PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2022

Authentication and Authorization for
Content-Centric Routing using W3C DIDs and VCs

Nikos Fotiou, Yannis Thomas, George Xylomenos, Vasilios A. Siris and George C. Polyzos
Mobile Multimedia Laboratory
Department of Informatics, School of Information Sciences and Technology
Athens University of Economics and Business, Greece
{fotiou,thomasi,xgeorge,vsiris,polyzos } @aueb.gr

Abstract—Content-Centric Routing is the cornerstone of the
standardization efforts related to Named Data Networking
(NDN). It enables advanced communication paradigms and
facilitates content replication and caching, by allowing routers
to exchange information and perform forwarding based on
content item identifiers rather than location identifiers (e.g.,
network addresses). However, since content may originate from
multiple locations, malicious nodes can advertise content that
they do not host, effectively hijacking the corresponding content
name prefixes. In this paper, we leverage two recent W3C
recommendations, Decentralized Identifiers (DIDs) and Verifiable
Credentials (VCs), to enable routing nodes to independently
check whether a content advertisement was generated by an
authorized node, in a fully decentralized manner that does not
rely on trusted third parties. We implement and evaluate our
solution in a system where advertisements are verified by the
content routers at the edge of the network, showing that it
prevents fake routing advertisements with minimal overhead.

Index Terms—Self-sovereign, edge networks, DID, VC, NDN.

I. INTRODUCTION

Content-Centric Routing is the main building block of
many Future Internet standardization efforts that depart
from traditional internetworking. Unlike the existing Internet
which is based on opaque, location-dependent, endpoint ad-
dresses, with Content-Centric Routing the network operates
on semantically-rich, location independent, content names,
giving rise to the Information-Centric Networking (ICN) [1]
paradigm. The most popular ICN realization is Named Data
Networking (NDN) [2], which is under standardization in the
ICN Research Group (icnrg) of the IRTE.! In NDN each piece
of content has its own, unique and location-independent, name.
This unties content items from a single origin server, thus
allowing content to be hosted at multiple servers or caches.

In this paper, we consider a limited domain NDN deploy-
ment (as defined in RFC 8799 [3]), where a content owner
wishes to make some content available via an NDN node,
referred to as the publisher; all of the owner’s content items
share the same name prefix, which is unique to that owner.
The publisher may have a number of servers hosting content,
similar to a Content Distribution Network (CDN). Publishers
in NDN must announce to the NDN network the prefixes
of the content items that they host, thus allowing content
consumers to become aware of and retrieve the corresponding

Uhttps://datatracker.ietf.org/rg/icnrg/about/

content. These advertisements first reach an edge router, which
subsequently disseminates them to the rest of the network.
Since content in NDN can be served by multiple nodes,
a malicious publisher can inject content advertisements into
the network without previous authorization by the content
owner; effectively, this is a prefix hijacking attack, where the
malicious publisher pretends to be an authorized source. The
problem is how to distinguish between authorized and unau-
thorized content advertisements. In the following subsections
we first explain how NDN solves this problem by relying on
trusted third parties, and then present our proposed solution,
which is fully decentralized and self-sovereign, i.e., content
owners have full control of how their content is advertised.

A. Content-Centric Routing in NDN

Content items in NDN are identified by unique hierarchical
names, for example /aueb/mmlab/project. A consumer
can retrieve a content item by transmiting an Interest packet
containing the content’s name, which is forwarded by con-
tent routers (CRs) to the appropriate content publishers. The
CR uses a lookup table mapping content names to output
interface(s), called the Forwarding Information Base (FIB),
to forward these Interests. FIBs are generated by the Named-
data Link State Routing (NLSR) protocol [4], in which content
hosting nodes advertise prefixes of content names; such an
advertisement indicates that they can provide any content items
under that prefix. The edge CRs propagate these advertise-
ments using NLSR, so as to populate the network’s FIBs.

In NDN content items are not tied to a location, hence
a CR may receive multiple valid prefix advertisements from
different network directions. This, however, opens the door
to fake advertisements by malicious nodes trying to hijack a
prefix. NDN addresses this problem by (optionally) signing
prefix advertisements. Edge CRs can verify such signatures
by following a chain rooted in a trust anchor: a Trusted Third
Party (TTP) whose certificate is known to all edge CRs [5].
The TTP must issue a certificate for the content owner, who
must then issue a certificate for the publisher. The signed
content advertisements include “pointers” to these certificates.
As aresult, an edge CR can verify signed prefix advertisements
as follows: it first retrieves these certificates and then it checks
whether (a) the owner’s certificate was issued by the TTP, (b)
the publisher’s certificate was issued by the owner and (c) the

advertisement was signed by the publisher. This is similar to
how HTTPS works, but instead of certifying the endpoint from
where content is downloaded, we certify the content itself; in
both cases, the TTP must be universally trusted.

NDN’s approach has some limitations that our solution aims
to overcome. First, having a universally trusted TTP introduces
security risks, especially a TTP that decides whether an entity
is entitled to use a content name prefix. Second, the TTP can
be a bottleneck, as usually the owner verification process takes
some time, preventing real-time certificate issuance. Third, in
order for a publisher to rotate its signing key, a new certificate
must be issued. Fourth, it is not straightforward to delegate part
of the name space, e.g., allow the owner of “/aueb/mmlab” to
delegate to another entity the prefix “/aueb/mmlab/project”.
Finally, certificate revocation is an open issue.

B. Solution overview and contributions

Our solution uses Decentralized Identifiers (DIDs) as con-
tent name prefixes and publisher identifiers, and Verifiable
Credentials (VCs) to authorize publishers to advertise content
name prefixes. DIDs and VCs are recent W3C recommen-
dations that have attracted the attention of both industry
and academia due to their intriguing security and privacy
properties. In short, our solution operates as follows. Content
owners generate DIDs that are used as prefixes of their content
names and are associated with a public key. Then, they issue
a VC to each publisher authorized to “host” their content
items; these VCs are signed using the key associated with
the corresponding DID. Publishers then sign their routing
advertisements using keys included in their own DID; these
signatures can be verified based on the information included
in the VC. Our solution makes the following contributions:

« We remove the need for a TTP, at the cost of non human-
readable content name prefixes.

o« We allow content owners to generate by themselves
content name prefixes that are globally unique and for
which they can prove ownership.

« We allow content owners to authorize publishers to ad-
vertise (part of) their content name prefixes.

o We allow publishers to rotate their advertisement signing
keys without requiring a new VC.

In the remainder of this paper, we first introduce DIDs and
VCs and present our overall design in Section II. In Section III
we present the implementation and evaluate the proposed
system. We discuss related work in Section IV. Finally, we
conclude and discuss future work in Section V.

II. SYSTEM DESIGN
A. Decentralized Identifiers

Decentralized Identifiers (DIDs), standardized by the W3C,
are globally unique identifiers that can be resolved with a
high availability and be verified with cryptographic means [6].
A DID has the form of a URI and is accompanied by a
DID document; the DID document can include public keys,
authentication protocols, and any other information needed
to perform cryptographically-verifiable transactions with the

PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2022

owner of the DID [6]. A DID document can be stored in a
DID registry, which can implement appropriate security and
access control schemes. A registry allows a third party to
lookup a DID document based on the DID, providing a proof
of correctness for the document, such as a digital signature.

The actual contents of DID documents and the way a
registry operates are not defined by the standards; instead,
these details are left to instantiations of the standard called
DID methods. Our solution is based on a DID method that we
have developed, called did:self [7], which does not require
a registry. Rather, did:self based DID documents can be
retrieved from a publicly accessible server or directly trans-
mitted to a recipient. Instead of relying on a trusted registry,
did:self ensures that a DID document can be cryptographically
matched to a DID, regardless of how it was retrieved.

A DID conforming to did:self is a thumbprint of a JSON
Web Key (JWK) [8] prefixed with ‘did:self:’. The matching
DID document is encoded using JSON and may include any
of the DID “properties” included in the DID specifications.
Our scheme uses the following properties (see also Listing 1):

¢ id: The DID corresponding to the document (line 1).

e verificationMethod: one or more public keys ex-
pressed in “JsonWebKey2020” notation [9]. Each such
key is identified by an id (in Listing 1 two such keys are
defined in lines 3-15).

e authentication: One or more public keys (or key
identifiers) used to authenticate prefix advertisements
(line 16 states that “#keyl” can be used as an authen-
tication key).

e assertion: One or more public keys (or key identi-
fiers) used to verify the digital signatures of VCs (line
17 states that “#key2” can be used as an assertion key).

L

2 “id”: “did:self:6varDOR}j...”,

3 “verificationMethod”:[{

4 “id”: “#keyl”,

5 “type”: “JsonWebKey2020”,
6 “publicKeyJwk™: {

7 “crv”: “Ed25519”,

8 “x”: “8alkufAc...”,

9 “kty”: “OKP”

10 }

11 L

12 “id”: “#key2”,

13 “type”: “JsonWebKey2020”,
14 “publicKeyJwk™: { ... }

15 .

16 “authentication”: [“#key1’’],

17 “assertion”: [“#key2’’]

18 }

Listing 1. A sample DID document.

To verify the binding between a did:self DID and its corre-
sponding DID document, each DID document is associated
with a proof; this proof is a “compact serialization” of a
JSON Web Signature (JWS). The proof’s header includes the
following claims:

PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2022

e alg: The algorithm used to generate the proof.
e Jjwk: The JWK needed to verify the proof, whose
thumbprint must match the did:self identifier.
The proof’s payload includes the following claims:

e iat: The proof’s generation time.

o exp: The proof’s expiration time.

e s256: A hash of the DID document using SHA-256,

encoded in the base64url format.

The proof is signed using the private key that corresponds to
the public key named in the DID. Given a did:self identifier, a
DID document, and its proof, we can check whether the DID
document matches the given identifier as follows:

1) Check that the identifier in the DID document is equal

to the thumbprint of the jwk in the proof’s header.

2) Check that the SHA-256 hash of the DID document is

equal to s256 in the proof’s payload.

3) Check using exp that the proof has not expired.

4) Verity the proof using the jwk in the proof’s header.

B. Verifiable Credentials

A Verifiable Credential (VC) [10] allows the issuer of the
VC to assert a number of attributes about the subject of the
VC. Threfore, a VC must at least include the identities of the
issuer and the subject, as well as the asserted attributes; it may
also include constraints, such as an expiration time. A VC can
be encoded in different ways; in our scheme it is encoded by
its issuer as a JSON Web Token (JWT) and embedded in a
JSON Web Signature (JWS). Such a VC includes (at least)
the following claims (see also Listing 2):

e jti: A VC identifier unique to the issuer.

o iss: The issuer’s did:self identifier.

o sub: The subject’s did:self identifier.

e iat: The VC’s time of issue.

e exp: The VC’s time of expiration.

e vc: The assertions of the VC (see Section II-D).

The JWS header may also include the kid claim that indicates
the key that can used to verify the corresponding signature (see
Section II-D). The data model for VCs allows defining differ-
ent VC types, stating the attributes that the VC should include.
Our solution uses a new VC type named authorization, which
includes the prefixes that the VC’s subject can advertise.

C. System entities

Our scheme involves content owners, content publishers,
and edge content routers (see also Fig. 1). Content owners
create content items and authorize publishers to store them.
A publisher may control multiple publishing nodes, as in a
CDN, with each node advertising the prefixes of the content
items that it hosts. Each publishing node can be attached to a
different edge content router (CR), using its own secret keys to
sign advertisements. Edge CRs verify these advertisements; if
verification succeeds, they are forwarded to the core network.

A content owner can generate multiple did:self DIDs to
be used as content name prefixes for separate namespaces.
Each content item is identified by a unique hierarchical name
prefixed by a did:self DID, e.g., “did:self:abc.../aueb/mmlab”.

VC s
Store Item
Owner Publisher

Advertisements

v

s

s

==
G Edge Router []
] 1
o= o=

Edge Router dge Router

Fig. 1. System overview.

The did:self DID used as the root of a content name is called
DID,,,: many content items may share the same DID,. ;.
Publishers also generate their own did:self DID; the corre-
sponding DID document includes an authentication public
key, used to authenticate the publisher’s prefix advertisements.
Finally, each edge CR is assumed to “know” the DIDs of the
publishers attached to it, accepting prefix advertisements only
from authorized publishers. How this is achieved is out of
scope of this work, but it can also be implemented with VCs.

D. Publisher authorization

A content owner can authorize a publisher to advertise
a content name prefix starting with DID,,,; by issuing an
authorization VC. An example of such a VC is given below.

1

2 “jti”: “cred1”,

3 “188”: “did:self:...”,

4 “lat”: 1650557539,

5 “exp”: 1681661539,

6 “sub”: “did:self:...”’

7 “ve: {

8 “credentialSubject”: {

9 “allowedPrefixes”: [
10 “/pictures/holidays’’,
11 “/videos/holidays’’
12]

13 }
14 }
15 }

Listing 2. A sample authorization VC.

As mentioned above, this VC is included in a JWS. The
JWS header should include the kid claim, whose value should
be equal to the id of an assertion key defined in the owner’s
DID; this key can be used to verify the JWS signature. The

PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2022

L
"assertion": ["#keyl1"]

}]

"/pictures/holidays",
"/videos/holidays"

Owner DID Document Authorization VC Publisher DID Document Attestation
{ { { {
"id": "<DID,40>", "iss": "<DID,or>", "id": "did:self:8alkufAc...", “prefix”:“<DID,,>/videos/holidays”,
"verificationMethod":[{ "exp": 1618423370, "verificationMethod":[‘created
"id": "#key1", "sub": "did:self:...", { “sha-256
"type": "JsonWebKey2020", "ve": { "id": "#key1", }
"publicKeyJwk": { ... } "type": "JsonWebKey2020",
} "allowedPrefixes": ["publicKeyJwk": { ... }

]

"

authentication": ["#keyl"]

}

} }
} A
verifies T verifies
Fig. 2. The header of a content name prefix advertisement. The arrows show which key verifies what.
owner can may employ multiple assertion keys: by looking at TABLE I
the kid claim, a verifier can choose a key for verification. EXECUTION TIMES.

Each owner must create a unique jti for each VC it issues. Operation Time (ms)
If two VCs, issued by the same owner, have the same jti, then Generation of Ed22519 key pair 46
the oldest VC is considered invalid. We utilize this property DID docunifg g:r?eg?gi generation %;
for VC revocation (see Section III-B2). Attestation generation 07

DID document verification 1.5
VC verification 1.5
Attestation verification 0.2

E. Prefix advertisement

A publisher in NDN must advertise the prefixes it hosts
to its attached edge CRs; in our solution, these advertisements
are extended with a header including (a) the VC issued by the
content owner, (b) the DID documents of the content owner
and the publisher (and their proofs) and (c) an attestation. The
attestation is a compact serialization of a JWS, whose payload
is a JSON object with the following fields:

prefix: The content prefix being advertised.
created: The time of the attestation’s generation.
sha-256: The advertisement payload’s SHA-256 hash,
encoded using base64url.

The attestation is signed by the publisher and can be
verified using an authentication key from the publisher’s DID
document. Similar to VC signatures, the JWS header of an
attestation may include the kid claim, indicating one of the
(possibly many) authentication keys listed in the publisher’s
DID. An example advertisement header is shown in Fig. 2.

The validity of an advertisement is verified by an edge CR
using the following steps (see also Fig. 2):

1) Extract the DID documents of the content owner and
publisher and verify them.

Verify the signature of the authorization VC using the
right assertion key from the owner’s DID document.
Verify that the publisher’s did:self identifier is included
in the sub claim of the authorization VC.

Verify the signature of the attestation using the right
authentication key from the publisher’s DID document.
Verify that the sha-256 hash of the advertisement’s
payload is equal to the sha-256 field of the attestation.
Verify that the advertised prefix is equal to the prefix
property of the attestation and is included in the
allowedPrefixes property of the authorization VC.
Verify that the attestation is recent using the created
property of the authorization VC.

2)
3)
4)
5)

6)

7)

With steps 1 to 4 the integrity of the attestation is verified.
With step 5 the integrity of the advertisement is verified. With
step 6 the authorization of the publisher is verified. Finally,
step 7 is used to prevent replay attacks.

III. IMPLEMENTATION AND EVALUATION

A. Computation and communication overhead

We implemented the DID functionality of our solution using
the Python3 implementation of did:self.> The VC functionality
was implemented via the JIWCrypto library,? and the SHA-256
hashes were calculated with Python’s hashlib library.

For the evaluation we used Ed22519 keys to create DIDs
and EADSA to sign DID documents. To create a DID, a content
owner or a publisher must generate an Ed22519 key pair,
a DID document and the corresponding proof. In addition,
a content owner must generate an authorization VC and a
publisher must sign the “attestation” of the advertisement.
Finally, to check an advertisement, an edge CR must verify
the DID documents of the owner and the publisher (using the
provided proofs), the authorization VC and the attestation of
the advertisement. We executed all these operations on a PC
running Ubuntu 18.04 with an Intel i5 CPU clocked at 3.1Ghz
and 2GB of RAM and show their execution times (in ms) in
Table I. Apart from key generation, which is infrequent, all
other operations take less than 3 ms, with attestation generation
and verification taking less than 1 ms.

The communication overhead of our system is due to the
introduction of the advertisement header. Table II shows the
sizes of the fields in the advertisement header (in bytes). The
values in this table assume that each DID document includes

Zhttps://github.com/mmlab-aueb/did-self-py
3https://jwerypto.readthedocs.io/en/latest/

PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2022

TABLE II
SIZE OF ADVERTISEMENT HEADER FIELDS.
Component Size (bytes)
DID document and proof 532
Authorization VC 417
Attestation 296

one public key and that the authorization VC includes two
content prefixes, each 18 bytes long.

B. Security evaluation

1) Security properties: Our solution is resilient even against
active attackers. An advertisement replayed at another edge CR
will be rejected, since edge CRs accept advertisements only
from specific publisher DIDs. The signed attestation included
in the advertisement header protects an advertisement’s in-
tegrity. Moreover, the attestation timestamp prevents attackers
from “replaying” old advertisements to the same edge CR.

2) Impact of key breaches: Our solution relies on the
following private keys: the keys that correspond to the DIDs
of the content owner and publisher, the assertion keys of the
content owner, and the authentication keys of the publisher.

The private key of the owner’s DID is the most critical asset
in our system, since the breach of this key will result in content
owners losing control of the corresponding DID,.,.:. We are
investigating solutions to this problem, including the use of
recovery keys combined with revocation mechanisms.

If the private key of the publisher’s DID is breached,
the publisher must generate a new DID and receive new
authentication VCs. The new VCs must have the same jti
(i.e., VC identifier) as the old ones. However, an attacker that
has access to the breached key will be able to use the old
VCs until they expire. To prevent this attack, an edge CR can
keep track of the jti identifiers of non-expired VCs and their
corresponding creation time: if a VC with a known j#i but an
older creation time is used, it will be considered invalid.

If the assertion key of the owner is breached, an attacker
that has access to the breached key can use it to issue arbitrary
VCs, up until the DID document of the owner expires. Since
there is no central point where DID documents are stored and
there is no revocation mechanism, this issue can be addressed
by having owners use the same id for the new key and also
have edge CRs store pairs of (owner assertion key id, DID
document issuance date); then, if they see a key id included
in an older DID document, they will reject it.

If the authentication key of the publisher is breached,
the publisher can generate a new one and update its DID
document; there is no need to create a new authorization VC.
An attacker with access to the breached key can use it to sign
attestations for advertisements towards the edge CR to which
the publisher is attached. Nevertheless, the attacker cannot
modify the publisher’s DID document or its proof. Therefore,
the edge CR will receive two DID documents for the same
DID; since the corresponding proofs include the creation time,
the edge CR can mark the old DID document as invalid and
keep it in a “rejection list” until it expires.

3) Comparison with NDN: NDN can support similar func-
tionality to our solution through frust schemata [5]. In particu-
lar, each CR in NDN can be configured with security policies
that define trusted public key identifiers per operation. At
the same time, each router is configured with trust “anchors”
which are used to securely resolve the actual public keys, using
a Web-PKI like approach. Trust anchors, therefore, hold the
role of a TTP, which creates well-known security concerns.

Another notable difference between the NDN approach and
our solution is related to who is in control of defining trust
relationships. In our solution, trust relationships are encoded
in a VC issued by the content owner, whereas in NDN trust
relationships are encoded in a trust schema defined by the
CR’s administrator. We postulate that our solution offers easier
security management (for example, adding or removing a
trusted entity in NDN, such as a CDN-like provider, requires
re-configuring all routers), and it is less susceptible to human
errors (in NDN all routers must be carefully configured with
the trust schemata, whereas in our solution they only have to
validate a VC and two DID documents).

C. Integration with NDN

The proposed solution has been implemented as an NDN
application and has been validated in the NDN testbed.*
The NDN testbed is a global shared resource created for
research purposes that includes software CRs at more than 35
participating institutions, along with application host nodes,
and other devices. The testbed is centrally managed and runs
a routing protocol that allows communication with every other
node. The testbed enables broad areas of research on virtually
any type of application and forms a network for real-life evalu-
ation. Testbed nodes are configured with a certificate issued by
a testbed-wide Certificate Authority (CA), which is used for
signing content name prefix advertisements. We deployed edge
nodes directly attached to testbed nodes: publishing nodes
interacted with the testbed nodes only through an edge CR.
Publishing nodes used our advertisement verification scheme.
Upon receiving an advertisement, an edge CR verified the
advertisement header and if all verifications were successful
the advertisement was removed from the advertisement and
replaced with a legacy NDN advertisement header, after which
the advertisement was forwarded to the NDN testbed. This
procedure made our solution transparent to the testbed nodes.

IV. RELATED WORK

Legacy NDN uses digital certificates [11] to achieve the
same goals as our solution. However, this approach requires a
trust anchor that will vouch for the validity of all certificates.
The drawbacks of this approach are discussed in detail in
Section I.A. Note that, although the naming scheme of our
solution is different to NDN’s scheme, it is not incompatible:
in our solution the DID-based prefix holds the role of the trust
anchor, and the DID document holds the role of the certificate.

Our solution relies on using cryptographicly verifiable con-
tent name prefixes: this approach has been used by many other

“https://named-data.net/ndn-testbed/

systems. For example, in DONA [12] each content item is
identified by a pair of labels, namely P and L: in the general
case P corresponds to the public key of the data owner, and
L to a data label. The InterPlanetary File System (IPFS) uses
content hashes as names [13]. Our solution allows multiple
signers per content name (prefix) without requiring secret key
sharing, as in DONA. Similarly, our solution enables security
for both mutable and immutable items, unlike with IPFS.

The naming scheme of the NetInf architecture is very close
to our system [14]. NetInf uses the hash of a public key P as
part of the content name. The private key corresponding to P
is used to sign a metadata field that includes, among others,
the hash of the content item, hence verifying the content
item’s authenticity and integrity. Furthermore, using a chain
of certificates rooted at P, additional keys can be authorized
to sign the metadata field. In our solution, this “abstract”
certificate chain mechanism is realized using the emerging
standards of DIDs and VCs. Furthermore, we support non-
transitive delegations, i.e., a publisher cannot further delegate
content prefix ownership, and fine-grained delegations, i.e., a
content prefix owner can delegate a subset of its namespace.

We have previously proposed a DID-only solution to this
problem [15], where the DID document of the owner indi-
cated the public key used by the publisher to sign content
advertisements; via a proof attached to the DID document,
this authorization was limited to specific prefixes and edge
CRs. This meant that changing the publisher’s key or changing
publishers, required changing the owner’s DID document. In
our combined DID-VC solution, the owner’s DID document
only contains the owner’s keys, therefore it does not need
to change, as long as these keys are not compromised. The
keys from the DID document are used to sign the VCs,
which determine the authorized publisher; new VCs can add
more publishers. Furthermore, the VCs identify the publisher
through its DID, which includes the actual signing keys, hence
the publisher can rotate keys without reissuing its VCs.

V. CONCLUSIONS AND FUTURE WORK

We presented a security solution that allows NDN content
routers to verify that context prefix announcements originate
from authorized nodes. Our solution leverages the recent W3C
recommendations for Decentralized Identifiers (DIDs) and
Verifiable Credentials (VCs). Our solution does not require a
trust anchor and enables trust relationships such as delegation.

Compared to the existing solutions that rely on public keys
and digital certificates to offer similar functionality, our solu-
tion provides increased security, since cryptographic keys can
be easily rotated, and improved security management, since
all operations are implemented in a decentralized manner.

We have developed and evaluated a proof-of-concept im-
plementation for NDN that uses the did:self DID method.
Our solution is compatible with NDN’s routing protocols and
does not require any modification to the core architecture. The
use of did:self offers significant advantages, such as support
for DID sharing and improved DID management without
registries; nevertheless, our solution can be easily adapted
to accommodate other DID methods. Future work in this

PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2022

direction includes supporting resilience to content owner DID
key breaches, as well as supporting human readable names.

ACKNOWLEDGMENT

The work reported in this paper has been partly funded
by the EU’s Horizon 2020 Programme through the subgrant
Securing Content Delivery and Provenance (SECOND) of
project NGlatlantic.eu, under grant agreement No 871582.

REFERENCES

[11 G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey
of Information-Centric Networking research,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 2, pp. 1024-1049, 2014.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Computer Communications Review, vol. 44, no. 3, pp. 66—
73, Jul. 2014.

[3] B. Carpenter and B. Liu, “Limited Domains and Internet Protocols,”
Internet Requests for Comments, IETF, RFC 8799, July 2020. [Online].
Available: https://tools.ietf.org/html/rfc8799

[4] V. Lehman, A. M. Hoque, Y. Yu, L. Wang, B. Zhang, and L. Zhang.
(2016) A secure link state routing protocol for NDN. [Online]. Available:
https://named-data.net/wp-content/uploads/2016/01/ndn-0037-1-nlsr.pdf

[51 Y. Yu, A. Afanasyev, D. Clark, k. claffy, V. Jacobson, and L. Zhang,
“Schematizing trust in named data networking,” in Proc. of the ACM
Conference on Information-Centric Networking (ICN). New York, NY,
USA: ACM, 2015, p. 177186.

[6] W3C Credentials Community Group. (2020) A Primer for Decentralized
Identifiers. [Online]. Available: https://w3c-ccg.github.io/did-primer/

[71 N. Fotiou. (2021) did:self method specification. [Online]. Available:
https://github.com/mmlab-aueb/did-self

[8] M. Jones and N. Sakimura, “JSON Web Key (JWK) Thumbprint,”
Internet Requests for Comments, IETF, RFC 7638, September 2015.
[Online]. Available: https://tools.ietf.org/html/rfc7638

[91 W3C Credentials Community Group. (2019) DID method registry.
[Online]. Available: https://w3c-ccg.github.io/did-method-registry/

[10] Manu Sporny et al., “Verifiable credentials data model
vl.1;” W3C, W3C Recommendation, 2022. [Online]. Available:
https://www.w3.org/TR/verifiable-claims-data-model/

[11] Z. Zhang, Y. Yu, H. Zhang, E. Newberry, S. Mastorakis, Y. Li,
A. Afanasyev, and L. Zhang, “An overview of security support in named
data networking,” IEEE Communications Magazine, vol. 56, no. 11, pp.
62-68, 2018.

[12] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” SIGCOMM Computer Communications Review, vol. 37,
no. 4, pp. 181-192, Aug. 2007.

[13] Y. Psaras and D. Dias, “The interplanetary file system and the filecoin
network,” in International Conference on Dependable Systems and
Networks-Supplemental Volume (DSN-S). New York, NY, USA: IEEE,
2020, pp. 80-80.

[14] C. Dannewitz, J. Golic, B. Ohlman, and B. Ahlgren, “Secure naming for
a network of information,” in Proc. of the IEEE INFOCOM Conference.
New York, NY, USA: IEEE, March 2010, pp. 1-6.

[15] N. Fotiou, I. Thomas, V. Siris, G. Xylomenos, and G. Polyzos, “Securing
named data networking routing using decentralized identifiers,” in Proc.
of the IEEE International Conference on High Performance Switching
and Routing (HPSR). New York, NY, USA: IEEE, 2021, pp. 1-6.

