
PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2024 1

Evaluating IPFS Optimistic Provide in the Wild
Fotios Bistas and George Xylomenos

Mobile Multimedia Laboratory, Department of Informatics
Athens University of Economics and Business, Greece

E-mail: {fot.bistas,xgeorge}@aueb.gr

Abstract—The InterPlanetary File System (IPFS) network is a
very successful peer-to-peer distributed storage system, offering
high resilience in the face of significant peer churn which may,
however, lead to considerable delays when storing content. The
Optimistic Provide (OP) algorithm is a heuristic scheme that
reduces IPFS store latency, at the possible cost of making retrieval
less reliable. This paper assesses whether content retrieval when
the OP algorithm is used is equally reliable to that of plain
IPFS, based on an extensive measurement campaign carried out
in the actual IPFS network, using tools that we extended for
this purpose. Our results indicate that the OP algorithm offers
content retrievability that is on par with plain IPFS.

Index Terms—IPFS, Optimistic Provide, Kademlia, DHT.

I. INTRODUCTION

The InterPlanetary File System (IPFS) [1] is a peer-to-peer
system for storing and sharing content. The IPFS network
is a realization of the IPFS design, which is present in
over 150 countries and more than 2500 autonomous systems.
IPFS is built on top of the Kademlia Distributed Hash Ta-
ble (DHT) [2], which, like other DHTs, maps both content
and peers to a common identifier space, assigns content to
peers in a systematic way and allows looking up content in
logarithmic time over the number of peers. Both IPFS and its
Kademlia implementation are open source.

The IPFS network is permissionless, so anyone can partic-
ipate in it at any time. The constant addition and removal
of peers in IPFS, also known as peer churn, means that
the content routing tables that Kademlia maintains are often
outdated, containing dead links, that is, links to departed peers.
As peers leave unannounced, dead links are only discovered
when peers do not respond to a query before a timeout expires.

While dead links complicate both content storage and
retrieval, they have a disproportionate impact on the former,
due to a fundamental performance imbalance. When content
is stored, IPFS must locate multiple appropriate peers to store
pointers to that content for resilience. However, when content
is looked up, locating just one of these peers is sufficient. As
a result, discovering content in plain IPFS takes about 1.5 s,
while storing content sometimes takes up to 60 s [1].

To remedy this shortcoming, the Optimistic Provide (OP) al-
gorithm was proposed [3]. The main idea behind OP is to first
estimate the distribution of peers in the Kademlia identifier
space, and then make educated guesses on whether a known
(and live) peer is appropriate for a store operation, without
exhaustively searching the DHT for the most appropriate peers.
This reduces the delays caused by dead links.

The OP algorithm is not perfect: it may store some content
pointers at the wrong peers, thus producing errors in future
lookups. This paper aims to examine whether content stored
using the OP algorithm is as retrievable as in plain IPFS.
Unlike the paper proposing the OP algorithm which focuses on
its store performance [3], we focus on its lookup performance
and reliability. To achieve this, we ran a measurement cam-
paign in the real IPFS network, using the IPFS-CID-HOARDER
tool, which we expanded with additional features. Our results
indicate that the lookup performance of the OP algorithm is
close enough to plain IPFS for general use. Coupled with the
findings of the paper proposing OP, which show OP’s superior
store performance compared to plain IPFS, OP has since been
incorporated in the IPFS code base.

The outline of the rest of this paper is as follows. Section II
provides background on IPFS, Kademlia, OP and related work.
Section III describes the tools we used and the extensions that
we made for this study. Section IV presents the methodology
for our experiments, while Section V presents and analyzes
the results of our measurements. We summarize our findings
and discuss future work in Section VI.

II. BACKGROUND AND RELATED WORK

A. IPFS and Kademlia

The IPFS network operates over a customized version of
the Kademlia DHT. Each piece of content is identified by a
Content Identifier (CID), which is produced by running the
content through a cryptographic hash function. In turn, each
IPFS peer generates a pair of public-private keys and uses
the same hash function over its public key to produce its Peer
Identifier (PID). The default hash function is SHA-256, which
means that both CIDs and PIDs are 256-bits long. The use of
cryptographic hash functions for CIDs and PIDs has some
interesting implications. First, content is self-certifying, since
it must match its CID. Second, content is immutable, as any
change to a block leads to a different CID. Third, peers are
also self-certifying, since they can prove ownership of their
PID via their public-private key pair.

Kademlia uses the XOR (Exclusive-OR) metric to determine
the distance between any two identifiers (IDs): it XORs the
two IDs together and considers the result as the distance
between them. To navigate the ID space, each peer maintains
an array of K-Buckets, with each bucket containing K other
peers with the following property: the xth K-Bucket stores
pointers to peers that share a common PID prefix with that
peer of length x−1. Since PIDs are 256 bits, a peer maintains

2 PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2024

256 K-Buckets each holding pointers to K = 20 peers. Using
the K-Buckets, Kademlia can locate the XOR-based “closest”
peers to any given ID in a logarithmic number of steps.

B. Content provision and provider records

When a peer desires to provide a piece of content via
IPFS, it first calculates its CID and then it creates a Provider
Record (PR), a pointer to the peer that provides the content.
Then, it uses the Kademlia DHT to lookup the K = 20
closest peers, in XOR distance, to the content’s CID. Finally,
it asks these peers to store the PR for the content. This means
that pointers are distributed across multiple peers and can be
accessed even if some of the peers are down. To retrieve the
content, a peer uses the Kademlia DHT to lookup the desired
CID; once a node holding the correct PR is located, the peer
can then request the content from its hosting peer.

To ask a peer to store a PR, we use the ADD PROVIDER
Remote Procedure Call (RPC) of the Kademlia DHT. This
notifies the remote peer that it is in the set of K closest peers
to the provided CID. If the PR is successfully inserted into
the remote peer, the target peer is added to the provider store
of the peer providing the content. The provider also locally
stores the PR, in case some peer contacts it directly.

An important property of PRs is that they are automatically
removed after a period. During our experiments, this period
was 24 hours, as specified by the network protocol.If the
provider wanted to keep the content accessible, it should
republish the PR before it was removed; the recommended
interval for republishing content was 12 hours. As a result,
peers who are no longer among the K closest to the CID,
automatically drop the PR, while the now K closest peers start
storing it. After our study, the deletion interval was extended
to 48 hours and the republish interval to 22 hours, reflecting
the network’s evolving requirements.

C. Hydra boosters

To accelerate content routing, the IPFS network includes
Hydra peers. Hydras use multiple PIDs distributed in the
address space; each of these PIDs are one of the Hydra’s
heads. Due to their multiple PIDs, peers are more likely
to contact Hydras than regular peers. When Hydras receive
ADD PROVIDER RPCs from peers, they store the PRs in a
large, Hydra-wide, database. All Hydra heads can access the
database when they receive a GET PROVIDERS RPC. As a
result, Hydras can make large jumps in the address space.
While our experiments were being conducted, Hydras were
being dialed down in the network, to determine their impact.
The dial down meant that while a provide operation might
have inserted a PR in a Hydra peer, theHydra peer would not
respond with the PR in a lookup request.

D. The Optimistic Provide algorithm

Providing content in the IPFS network is slower than
looking it up, since providing content requires locating all
K closest peers, while discovering content requires locating
just one of them. To locate the K closest peers to a CID, a

(a) Optimistic provide.

(b) Plain IPFS provide.

Fig. 1: Distribution of content provisioning time.

peer starts with the closest peers to that CID from its own
K-Buckets and probes them for their own closest peers; this
process is repeated recursively, until no more closest peers are
returned. Unfortunately, due to peer churn, some of the peers
in a host’s K-Buckets may have left the network, leading to
timeouts. In addition, some probes might fail, due to the fact
that remote peers may be overloaded. Finally, since the peers
are sparsely distributed in the ID space, each peer only has a
few other peers close to it. All these factors mean that many
messages need to be sent to determine the K closest peers to
a CID, many of which go unanswered.

The Optimistic Provide (OP) algorithm1 aims to decrease
the time required to publish the content in the IPFS network,
by using an “optimistic” approach when publishing content.
Using an estimate of the network size and calculating the XOR
distance between the CID that we want to store and the PID
of a known, live peer, we can assess if that peer is likely to
be among the K closest to the CID, without performing a full
DHT search. The goal is to rely as far as possible on known
live peers, rather than probing possibly dead ones.

To explain how OP works, consider a candidate PID P , a
CID C and an IPFS network with size N . Taking the XOR
distance of the PID and the CID, normalizing it to [0, 1]
(dividing by 2256) and multiplying by the network size we
get µ = ||P −C|| ∗N , which is the number of peers that we
expect to lie between P and C. If µ is less than K = 20 we
store the PR at peer P , as its highly likely that the peer is
among the K closest peers to the CID. More details on how
the network size is estimated can be found in [3].

As our measurements in Figure 1 show (see Section IV for
details), this can significantly decrease the time to provide

1https://github.com/dennis-tra/optimistic-provide

PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2024 3

content: the mean time for content provision using OP is
around 5 s, while the mean time to provide content using
plain IPFS is around 15 s. The maximum outlier time of OP
is around 30 s, while the maximum outlier time of plain IPFS
is around 50 s, close to the 60 s reported in previous work [1].

E. Related Work

Recent research indicates that IPFS suffers from high rates
of churn: 87.6% of user sessions last for less than 8 hours [1].
This leads to slow content provision, which takes over 33 s
for 50% of the provision requests, since the high churn rate
leads to inaccurate routing state and timeouts. There is also
some work evaluating the performance of the Kademlia DHT
as implemented for the BitTorrent network, characterizing the
performance penalty for lookups due to peer failures [4], [5].

Many approaches have been considered to improve the
performance of DHTs in general, especially as networks grow
larger, such as caching [6], network-aware peer selection [7],
parallel lookups [8] and hierarchical organization of the DHT
based on various criteria [9]. However, none of these works
deal with improving the performance of stores. The only work
focusing on the optimization of content provision in IPFS that
we are aware of, is the paper proposing the OP algorithm [3].

In that paper, the main goal of the evaluation was to assess
the latency and the success rate of provision requests; the rest
of the evaluation is concerned with the accuracy of estimating
network size and distances between peers. In this work, we
focus instead on content retrievability over time, by looking
at how many of the originally selected nodes remain available,
and how many can be reached via the DHT, which accounts
for the non-perfect selection of peers by OP. In a sense, while
the OP paper focuses on provisioning, we focus on retrieval.

III. MEASUREMENT TOOLS

In order to gather data about the behavior of the IPFS
network, we used the IPFS-CID-HOARDER tool2. This tool
probes peers to find which PRs they are holding, gathering
various metrics along the way. This data is added to a
database for further analysis. The regular operation of IPFS-
CID-HOARDER consists of publishing PRs for random CIDs,
and then looking them up and extracting information about
how the IPFS network treats PRs overall. To perform this
study, we modified the hoarder to load in its database a set of
CIDs that had already been inserted to the IPFS network via
the OP algorithm. Additionally, we included the peers at which
the PRs were inserted. The hoarder then used three different
lookup methods to gather data about the peers.

First, we called DHT.FINDXXPROVIDERSOFCID (CON-
TEXT, CID) which uses the DHT to locate any peers that
hold PRs for a specific CID. If this call is successful, it means
that the DHT can retrieve the PRs from at least one peer,
implying that at least one peer chosen by OP remains in the
K closest peers for that CID. This is important, as the peers
initially chosen by OP might not have been among the K
closest peers to the CID. Furthermore, regular peer churn may

2https://github.com/cortze/ipfs-cid-hoarder

add or remove peers from the K closest set over time, which
is one of the reasons that the PR is stored at K peers. If this
call succeeds, it sets the ISRETRIEVABLE flag for that CID in
the database, indicating that a PR for the CID can be located
via the DHT.

Then, we called DHT.GETPROVIDERSFROMPEER (CON-
TEXT, PEER, CID) for each Peer and CID stored in the
database, to request the corresponding PRs. This call does
not search the DHT; it relies on information already in the
database. If we cannot connect to that peer, after a few
retries, we assume that the peer is not active in the network.
Otherwise, the ISACTIVE flag in the database will be set
to true. If the peer that created the CID (hence, it holds
the content) is in the set of providers according to the PRs
retrieved, the HASRECORDS flag is set to true. Note that even
though the ISACTIVE and HASRECORDS flags may be set to
true, these peers might not be among the K closest ones.
Therefore they are not necessarily retrievable via IPFS. This
is the difference with the ISRETRIEVABLE flag set by the
previous method, which uses lookups through the DHT.

Finally, we called DHT.GETCLOSESTPEERSTOCID (CON-
TEXT, CID), which used the DHT once again to locate the
closest peers to a CID using plain IPFS (not the OP algorithm),
and store additional data on the lookups (e.g., hops). We define
the in-degree ratio for a CID as the number of peers within
the K closest set, as returned by this method, that also have
the ISACTIVE flag set to true, as set by the previous method.
Essentially, the in-degree ratio shows how many of the initially
chosen peers (by OP) are active and remain among the K
closest peers set during the experiments. The reason that we
do not instead count the peers with the HASRECORDS flag set
to true, is due to the dial down of Hydra peers: Hydras show
up as active but do not respond with PRs.

By combining the results from all these methods, we attempt
to answer the following questions:

1) Can we always find at least one peer that returns a PR
for a CID? This is the basic requirement from IPFS, and
we check this by using the first lookup method.

2) Are the peers chosen by OP reliable? We assess this by
probing the peers chosen by OP and checking whether
they are alive and store the PRs for a CID for the desired
amount of time, using the second lookup method.

3) How well does the OP algorithm operate? We assess
this by calculating the In-degree ratio, which shows how
many of the peers chosen by OP are alive, serve the PR
for a CID, and belong to the K closest set. We achieve
this via the third lookup method.

IV. MEASUREMENT METHODOLOGY

To determine the effectiveness of retrieving PRs stored via
the OP algorithm, we needed to examine how many of the
chosen peers remained online during the study and the number
of those peers that responded with the PRs. Furthermore,
we needed to assess the results of a DHT search, to verify
whether the PRs could be retrieved via the DHT. Finally, it was
important to consider the number of PRs that were successfully
inserted during the provide process. Note that only the peers

4 PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2024

Fig. 2: Example JSON PR created for the hoarder.

that successfully stored the PRs were added to the hoarder’s
database for further lookups.

To achieve these goals, we created a peer that generated
CIDs and published them using the OP algorithm in the actual
IPFS network. Before publishing, the routing table of the peer
was refreshed, to contain the most recent data. The CIDs
were random cryptographic hashes that did not correspond
to any meaningful content. After an ADD PROVIDER success
message was received, meaning that a PR was successfully
added to a remote peer, some properties of the PR were stored
in JSON form, as shown in Figure 2. These properties include:

• The PR’s multiaddresses (the addresses of the PR holder).
• The peer’s (PR holder) unique identifier.
• The peer’s (PR holder) agent type (hydra, go-ipfs etc.).
• The creator (peer that published the content) of the PR.
• The time it took to provide the CID (provide time).
• The publication timestamp of the CID.
• The CID that the PR is saved for.
We then went through these records and probed the chosen

peers to check whether the actual PRs could be retrieved.
Then, a JSON file was created with all the PRs and responsive
nodes, to be later loaded into the hoarder’s database.

The IPFS-CID-HOARDER tool was configured to create a
study lasting 48 hours with a ping interval of 30 minutes; the
PRs were not republished after their initial publication. The 48
hour study accounted for the aliveness period of IPFS at the
timeframe when the experiments were conducted: after the 24
hour mark, we should observe that peers are no longer sharing
the PR, as they have not been refreshed/republished; recall that
the PR retention period has since been changed to 48 hours.
The 30 minute ping interval was chosen since peers did not
accept constant connection requests, to avoid overflowing the
resource handler.

The hoarder gathers results in a PostgreSQL database con-
sisting of the following tables:

• cid info: basic information about a CID.
• k closest peers: the K-closest peers for each CID and for

each ping round.
• fetch results: summary of all the requests done for a

given CID on a fetch round.
• peer info: basic info of a peer chosen as a PR Holder
• ping results: result of an individual ping of a PR Holder.
• pr holders: helper table connecting different tables.

Fig. 3: Distribution of PR holders after publication.

A peer can respond with the PRs in a variety of ways
(containing both the multiaddress of the peer and the peer
ID, containing only the peer ID, etc.), or may not respond at
all. The hoarder accounts for that by also keeping a log file.
The PostgreSQL dump file and the log file were transferred to
a local machine and visualized using the Jupyter Notebook3.
This visualization also included an analysis of the log files.

V. RESULTS

We conducted four experiments, but for brevity, we will
only present results from one of them, since the results were
similar in all of our experiments; the full details can be found
in [10]. All experiments were performed in the same period,
one after the other, with the same parameters. Note that since
these experiments were performed at an earlier period on
the real IPFS network, if we were to repeat them now, the
numbers would probably be different, due to changes in the
IPFS algorithms (e.g., the PR retention period and the Hydra
behavior). More generally, the results of any experiments on
the IPFS network largely depend on the prevailing network
conditions. For example, if there are multiple peers not serving
the PRs, such as the Hydras, the experiment will be influenced.
Our goal was to check whether the OP algorithm satisfies the
basic requirements of the plain IPFS algorithm, so assessing
all the metrics during the same period was essential.

Most of the graphs we show contain a series of boxplots,
where the x-axis represents time; each boxplot corresponds to
a ping round (30 minutes). The orange line is the median of
the metric assessed, the boxes extend between the 1st and 3rd
quartile of the distribution (25% to 75% of the results), the
whiskers extend to 1.5 times the IQR (inter quartile range), and
the dots indicate outliers, that is, results outside the whiskers.

In each experiment, we created a large number of CIDs
(1000) that were stored in peers using the OP algorithm.
Figure 3 shows the distribution of PRs that were successfully
stored during this publication process. We observe that most
CIDs were stored at around 10 peers, but there were a few
CIDs that were stored at less than 5 peers, while some were
stored at more than 15 peers; these distributions have a shape
similar to those in the OP paper, but with a lower peak, most
likely due to adverse network conditions [3].

Figure 4 shows the average number of these peers (where
the PRs were successfully stored) that remained online over

3https://jupyter.org/

PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2024 5

Fig. 4: Average number of online peers.

Fig. 5: Average number of peers sharing the PRs.

time, while Figure 5 shows the average number of these peers
actually sharing the PRs. We see that for an average of 9-10
online peers, 5-7 of them will share the PRs, dropping down
to 0 around the 24 hour mark, when the PRs expire. There are
two reasons for the difference between the two figures: first,
Hydra peers do not share the PRs and, second, some peers
may not respond due to load limitations.

To assess the influence of Hydra peers on the results due
to the dial down process, which meant that they stored PRs
but did not respond to queries for them, Figure 6 shows the
number of non-Hydra peers online, while Figure 7 shows the
number of those peers sharing the PRs. We observe that almost
all provider records can be retrieved from non-Hydra peers
(compare these figures with Figures 4 and 5). Conversely,
Figure 8 shows the average number of Hydra peers that were
online, while Figure 9 shows the number of those peers sharing
the PRs. Interestingly, one Hydra peer does share some CIDs.
This implies that not all Hydras participated in the dial down.

To assess how many of the initially chosen peers remained
within the K closest peers over the duration of the study,
Figure 10 shows the average in-degree ratio across all CIDs
over time. We observe that 7-8 peers remain in the K closest
peers set, which means that they can be found via a regular
DHT lookup. As expected, the in-degree ratio is smaller than
the number of active peers, since some of them are not in the
K closest set, but it is higher than the number of peers sharing
the PRs, since some of the chosen peers are Hydras.

We finally turn to the basic requirement for IPFS: that
at least one peer discoverable via the DHT shares the PRs.
Figure 11 shows that at least one peer shares the PRs with us,

Fig. 6: Average number of online non-Hydra peers.

Fig. 7: Average number of non-Hydra peers sharing the PRs.

Fig. 8: Average number of online Hydra peers.

Fig. 9: Average number of Hydra peers sharing the PRs.

6 PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2024

Fig. 10: Average in-degree ratio.

Fig. 11: Retrievability of the PRs over time.

before the 24 hour mark. Note that afterwards, the PRs records
are still shared with us until the end of the experiment; this
is also evident in Figures 5 and 7 where some outlier peers
continue responding with the PRs. This indicates that some
peers were using the upgraded version of IPFS, where PRs
were deleted after 48 hours.

VI. CONCLUSIONS AND FUTURE WORK

The results of our study indicate that the Optimistic Pro-
vide (OP) algorithm maintains the guarantees of the plain IPFS
provide algorithm, while being significantly faster, as shown
in in the OP paper [3]. It ensures that the requesting peer can
always locate the requested content from at least one peer.
Moreover, our analysis indicates that the peers chosen by OP
mostly remained in the set of K closest peers, thus making
them discoverable by IPFS, ensuring the quick and reliable
retrieval of requested data from the network.

Another significant observation was that the Hydra dial
down affected the performance of the OP algorithm and the
network at large. Hydras were often selected as initial PR
holders by the algorithm, and the dial down affected their
ability to serve as reliable providers. Therefore, accounting for
the impact of Hydra dial down was crucial when implementing
and evaluating the performance of the OP algorithm.

It is important to note that if conducted now, the experiments
would yield different metrics, as the network has evolved and
some parameters have changed. Of course, the study achieved
its goal, which was to assess the effectiveness of the OP
algorithm. Indeed, the study’s findings and insights contributed
to the refinement of the OP algorithm, which is now integrated
into the IPFS implementation.

An interesting avenue for future work is increasing the
number of peers initially selected by the OP algorithm. While

the algorithm was capable of retrieving PR holders from the
peers, the number of successful peers was lower than with
the standard provide algorithm, which averaged around 15.
This may enhance the reliability of the network, but it may
also increase the time needed to complete store operations,
warranting further analysis. Repeating our experiments will
also clarify whether the slightly inferior performance of the
OP algorithm was due to the prevailing network conditions
during the experimentation period, such as peer availability
and load, rather than the OP algorithm itself.

ACKNOWLEDGEMENTS

We would like to thank our colleagues at Probe Lab
for their helpful insights and suggestions. In particular, we
would like to thank Mikel Cortes and Dennis Trautwein, who
provided valuable assistance with the project. Their patience
and guidance was most crucial for completing this project.

REFERENCES

[1] D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott, M. Schubotz,
B. Gipp, and Y. Psaras, “Design and evaluation of IPFS: a storage
layer for the decentralized web,” in Proceedings of the ACM SIGCOMM
Conference, 2022, p. 739–752.

[2] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the XOR metric,” in Proceedings of the
International Workshop on Peer-to-Peer Systems, 2002, pp. 53–65.

[3] D. Trautwein, Y. Wei, Y. Psaras, M. Schubotz, I. Castro, B. Gipp,
and G. Tyson, “IPFS in the fast lane: Accelerating record storage
with optimistic provide,” in Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), 2024.

[4] S. A. Crosby and D. S. Wallach, “An analysis of BitTorrent’s two
Kademlia-based DHTs,” Rice University, Tech. Rep., 2007.

[5] S. Wolchok and J. A. Halderman, “Crawling BitTorrent DHTs for fun
and profit,” in Proceedings of the USENIX Workshop on Offensive
Technologies (WOOT), 2010.

[6] O. Saleh and M. Hefeeda, “Modeling and caching of peer-to-peer
traffic,” in Proceedings of the IEEE International Conference on Network
Protocols (ICNP), 2006, pp. 249–258.

[7] S. Kaune, K. Pussep, C. Leng, A. Kovacevic, G. Tyson, and R. Stein-
metz, “Modelling the internet delay space based on geographical lo-
cations,” in Proceedings of the Euromicro International Conference on
Parallel, Distributed and Network-based Processing, 2009, pp. 301–310.

[8] D. Stutzbach and R. Rejaie, “Improving lookup performance over
a widely-deployed DHT,” in Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), 2006.

[9] Y. Thomas, N. Fotiou, I. Pittaras, G. Xylomenos, S. Voulgaris, and
G. C. Polyzos, “Peer clustering for the InterPlanetary File System,” in
Proceedings of the 2nd ACM SIGCOMM Workshop on Future of Internet
Routing & Addressing, 2023, pp. 8–14.

[10] F. Bistas, “Retrieval success rate with optimistic provide in IPFS,”
Athens University of Economics and Business, Tech. Rep., 2023.

