similar shape
and consumption levels will have a large Euclidean distance if one
of them is shifted by just one hour [25]. Hence, we utilize a variant
of k-means that uses Dynamic Time Warping (DTW) as a distance
measure to cluster households based only on the time-series fea-
tures of the energy profiles, while the rest of the profile features are
utilized as an input for k-means with Euclidean distance. Thus, the
clustering procedure of the households is split into two separate
clustering flows based on their energy profiles, with each house
having two cluster memberships for the two clustering algorithms
respectively. All the distances from the cluster centroids can serve
as an additional input for other machine learning models, while
in this work we utilize them as additional input features for the
demand forecasting neural network. In section 5 we present exper-
iments conducted with real data that show both the improvement
with the "double" clustering approach in terms of cluster quality,
as well as the predictive performance improvement of the demand
forecasting model when the cluster centroid distances are included
in the input feature vector.
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Figure 2: The proposed RNN-encoder-and-MLP architecture.

4.3 A single consumption forecasting model
for any household

The goal is to train a model that generalizes well on test data from
observed houses (i.e. houses included in the training data), while
also achieving "representativeness" by having a high prediction
performance even for completely new/unseen houses (i.e. houses
for which the training set did not include any data). As depicted
in Fig. 1, using the constructed energy profiles described earlier, as
well as the distances from all cluster centroids calculated for each
household, an input feature vector is assembled to train a machine
learning model that outputs the household’s demand 𝑃𝑡 for time
slot 𝑡 (in this work we use 1-hour time slots to tackle STLF). The
input feature vector also includes time-related features, i.e. Hour
(0-23), Weekday (0-6), DayOfYear (1-365), and Month (1-12), while
it can also incorporate past consumption measurements (e.g. for
the past 24 hours: 𝑃𝑡−24, . . . , 𝑃𝑡−1) and other available metadata for
each household depending on the dataset (e.g. house size in 𝑚2,
solar panel integration, etc.).

The rationale is that features such as energy profiles, cluster-
ing distances, and past consumption help the model to learn the
differences between individual households in terms of demand pat-
terns and characteristics, thus distinguishing among certain house
attributes through the hidden layers, and providing accurate fore-
casts. In other words, such a model is capable of providing hourly
consumption forecasts for any house, with just a few days’ data to
construct the energy profile. In section 5, different combinations of
the aforementioned input features are tested with different models
and their impact on the results is assessed.

4.4 The proposed RNN-encoder-and-MLP deep
neural network architecture

As mentioned in the previous section, past consumption (e.g. past
24 hour or even past week) can increase the model’s performance
when it predicts the household demand 𝑃𝑡 for time slot 𝑡 . However,
if the past consumption measurements are directly used as a part of
the input feature vector for a neural network (e.g. an MLP [11]), the
time dimension of the past consumption sequence will be ignored.

In particular, the model will treat the past consumption features as
independent and not as a time-series sequence of measurements.
On the other hand, if an RNN is trained on just the time-series con-
sumption measurements, the rest of the features discussed earlier,
such as energy profiles, will not be included.

We propose a novel model architecture depicted in Fig. 2, that
consists of an RNN encoder with the past consumption features as
input, and an MLP with the rest of the features. The input to the
MLP also includes the encoding vector that is the result of the RNN
encoder. The rationale is that this combines the advantages both of
an RNN trained on energy demand time-series data and an MLP
trained on features such as energy profiles and cluster distances
for each household. In other words, when predicting a household’s
energy consumption for time slot 𝑡 , the model also incorporates an
encoding that represents all the information it assumes is important
for the past 24 hours. Specifically, the input feature vector for a
specific household at time slot 𝑡 with a 24-hour look-back window
is:

𝑰 = (𝑃𝑡−24, . . . , 𝑃𝑡−1, 𝑥1, . . . , 𝑥54), (5)
where (𝑃𝑡−24, . . . , 𝑃𝑡−1) is the past 24h energy consumption for the
specific household, and (𝑥1, . . . , 𝑥54) includes the 37 energy profile
features presented in Table 1 along with the 17 following features:
• Hour (0-23), Weekday (0-6), Month (1-12), DayOfYear (1-
365);
• Distances from non-time-series cluster centroids (𝑘∗ dis-
tances for 𝑘∗ clusters, with 5 clusters in our case);
• Distances from time-series cluster centroids (𝑘 distances for
𝑘 clusters, with 6 clusters in our case);
• pv (Boolean feature for solar panel existence);
• total_square_footage (house area in𝑚2).

Various combinations of these features can lead to different re-
sults, as we show in section 5. The past consumption part of 𝑰 ,
i.e. (𝑃𝑡−24, . . . , 𝑃𝑡−1), is used as an input for an RNN encoder with
Gated Recurrent Unit (GRU) cells [7]. We use a GRU RNN as an en-
coder since it is computationally more efficient than LSTMs while
preserving similar performance. Furthermore, the utilization of
more complex RNN architectures, such as stacked RNNs, did not
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show any performance gains in our experiments. An example of
the last GRU cell 𝒉𝒕−1 as depicted in Fig. 2, is presented below:

𝒛𝒕−1 = 𝜎 (𝑼𝒛𝑃𝑡−1 +𝑾𝒛𝒉𝒕−2 + 𝒃𝒛), (6)

𝒓𝒕−1 = 𝜎 (𝑼𝒓𝑃𝑡−1 +𝑾𝒓𝒉𝒕−2 + 𝒃𝒓 ), (7)
�̃�𝒕−1 = tanh(𝑼𝒉𝑃𝑡−1 +𝑾𝒉 (𝒓𝒕−1 ⊙ 𝒉𝒕−2) + 𝒃𝒉), (8)

𝒉𝒕−1 = 𝒛𝒕−1 ⊙ �̃�𝒕−1 + (1 − 𝒛𝒕−1) ⊙ 𝒉𝒕−2, (9)
where 𝒛𝒕−1 is the update gate vector, 𝒓𝒕−1 is the reset gate vector,
�̃�𝒕−1 is the candidate activation vector, 𝒉𝒕−1 is the output vector,
and 𝜎 (·) refers to the sigmoid activation function 𝜎 (𝑥) = 1

1+𝑒−𝑥 ,
while 𝑼𝒛 , 𝑼𝒓 , 𝑼𝒉,𝑾𝒛 ,𝑾𝒓 ,𝑾𝒉, 𝒃𝒛 , 𝒃𝒓 , and 𝒃𝒉 are the weight and bias
parameters of the neural network cell [7].

The RNN encoder output 𝒉𝒕−1 is an encoding of the past con-
sumption that the neural network learns during training. The size of
the encoding vector is a hyper-parameter derived from the parame-
ters of the RNN encoder. In this work, we use an encoding with a
size equal to 64, after hyper-parameter tuning, which is the number
of neurons each GRU cell contains, i.e. 𝒉𝒕−1 = (𝑂1, . . . ,𝑂64) as de-
picted in Fig. 2. The encoding along with the rest of the features of
𝑰 , 𝒙 = (𝑥1, . . . , 𝑥54) in our case, are used as an input feature vector
for a Multilayer perceptron (MLP) with 4 hidden layers. Apart from
the input layer 𝑰𝑴𝑳𝑷 = (𝒉𝒕−1, 𝒙), the MLP consists of a number of
hidden layers, and an output neuron which is the energy demand
prediction 𝑃𝑡 for time slot 𝑡 , regarding the specific household. Each
hidden layer includes multiple neurons (the number of hidden lay-
ers and neurons are hyper-parameters), and each neuron uses the
previous layer outputs as an input:

𝑯1 = 𝐸𝐿𝑈 (𝒘1
𝑇 𝑰𝑴𝑳𝑷 + 𝒃1), (10)

𝑯𝒏 = 𝐸𝐿𝑈 (𝒘𝒏
𝑇𝑯𝒏−1 + 𝒃𝒏), 𝑛 = 2, . . . , 4, (11)

𝑃𝑡 = 𝜎 (𝒘5
𝑇𝑯4 + 𝒃5), (12)

where 𝐸𝐿𝑈 refers to the Exponential Linear Unit activation function,
which is defined as:

𝐸𝐿𝑈 (𝑥) =
{
𝑥, 𝑥 ≥ 0
𝛼 (𝑒𝑥 − 1), 𝑥 < 0.

(13)

In our case, it is 𝛼 = 1 and we use 𝐸𝐿𝑈 instead of 𝑅𝑒𝐿𝑈 since it
does not face the dying 𝑅𝑒𝐿𝑈 problem and leads the cost to zero
faster while producing more accurate results. Furthermore, the
MLP layers have 500, 100, 50, 10, and 1 neurons respectively after
hyper-parameter tuning.

5 DATA EXPERIMENTS
In this section, a detailed experimentation with a real dataset is
carried out. The experimental setup and data preprocessing are
presented together with evaluation metrics, and the results and
main takeaway messages from the experimentation results are
discussed.

5.1 Dataset
We use the Pecan Street Dataport [24] dataset, which consists of
smart meter energy consumption data from approximately 1000
real U.S. households, along with various metadata and appliance-
level measurements for each household. For the clustering part, a
subset of 653 houses is utilized with hourly energy consumption

measurements from 2012 to 2019, while for the deep learning train-
ing phase, a subset of 310 households with data from 2018 to 2019 is
used. Besides hourly energy consumption measurements, we also
utilize the house area (𝑚2) and a Boolean feature about solar panel
existence.

5.2 Data preprocessing
The majority of energy consumption measurement data have low
values, while there are significantly less measurements with high
energy values. Neural networks try to perform well on the entire
training dataset on average, thus energy peaks are underestimated
due to the positive skewness of the demand data. Hence, as part
of the data preprocessing procedure, a Box Cox transformation
[5] is applied to the energy consumption data before training, in
order to transform the data into a normal distribution. The Box Cox
transformation is defined as follows:

𝑌𝑖 =

{
𝑌𝜆
𝑖
−1
𝜆

, if 𝜆 ≠ 0
log𝑌𝑖 , if 𝜆 = 0

(14)

where 𝑌𝑖 refer to the target variables, which in our case are the en-
ergy consumption measurement data, and 𝜆 is a parameter selected
in order to approximate a normal distribution curve. Furthermore,
all input and output features of the deep learning model are nor-
malized into [0, 1] using a MinMaxScaler from the Scikit-Learn
Python library1. Both transformations are inversed after a predic-
tion takes place, so that the system outputs the appropriate energy
consumption value.

5.3 Experimental setup
The dataset consisting of 310 households with measurements from
2018 to 2019 is randomly split into training and test sets with a
80-20 ratio. This means that the deep learning models presented are
trained on all of the 310 houses, but only with 80% of the measure-
ments. In addition, a set of 100 different unseen houses to the model
is used to test the its predictive performance on new houses. The
loss function used for all the neural networks for 𝑛 observations is
Mean Squared Error (MSE):

𝑀𝑆𝐸 =
1
𝑛

𝑛∑
𝑖=1
(𝑌𝑖 − 𝑌𝑖 )2, (15)

where 𝑌𝑖 refer to real/target observations and 𝑌𝑖 are the model
predictions. The optimizer used for training is Adam [16], along
with early stopping based on a validation set consisting of 10% of
the training set. The experiments were conducted using an NVIDIA
GTX 1060 6GB GPU.

5.4 Evaluation metrics
In order to individually evaluate the clustering performance, we use
the Hopkins statistic and the Davies–Bouldin index. The Hopkins
statistic measures a dataset’s cluster tendency, i.e. the probability
that the data points were generated by a uniform distribution, and
is performed before the clustering procedure. This evaluation met-
ric includes a null hypothesis 𝐻0 and an alternate hypothesis 𝐻𝑎 ,
where 𝐻0 implies that the data points are generated by a uniform
1https://scikit-learn.org
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distribution, and 𝐻𝑎 assumes that they are generated by a ran-
dom distribution which might indicate the presence of meaningful
clusters. If D is the examined dataset,𝑚 points (𝑝1, . . . , 𝑝𝑚) are
sampled from D, and𝑚 artificial points (𝑞1, . . . , 𝑞𝑚) are generated
from a random uniform distribution. The Hopkins statistic [17] is
defined as follows:

𝐻 =

∑𝑚
𝑖=1 𝑢𝑖∑𝑚

𝑖=1 𝑢𝑖 +
∑𝑚
𝑖=1𝑤𝑖

, (16)

where𝑢𝑖 is the distance between each artificial point and the nearest
point from D, and 𝑤𝑖 is the distance between each point from
(𝑝1, . . . , 𝑝𝑚) and its nearest neighbour fromD. A value of𝐻 close to
1 indicates that the examined dataset has a high clustering tendency,
while a value close to 0 indicates that the data points are uniformly
distributed.

The Davies–Bouldin index (𝐷𝐵 index) [9] measures the average
similarity between the resulted clusters, by comparing the distances
between clusters and their size. Values closer to 0 indicate a better
cluster partition, where 0 is the lowest possible value. The𝐷𝐵 index
is defined as follows:

𝐷𝐵 =
1
𝑛𝑐

𝑛𝑐∑
𝑖=1

𝐷𝑖 , (17)

where
𝐷𝑖 = max

𝑗={1,...,𝑛𝑐 }, 𝑗≠𝑖
𝑅𝑖 𝑗 , 𝑖 = {1, . . . , 𝑛𝑐 }, (18)

𝑅𝑖 𝑗 =
𝑠𝑖 + 𝑠 𝑗
𝑑 (𝑣𝑖 , 𝑣 𝑗 )

, (19)

𝑠𝑖 =
1
∥𝑐𝑖 ∥

∑
𝑥 ∈𝑐𝑖

𝑑 (𝑥, 𝑣𝑖 ), (20)

where 𝑛𝑐 is the number of clusters, 𝑑 (·, ·) is the Euclidean distance,
𝑐𝑖 refers to cluster 𝑖 , and 𝑣𝑖 refers to the centroid of cluster 𝑖 .

The metrics used for the energy consumption prediction model
evaluation are the Mean Absolute Percentage Error (MAPE), the
R-squared (𝑅2) metric, and the MSE. The original MAPE definition
is:

𝑀𝐴𝑃𝐸 =
1
𝑛

𝑛∑
𝑖=1

����𝑌𝑖 − 𝑌𝑖𝑌𝑖

���� . (21)

However, (21) is not defined when 𝑌𝑖 = 0, which is possible in the
case of energy consumption measurements. Thus we utilize a slight
variation of MAPE defined as:

𝑀𝐴𝑃𝐸 =


100
𝑛

𝑛∑
𝑖=1

����𝑌𝑖 − 𝑌𝑖𝑌𝑖

���� ,if 𝑌𝑖 ≠ 0

100
𝑛

𝑛∑
𝑖=1

����� 𝑌𝑖
1
𝑛

∑𝑛
𝑖=1 𝑌𝑖

����� ,if 𝑌𝑖 = 0
(22)

where 𝑌𝑖 = 0 occurs very few times in our data after the prepro-
cessing phase (i.e. 3 out of 399,465 test measurements).

The R-squared metric measures the amount of variability (of the
response data around its mean) that the trained model explains and
is defined as follows:

𝑅2 = 1 −
∑𝑛
𝑖=1 (𝑌𝑖 − 𝑌𝑖 )2∑𝑛

𝑖=1 (𝑌𝑖 −
1
𝑛

∑𝑛
𝑖=1 𝑌𝑖 )2

. (23)

In other words, R-squared measures the closeness of the predicted
regression values to the real measurements.

Table 2: Clustering evaluation.

Full profile Time-series Non-time-series
𝐻 84.5% 86.8% 83.5%
𝐷𝐵 1.81 1.65 1.07

Clusters 5 6 5

5.5 Experiments and discussion
First, an evaluation of the clustering phase is conducted using the
Hopkins statistic (𝐻 ) and the Davies–Bouldin index (𝐷𝐵), while
the optimal number of clusters was determined using the elbow
method. As presented in Table 2, the case of using the full energy
profile to train k-means with Euclidean distance is compared to
the case of splitting it through the "double" clustering procedure
described in section 4.2. The results show a slight improvement
in terms of Hopkins statistic and a significant improvement in
terms of 𝐷𝐵 index when using the "double" clustering approach,
through splitting the profile into time-series and non-time-series
features and applying the appropriate variant of k-means. Hence,
it is evident that the proposed clustering approach results to a
better clustering of households compared to a direct application of
k-means on the energy profiles dataset.

In Table 3, experiment results for different hourly demand predic-
tion models are depicted. In the first column, we present the average
performance of a set of separate MLP models trained for each house
that has over 8,000 hours (333 days) of data, namely 159 households.
The MLP models have the same architecture with the MLP part
of the model described in section 4.4 using the past 24 hour con-
sumption time-series as an additional input directly. An average
𝑅2 = 69.2% and𝑀𝐴𝑃𝐸 = 30.77% show that the inherent uncertainty
and variation of residential energy consumption significantly affect
the prediction performance for the models of some households. For
instance, the highest and lowest 𝑅2 achieved by a model trained
on a single household were 97.3% and 29.5% respectively. Hence,
the approach of training a separate model per house does not al-
ways lead to accurate hourly energy consumption forecasts. This
experiment was also conducted using the same set of 310 house-
holds used for the single-model-for-all-houses approach, but had a
lower predictive performance achieving on average 𝑅2 = 67.5% and
𝑀𝐴𝑃𝐸 = 33%. This happened due to the fact that several houses had
a few hours worth of data which are insufficient to train a machine
learning model. In other words, the cold-start problem emerged for
some of the houses, which is one of the main motivations of the
proposed approach.

In the four middle columns of Table 3, we present four variants
of the single-model-for-all-houses approach, that achieved high
prediction performance on the test set (20% of the energy consump-
tion measurements for 310 households). As depicted in the second
column, a single RNN with a look-back window of 168 hours (1
week) trained on multiple houses, achieved a significant perfor-
mance increase compared to the one-model-per-house approach.
The RNN managed to distinguish different houses using the 1-week
look-back when making each prediction, without having the energy
profiles and cluster distances.

In the third column, we present the results of an MLP with
all the input features described in section 4.3, i.e. time features,
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Table 3: Experiment results for different variants of the proposed approach.

One MLP
per house

(with past data
as input)

RNN
(with 1-week
window)

MLP
(with past data

as input)

RNN encoder
& MLP

RNN encoder
& MLP

(with 1-week
window)

RNN encoder
& MLP

(with 1-week
window)

Number
of models

159 models
for 159
houses*

310 models
for 310
houses

1 model
for 310 houses

1 model
for 310 houses

1 model
for 310 houses

1 model
for 310 houses

1 model
for 100 unseen houses

𝑅2 69.2% 67.5% 84.6% 85.2% 85.1% 85.5% 74.8%
𝑀𝐴𝑃𝐸 30.77% 33% 10.9% 10.6% 10.4% 10.1% 12.47%
𝑀𝑆𝐸 0.011 0.013 0.0067 0.0064 0.0064 0.0063 0.0093

* Houses with adequate data, i.e. over 8,000 hours.

energy profiles, and distances from cluster centroids, along with the
past consumption values for the past 24 hours/time slots. A slight
performance increase is observed compared to the RNNwith 1-week
window, which makes this MLP architecture a better candidate,
especially in cases where data for the entire past week are not
available.

In the last three columns of Table 3, results for two variants
of the novel RNN encoder and MLP architecture described in sec-
tion 4.4 are presented. The architecture depicted in Fig. 2 with a
24-hour look-back RNN encoder achieves an 𝑅2 of 85.1% and a
𝑀𝐴𝑃𝐸 of 10.4%, which are approximately the same with the MLP
with past data input and slightly better than the RNN with 1-week
window. Thus, in the second to last column of Table 3 we present
an architecture that combines the best characteristics of all the
previous models, namely an RNN encoder and MLP architecture
with a 1-week look-back window for the RNN encoder. We are
able to extend the RNN encoder look-back from 24 to 168 hours
by entirely removing the energy profile from the input features
due to computational resource limitations. However, this does not
affect the model’s performance since we keep the distances from
cluster centroids that act as an encoding of the energy profiles. The
aforementioned model achieved the best predictive performance in
our experiments with 𝑅2 = 85.5% and𝑀𝐴𝑃𝐸 = 10.1%. The results
of Table 3 show that the proposed single model trained on multiple
houses approach achieves "generalization" by outperforming the
one model per house approach. The novel RNN encoder and MLP
architecture showed a slight predictive performance increase, but
the appropriate variant should be selected according to the case
examined. For example, the 1-week look-back variants are not ideal
in cases of frequent smart meter missing values and computational
limitations.

Furthermore, we tested the trained RNN encoder and MLPmodel
(with 1-week look-back) on a completely new set of houses (last
column of Table 3) to determine if our approach achieves "represen-
tativeness". That is, the model provides hourly energy demand fore-
casts for new/unseen households, just by constructing its energy
profile with the available data. In order to showcase this, we used a
set of 100 houses having most of measurements for 2017. The model
has never seen these houses before, i.e. they were not included in
the training set. The model achieved: 𝑅2 = 74.8%,𝑀𝐴𝑃𝐸 = 12.47%,
and𝑀𝑆𝐸 = 0.0093 on average for those houses. These results show

that the proposed model has a lower but accurate prediction per-
formance on unseen houses, compared to houses on which it has
been trained. Hence, it achieves "representativeness" by provid-
ing reliable forecasts for any new household, and it addresses the
cold-start problem.

6 CONCLUSION
In this study we tackle the problem of energy demand forecast-
ing for individual households with a single deep learning model,
which discovers different patterns among electricity consumers
and provides accurate predictions even for completely new houses.
We propose an RNN encoder + MLP architecture that utilizes both
past consumption data and the computed energy profiles to make
a prediction for a specific household. Experiment results with real
data show that the proposed approach with a single deep learn-
ing model achieves accurate prediction for multiple households on
test data, with a 𝑀𝐴𝑃𝐸 of 10.1% for households included in the
training dataset and a 𝑀𝐴𝑃𝐸 of 12.5% for new houses, that were
not included in the training phase. Hence, our approach is able
to produce reliable forecasts even for completely new, previously
unseen households, with very few data.

As a part of our future work, we would like to compare our
approach with DeepAR [22] to (i) identify the impact on perfor-
mance of those parts of our architecture that are different from
those in DeepAR, (ii) make performance comparisons of the two
approaches on the same datasets. Future research directions also
include the utilization of higher-dimension energy profiles with
more features, adding weather forecasts in the model’s input feature
vectors, and testing the approach with other smart meter datasets
to demonstrate its capabilities with households from different coun-
tries. It would be interesting to observe the results of the proposed
approach with experiments on consumers with diverse character-
istics, e.g. from different regions, in order to broaden the model’s
applicability. Furthermore, other neural network components, such
as bidirectional RNNs could be explored.
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