
Requirements and Secure Serialization for
Selective Disclosure Verifiable Credentials

Vasilis Kalos1 and George C. Polyzos1

Mobile Multimedia Laboratory
Department of Informatics, School of Information Sciences and Technology

Athens University of Economics and Business, 104 34 Athens, Greece
{kalos20, polyzos}@aueb.gr

Abstract. The emergence of the Verifiable Credentials recommenda-
tion from W3C allows the adoption of credential systems in a much
wider range of user-centric applications and use cases. With this shift to
user-centric credential systems, Selective Disclosure has been proposed
and used to cryptographically secure user privacy. Although much work
has been undertaken in creating selective disclosure supporting crypto-
graphic protocols, those schemas are not directly applicable for creden-
tials. Implementations rely on canonicalization algorithms to transform
a credential to the necessary data format, which will be used by the cryp-
tographic layer. Those algorithms are often used without the necessary
cryptographic and security considerations, leading to insecure implemen-
tations. In this work we define three necessary security properties for
the canonicalization algorithms. We also propose a mathematical model
for JSON credentials, which we use to prove the security of a proposed
canonicalization algorithm.

Keywords: Self-Sovereign Identity (SSI) · privacy · JSON · canonical-
ization · linked data · JSON LD · Anonymous Credentials

1 Introduction

Credentials systems play a key role in the management of user identities on the
Internet, with systems like Open ID Connect (OIDC) [16] widely used to this
day.1 In the credentials ecosystem, there are three main entities: the Issuer that
creates and signs the credential (e.g., an airline company that issues a ticket),
the Holder that controls the credential (e.g., a traveller that bought the ticket)
and the Verifier that checks the validity of that credential (e.g., the airport agent
that validates the ticket). A limitation of existing credentials systems, like OIDC,
is that the issuing and verification procedures are tightly coupled, which allows
for the tracking of the user by the identity provider (Idp) [4]. Furthermore, the
Idp must always be online for the process to be successful.

1 OpenID. Market Share & Web Usage Statistics: https://www.similartech.com/
technologies/openid

2 Vasilis Kalos, George C. Polyzos

As an answer to the above limitations, anonymous credentials [13, 15, 19,
5] have been proposed, which decouple the “identity issuance” procedure from
the verification process, with W3C’s Verifiable Credentials (VCs) standard [17]
being the first step towards a standardized data model. In general, a VC is a
data structure, usually either in JSON or JSON Linked Data (JSON-LD) [18]
format, containing various metadata and claims as key-value pairs. The W3C
specification allows, and many of the envisioned use cases [14, 12] expect, the
creation and usage of long-lived credentials, which in many cases would contain
the user’s personal information (e.g., age and address, medical records, security
information like passwords, bank account numbers etc.).

An important problem that rises as a result, concerns the disclosure of the
user’s private data. If the included cryptographic proofs are created with “tradi-
tional” digital signatures (like RSA etc.), the entire credential must be presented
to the Verifier for the proof to be validated. As a result, anyone could gain access
to all the information in that VC, something that can be proven to reduce the
usability and flexibility of VCs at best or be quite dangerous at worst. Further-
more, not all the information in a VC will be always needed by all the potential
Verifiers. From these, and many other use cases2, emerges the need to hide per-
sonal or sensitive information from the VC and still be able to convince a Verifier
regarding the ownership, correctness, and integrity of the revealed information.

To meet those requirements, the use of cryptographic protocols supporting
“selective disclosure” has been proposed [3, 15, 6, 1]. Selective disclosure pro-
tocols work by signing a list of messages and giving the Holder the ability
to choose what messages they want to reveal in each interaction with a Ver-
ifier. In this work, we will consider selective disclosure as being comprised of
two different properties. Firstly, the “selective showing” part, which allows the
Holder to prove the integrity, ownership, and authenticity of any subset from a
set of signed messages, and secondly, the “zero-knowledge” part [9], that pro-
tects against any information about the un-disclosed messages being leaked. As
we mentioned though, in practice a credential will be in some structured data
format (e.g., JSON, JSON-LD etc.). Turning these formats to a list of mes-
sages, to be signed by a selective disclosure supporting cryptographic protocol,
is not trivial. In consequence, many implementations and standards will use
over-complicated or insecure “data canonicalization” algorithms, or make some
over-simplifications [11]. Most importantly however, those algorithms might be
overlooked during security analysis as a potential point of exploit, with some
being used without the necessary security audits.

In this work we draw attention to the need for rigorous security assessments
of the canonicalization algorithms when used to enable the selective disclosure
of a Verifiable Credential. To achieve that, we first present a threat model for
those algorithms. Then, we introduce a novel modelling of a JSON credential
that we use to give an example of a canonicalization algorithm and demonstrate
its security in the context of the presented threat model. Finally, we evaluate
the performance of our canonicalization algorithm.

2 Further cases: https://identity.foundation/bbs-signature/draft-bbs-signatures.html

Selective Disclosure Verifiable Credentials 3

2 Related Work

There is a long line of work around anonymous credentials [10, 3, 15, 19, 6], first
envisioned by Chaum [8]. Different proposals introduce different properties for
a wide range of use-cases. For example, proposals like Microsoft’s U-Prove [15]
offer the ability to efficiently revoke a credential at any time, but to do so,
inserts correlatable elements to the credential. On the other hand, El-Passo [19]
offers two factor authentication and correlation protection, but does not support
credential revocation (it can optionally support anonymity revocation, though
in this case, the user will be correlatable by the same Verifier). Those systems
apply various cryptographic protocols ([5, 9, 7]) to achieve anonymity and user
privacy. Those cryptographic protocols offer a vast range of features like range
proofs, delegating signatures etc. Almost all the anonymous credentials proposals
though use selective disclosure to protect the user’s privacy. For this reason, in
our work we are mainly focusing on the selective showing and zero-knowledge (of
the undisclosed credential) properties, although our results are generic enough
that may also apply to other properties as well (like range proofs etc.).

For canonicalization algorithms, perhaps the most notable example is the
URDNA algorithm [2], mainly used in the case of JSON-LD credentials (but
could also be applied to a JSON format). URDNA works by modelling a cre-
dential as a graph. Then it creates labels for each node and edge of that graph.
It then returns the edges of the knowledge graph as the messages corresponding
to the credential. That said, URDNA does suffer from the third vulnerability
defined in our threat model (Definition 6, in Section 3), i.e., it compromises
the zero-knowledge of the underlying cryptographic protocol’s selective disclo-
sure property [11]. Note that we have presented that result to the relevant W3C
working group and an efficient solution has already been derived. Other canon-
icalization algorithms like JSON Web Proofs3 and Termwise Canonicalization4

(of which the first version also suffered from the second vulnerability of our threat
model but has been patched since then) have been proposed and are currently
developed.

3 Background and Definitions

3.1 Credentials

For simplicity, in this work we define a credential to be any JSON or JSON-LD
data structure (unless otherwise stated), containing attributes and metadata as
key-value pairs (for example credentials that are compliant withW3C’s Verifiable
Credential Data Model specification). Let CR[K,V] be the space of all credentials

with keys fromK and values from V . Let also C
R←− CR[K,V] denote a randomly

sampled credential from the CR[K,V] space.

3 https://github.com/json-web-proofs/json-web-proofs
4 https://github.com/yamdan/jsonld-signatures-bbs

4 Vasilis Kalos, George C. Polyzos

Before continuing, we will need to define the equality between two credentials.
We will also need to define when a credential C1 is a “sub-credential” to another
credential C2, meaning that every key and value of C1 is also present in C2 and
with the same structure. The two definitions follow,

Definition 1 (Sub-Credentials). Let S and C be two credentials. S is a sub-
credential of C iff Algorithm 1 on input (S, C) returns true. In that case we
write that S ◁ C. We also define UP(S) = {C ∈ CR[K,V] : S ◁ C} and
SU(C) = {S ∈ CR[K,V] : S ◁ C}.

Definition 2 (Credentials Equality). Let C1 and C2 be two credentials. If
both C1 and C2 are in JSON-LD format, then C1 = C2 iff URDNA(C1) =
URDNA(C2). If the credentials are in JSON format, then C1 = C2 iff C1 ◁ C2

and C2 ◁ C1.

Algorithm 1 Recursive algorithm that checks if a credential is contained by
another credential

procedure sub-credential(C1, C2)
for key ∈ C1 do

if key ̸∈ C2 then
return false

else if C1(key) is a JSON object then
sub-credential(C1(key), C2(key))

else
if C1(key) ̸= C2(key) then

return false
return true

3.2 Selective Disclosure and Canonicalization Algorithms

As a canonicalization algorithm we define any algorithm that on input of a cre-
dential, returns a list of messages (or claims, or attributes as they have been
often called in research). Note that we don’t restrict the nature of those mes-
sages and don’t request anything about their semantic meaning, though most
applications will use canonicalization algorithms that map to messages convey-
ing similar information with the credential. More formally, we give the following
definition.

Definition 3 (Canonicalization Algorithm). Let M be the space of mes-
sages and P(M) the space of all the finite sets with elements from M . Given a
credential C ∈ CR[K,V] we define the canonicalization algorithm, indexed by C
as,

CanC : CR[K,V]→ P(M)

Selective Disclosure Verifiable Credentials 5

We also define OCan(· , ·) to be an Oracle that on query (C, S) will answer with,

OCan(C, S) =

{
CanC(S) if S ◁ C
null otherwise

We define canonicalization algorithms to be indexed by a credential for a mul-
tiple of reasons. Consider the case where an Issuer canonicalizes a credential
C to create a signature, which it sends, along with C, to a Holder. Let the
Holder choose a sub credential S of C to present to the Verifier, along with a
proof of knowledge of the signature (which they create by also canonicalizing
S). Depending on the credential that was originally signed (i.e., C), the canon-
icalization’s algorithms result on S may need to differ, for the proof generation
and verification process to succeed. That said, the Holder cannot just send C
to the Verifier, resulting to the need to send CanC(·) instead. We stress that
this is just a convention to simplify notation. In practice instead of CanC(·), the
Holder will send the necessary information (that is still depended on the original
credential, i.e., C), encoded in an appropriate format. The Verifier will use that
information to canonicalize the presented credential correctly. For an example
of this procedure, see Section 4.3.

The general structure of the cryptographic protocols, for which the canoni-
calization algorithms are intended can be seen in Figure 1. We stress that the
Verifier will not get a list of messages from the Holder but a credential (a sub
credential of the original, that contains only the information the Holder wants to
disclose). The reason being, that the Verifier will be interested in the semantic
and structural information that this credential provides, which may not translate
exactly to the messages corresponding to the canonicalized result (aside from the
fact that this is the way that has been standardized by W3C). That said, the
cryptographic layer awaits a list of messages. It is this mismatch that enables
the possible exploits, defined in the next section.

Issuer Holder

sign = SIGN(C, CanC(C))

sign, C S, proof, CanC()

proof = PROOF(CanC(C), CanC(S)) ?= VERIFY(proof, CanC(S))

Verifier

Fig. 1. The general structure of a credentials system using selective disclosure. The
SIGN , PROOF and V ERIFY functions are generalisations of the signing, proof gen-
eration and verification functions, of the selective disclosure cryptographic protocols.

3.3 Threat Model

In this section we formally define the considered threat model. Usual security
properties (e.g., unforgeability of a signature, security of a private key etc.) are

6 Vasilis Kalos, George C. Polyzos

not considered, as we assume that the underlying cryptographic protocols are
secure. We are mainly considering threats that could lead to the malicious miss-
use of the canonicalization algorithm by the Holder or the Verifier.

To that end, we define two properties (Definitions 4 and 5) that if not met,
could allow the Holder to find a different credential (or sub-credential for when
they don’t disclose part of their VC) than the one created and signed by the
Issuer, that after canonicalized, results to the same messages (or subset of those
messages) with the ones that the Issuer signed, effectively allowing the Holder
to cheat the Verifier. The definitions follow,

Definition 4 (Collision resistant). For credentials C and canonicalization al-
gorithm CanC , ∄ different credentials S1 and S2, so that CanC(S1) = CanC(S2).

Definition 5 (Forgery resistant). For credential C and canonicalization al-
gorithm CanC ∄ subset m ⊂ CanC(C) so that there is credential S′ with S′ ⋪ C
and CanC(S) = m

Note that we don’t consider the case where ∃C1, C2, S with C1 ̸= C2, S ◁ Ci,
i = 1, 2 and CanC1

(S) = CanC2
(S). Although the Holder could technically

“cheat” by revealing CanC2
(·) instead of CanC1

(·), they don’t actually reveal
any information that is not signed by the Issuer (they only reveal S).

To protect the zero-knowledge property of the underlying selective disclo-
sure capable system, we need the output of CanC(S) to not reveal information
about the not disclosed part of C to the Verifier. Following we formalize that
requirement in two different levels.

Definition 6 (Hiding). Let adversary AOCan

be a probabilistic polynomial time
(PPT) running algorithm A with access to the OCan(· , ·) oracle.

– we will denote the canonicalization algorithm as being “total hiding” if the

advantage Adv(S) of AOCan

for credential S defined as,

Adv(S) =

∣∣∣∣Pr(AOCan

(C, S,CanC(S)) = 1 : C ∈ UP(S))

− Pr
(
AOCan

(C ′, S, CanC(S)) = 1 :
C ∈ UP(S), C ′ ̸= C

C ′ R←− UP(S),

)∣∣∣∣,
is negligibly above semantic interpretation ∀S ∈ CR[K,V].

– we will denote the canonicalization algorithm as being “values hiding” if the

advantage Adv(S) of AOCan

for credential S defined as,

Adv(S) =

∣∣∣∣Pr(AOCan

(C, S,CanC(S)) = 1 : C ∈ UP(S))

− Pr
(
AOCan

(C ′, S, CanC(S)) = 1 :
C ∈ UP(S), C ′ ̸= C

C ′ Rval←−−− C/S,

)∣∣∣∣, (1)

is negligible above semantic interpretation ∀S ∈ CR[K,V].

Selective Disclosure Verifiable Credentials 7

All probabilities are defined over the coin flips of CanC and AOCan

as well
as the choices of C and C ′.

By C ′ Rval←−−− C/S we define a credential C ′ that is the same as C with all the
values that don’t also belong to the sub-credential S of C being random. By “neg-
ligible above semantic interpretation” we define a PPT algorithm A that has no
more advantage in distinguishing the two distributions, than it would have by
just semantically examining the credentials (note that all our proofs are in the
standard model). Formally, A will have “negligible above semantic interpreta-
tion” advantage if given CanC(S) and access to the oracle OCan(· , ·), it results
to a negligible rise in the advantage it would have, if it was only given the two
credentials (i.e., (C, S) and (C ′, S)). Intuitively, consider the following example.
Let the Holder having a credential C = {age : 25, profession : JuniorDev},
presenting the sub-credential S = {profession : JuniorDev} (S ◁C). An adver-
sary A that sees S, after semantically examining the credentials, may be able
to deduce that the Holder is more likely to possess C rather, for example, the
credential C ′ = {age : 90, profession : JuniorDev}.

As a result, the “total hiding” property defines that given credential S◁C, the
output of the canonicalization algorithm CanC(S) will not give any additional
advantage, to an adversary trying to extract information about the rest of the
credential that is not part of S (i.e., C). On the other hand, the “values hiding”
property defines that the adversary will not gain any additional advantage, when
trying to extract any information regarding the values of C not in S (but they
may get some information on the keys or the structure of C, that does not appear
in S).

The reason we define a stronger (“total hiding”) and a weaker (“values hid-
ing”) version of the same property, is that for many implementations the weaker
level of security will be enough, while leading to simpler and more efficient algo-
rithms. Furthermore, in many applications, information regarding the structure
of the credential will be either publicly available, as to enable certain proto-
cols (e.g., Holder, Verifier VC negotiations etc.) or will be leaked through some
other way (perhaps through some requirement of the cryptographic protocol).
Those applications could use faster algorithms, by opting for the weaker hiding
property.

We can easily show now that given the output of a “values hiding” canoni-
calization algorithm CanC(S), C cannot be retrieved and that different outputs
of CanC cannot be linked together. Obviously, the same result holds for “total
hiding” algorithms.

Theorem 1. Let a “values hiding” canonicalization algorithm Can.

– there is no PPT algorithm A1 that given CanC(S) will return C with non-
negligible probability.

– there is no PPT algorithm A2 that given, CanCi
(Si) for Ci ∈ CR[K,V] and

Si ◁ Ci, i = 1, 2, can decide with non-negligible advantage if C1 = C2.

Proof. For the first property, let A be a PPT that on input (C ′, CanC(S)),
for S ∈ CR[K,V] and C,C ′ ∈ UP(S) returns 1 if A1(CanC(S)) = C ′ and 0

8 Vasilis Kalos, George C. Polyzos

otherwise. Obviously A, will be able to distinguish between the distributions
{(C,CanC(S)) : C ∈ UP(S)} and {(C ′, CanC(S)) : C ′, C ∈ UP(S), C ̸= C ′}
with non-negligible advantage, breaking the “values hiding” property.

For the second property we will take advantage that we allow A in Defini-

tion 6 to call the OCan(· , ·) oracle. As such, we define a PPT algorithm AOCan

that on input (C2, CanC1
(S1)) query’s the oracle to get z = OCan(C2, S2).

It holds, S2 ◁ C2 ⇒ z ̸= null. Let AOCan

(C2, CanC1
(S1)) return J with

J = A2(CanC1
(S1), z) = A2(CanC1

(S1), CanC2
(S2)). If C1 = C2, then J = 1

with non-negligible advantage (equivalently J = 0 if C1 ̸= C2). It is trivial to

see that AOCan

breaks the “values hiding” property.

We also define an canonicalization algorithm to be pregnable against “vulner-
abilities 1, 2” and “3” if it is not “collision resistant”, “forgery resistant” or
“hiding” correspondingly.

4 Proposed Algorithm and Security Analysis

4.1 JSON modelling

When considering JSON-LD or JSON credentials, the modelling was mainly
done using graphs and more specifically, the knowledge graph representing the
claims of the VC. That modelling, although flexible, requires complicated, not
intuitive canonicalization algorithms. As a novelty of our paper, we propose an
alternative modelling, that will represent the credential in a way closer to the
one required by the cryptographic algorithms, i.e., as a set of bit-arrays. To
do that, we will use finite functions, that can be naturally (i.e., by definition)
transformed into a set. We will then demonstrate how to use our modelling
to prove the security properties of a proposed canonicalization algorithm. Our
hope is that this representation of a credential, will make it easier for other
algorithms to be proven secure, and make the security analysis of credential
systems supporting selective disclosure more formal.

The basic observation is that a JSON representation is comprised from two
things: the Structure and the Values. We will model those two separately and
consider a JSON data-structure to be a combination of both. We first define a
non-zero positive integer n ∈ N. Let [n] = {1, 2, ..., n}.

Structure:
Let K be the set of all possible “keys” that can appear in the JSON and K∗

be the set of finite tuples with elements from K. We define the structure of a
JSON to be K along with an injective function ϕ,

ϕ : [n]→ K∗ (2)

Values:
Similarly, we define the values of a credential as a set V of all the possible

literal values that can appear in the JSON, along with a function g,

g : [n]→ V (3)

Selective Disclosure Verifiable Credentials 9

Note that we make no assumptions for g, in contrast with ϕ that we define to be
injective. We now end up on the following definition for a JSON data-structure.

Definition 7. We define a JSON data-structure J to be J = (K,V, n, ϕ, g), or
since K and V can be as extensive as we want, for simplicity we will define a
JSON structure as J = (n, ϕ, g).

The intuition behind the proposed modelling is that [n] will map each place in
the JSON data-structure where a literal value could appear to an integer. Then
ϕ will use those integers to map each position in the JSON with a literal value
to the set of keys that will lead to that literal value and g will map each literal
value position to the corresponding actual literal value.

As an example of our modelling, consider the credential of Figure 2, with
each place that a literal value can go mapped to an integer in [6] = {1, 2, ..., 6}.

{
 "Name": "John Doe",
 "Email": "JohnDoe@mail.com",
 "Ticket": {
 "Leaving": {
 "From": "New York",
 "To": "Hong Kong"
 },
 "Returning": {
 "From": "Hong Kong",
 "To": "New York"
 }}
}

1
2

3

4

5
6

Fig. 2. modelling a JSON data-structure example.

The values of the ϕ and g functions can be seen at Table 1. Note that ∀ i0, i1 ∈ [6],
with i0 ̸= i1 ⇒ ϕ(i0) ̸= ϕ(i1), while g(3) = g(6) and g(4) = g(5).

Table 1. Values of the ϕ and g functions of the Credential on Figure 2.

n ϕ g

1 (name) John Doe

2 (email) JohnDoe@bestMail.com

3 (Ticket, Leaving, From) New York

4 (Ticket, Leaving, To) Hong Kong

5 (Ticket, Returning, From) Hong Kong

6 (Ticket, Returning, To) New York

10 Vasilis Kalos, George C. Polyzos

From the above example it can be seen that the order with which we map each
literal value position in the JSON to an integer, should not matter, hence the
following definition of JSON equality,

Definition 8. Let J1 = (n1, ϕ1, g1) and J2 = (n2, ϕ2, g2) be two JSON data-
structures. We define that J1 = J2 iff n1 = n2 = n and there is a permutation σ
of [n], such that ϕ1 = ϕ2(σ) and g1 = g2(σ).

Similarly, we get the following definition for when a JSON credential is a sub-
credential to another credential,

Definition 9. Let J1 = (n1, ϕ1, g1) and J2 = (n2, ϕ2, g2) be two JSON data-
structures. We define that J1 ◁ J2 iff n1 ≤ n2 and there is a permutation σ of
[n2], such that ∀i ∈ [n1], ϕ1(i) = ϕ2(σ(i)) and g1(i) = g2(σ(i))

It is easy to see that Definitions 8 and 9 are consistent with Definitions 2 and
1 respectively. As an example, if C1 and C2 credentials with C1 ̸◁ C2, then
from Definition 1, there must be either a value in C1 that does not appear in
C2 or a key in C1 (or a nested object of C1) that does not appear in C2 (or
a nested object of C2). If we represent those credentials using our modeling,
i.e., as C1 = (n1, ϕ1, g1) and C2 = (n2, ϕ2, g2) where ϕ1, ϕ2, g1, g2 as in Table 1
for the example of Figure 2, we can conclude that, for some i ∈ [n1] either
ϕ1(i) ̸∈ [ϕ2(1), ..., ϕ2(n2)] or g1(i) ̸∈ [g2(1), ..., g2(n2)] which means that C1 ̸◁ C2

per Definition 9 as well.
An important part in Definition 7 of JSON structures is that the function ϕ

is injective. However, if the credential contains a list, that may not be the case,
given the definitions above. For example, consider the credential C = {“key” :
[“v1”, “v2”]}. Using the same method as in the example of Figure 2, we will
get ϕ(1) = ϕ(2) = “key”. To eliminate that problem, we consider a subset of
CR[K,V] which we will call “simple credentials” and that will not contain any
lists. We will denote the set of those credentials as SCR[K,V]. We stress that
our definition is not as restrictive as it may seem, since there is a simple mapping
between any credential from CR[K,V] to a credential in SCR[K,V], using the
following transformation; ψ([a1, a2, ..., aL]) = {I1 : a1, I2 : a2, ..., IL : aL} where
Ii, i ∈ N is an index reserved for this use (for example “ lid#i”). By applying
the transformation ψ to all the lists of a credential (i.e., transforming a list to
a mapping between the index of the list element and that element) in CR[K,V]
we get a credential in SCR[K,V]. This will allow us to define the proposed
canonicalization algorithm (see Section 4.2) for any credential in CR[K,V].

Let credential C ∈ CR[K,V] and C ′ ∈ SCR[K,V] with C ′ be the credential
C after ψ is applied to all its lists. We define a mapping ψC : SC[C] → SC(C ′)
such that, on input S ◁ C, ψC(S) will be the credential S after all lists of S are
transformed the same way the lists of C did (note that since S ◁ C, for every
list L of S, there will be a list L′ of C with L ⊆ L′). As an example,

C = {“key” : [“v1”, “v2”]} → ψC(C) = {“key” : {I1 : “v1”, I2 : “v2”}}
S = {“key” : [“v2”]} → ψC(S) = {“key” : {I2 : “v2”}}

Selective Disclosure Verifiable Credentials 11

It is trivial to show that ψC1
(S1) = ψC2

(S2)⇒ S1 = S2 and that if S1 ◁ S2 ⇔
ψC(S1) ◁ ψC(S2) (note that the transformation ψ is injective). A drawback of
our modelling is that, following Definitions 7 and 8, if the JSON contains a list
and we change the order of the elements in that list we will get a different JSON
(per the Definition 8 of equality). Although that caveat does not seem to have
any significance in practice, especially for cryptographic applications where the
signed data should not be able to change in any way, additional work could
be done to extend the above modelling to also account for that case (defining
broader classes of equality etc.). For the intended applications however, those
definitions will suffice.

4.2 Canonicalization Algorithm

Let credential C = (n, ϕ, g) ∈ CR[K,V] . The proposed canonicalization algo-
rithm JCanC (Algorithm 2) on input S, transforms S to a simple credential
SC = (nS , ϕSC

, gSC
) using the mapping ψC and returns {ϕSC

(i), gSC
(i)}i∈[nS].

Algorithm 2 Canonicalize a JSON credential

function JCanC(S)
SC ← ψC(S)
Messages← []
Claim← None
procedure recurse(SC)

for key ∈ SC do
if typeof SC [key] = JSONobject then

Claim← Claim+ key+ ”.”
recurse(SC [key])

else
Claim← Claim + ” : ” + SC [key]
Messages.push(Claim)
Claim← None

return Messages

The following 2 Lemmas will be used for the security proofs of the JCan algo-
rithm. Lemma 1 provides a natural way to check equality between credentials
using our Definition 7.

Lemma 1. Let J1 = (n1, ϕ1, g1) and J2 = (n2, ϕ2, g2). Then J1 = J2 iff
n1 = n2 = n and {(ϕ1(i), g1(i))}i∈[n] = {(ϕ2(i), g2(i))}i∈[n].

Proof. We will first prove the (⇒) direction. Lets assume that n1 = n2 = n and
that {(ϕ1(i), g1(i))}i∈[n] = {(ϕ2(i), g2(i))}i∈[n]. Then ∀ i ∈ [n], ∃ i′ ∈ [n] so that
(ϕ1(i), g1(i)) = (ϕ2(i

′), g2(i
′)). We define σ as,

σ : [n]→ [n]

σ(i) = i′ ⇔ (ϕ1(i), g1(i)) = (ϕ2(i
′), g2(i

′))

12 Vasilis Kalos, George C. Polyzos

We will show that σ is a permutation.

1) Let i0, i1 ∈ [n] and i′0, i
′
1 ∈ [n] with ϕ1(i0) = ϕ2(i

′
0) and ϕ1(i1) = ϕ2(i

′
1). If

i0 = i1 ⇒ ϕ1(i0) = ϕ1(i1) ⇒ ϕ2(i
′
0) = ϕ2(i

′
1) ⇒ i′0 = i′1 since ϕ2 injective. As a

result σ is a function.

2) Let now i0 ̸= i1. Lets assume σ(i0) = σ(i1) ⇒ i′0 = i′1 meaning that
ϕ2(i

′
0) = ϕ2(i

′
1) ⇒ ϕ1(i0) = ϕ1(i1) ⇒ i0 = i1 since ϕ1 is injective. We ar-

rived in a contradiction and as a result, σ is injective.

3) Let an i ∈ [n]. Since {(ϕ1(i), g1(i))}i∈[n] = {(ϕ2(i), g2(i))}i∈[n] we can con-
clude that ∃ i′ ∈ [n] so that (ϕ2(i), g2(i)) = (ϕ1(i

′), g1(i
′)) and as a result

ϕ1(i
′) = ϕ2(i) ⇒ σ(i′) = i. As a result, the σ function is also bijective. We

conclude then that σ is a permutation.

From the definition of the σ permutation it is easy to see that ϕ1(i) = ϕ2(σ(i))
and that g1(i) = g2(σ(i)) which means that J1 = J2.

The opposite (⇐) direction, meaning that if J1 = J2 then n1 = n2 = n and
{(ϕ1(i), g1(i))}i∈[n] = {(ϕ2(i), g2(i))}i∈[n] is trivial.

Lemma 2. Given J = (n, ϕ, g) and S ⊂ {ϕ(i), g(i)}i∈[n], ∄ J ′ = (n′, ϕ′, g′),
with J ′ ̸◁ J and {ϕ′(i), g′(i)}i∈[n′] = S

Proof. Let J ′ = (n′, ϕ′, g′), where ϕ′, g′ as in the example of Figure 2, with J ′ ̸◁ J
and {ϕ′(i), g′(i)}i∈[n′] = S. This is with no loss of generality since, given Defini-
tion 8 of equality between two JSON in our modeling, if J ′ = (n, ϕ, g) then n′ = n
and ϕ will just be a permutation of ϕ′ (similarly g will be a permutation of g′).
From Definition 9 we have that there must be j ∈ [n′] so that ϕ′(j) ̸∈ {ϕ(i)}i∈[n]

and g(j) ̸∈ {g(i)}i∈[n]. As a result, S = {ϕ′(i), g′(i)}i∈[n′] ̸⊂ {ϕ(i), g(i)}i∈[n]

which is a contradiction.

Following we prove that JCan is secure against Vulnerability 1 and 2 of our
threat model, i.e., that it is “coalition” and “forgery resistant”.

Lemma 3. Let credentials C1, C2 ∈ CR[K,V], with C1 ̸= C2.

– ∄ credentials Si ◁ C1, i = 1, 2 with S1 ̸= S2 and JCanC1
(S1) = JCanC1

(S2).
– ∄ credentials S1 ◁ C1 and S2 ◁ C2 with S2 ⋪ C1 such that, JCanC2

(S2) ⊂
JCanC1

(S1)

Proof. For the first property. Let ψC1
(Si) = S′

i = (nSi
, ϕS′

i
, gS′

i
), i = 1, 2. Since,

JCanC1
(S1) = JCanC1

(S2) ⇒ {ϕS′
1
(i), gS′

1
(i)}i∈[nS1

] = {ϕS′
2
(i), gS′

2
(i)}i∈[nS2

].
From Lemma 1 we got that ψC1

(S1) = ψC1
(S2) and from the construction of

ψC1 that S1 = S2.
For the second property, let again ψCi

(Si) = S′
i = (nSi

, ϕS′
i
, gS′

i
), i = 1, 2. Let

m ⊂ JCanC1
(S1) = {ϕS′

1
(i), gS′

1
}i∈nS1

and m = JCanC2
(S2). From Lemma 2,

we get that ψC2
(S2) ◁ ψC1

(S1)⇒ S2 ◁ S1 ◁ C1 which is a contradiction.

For “hiding” (Definition 6), we cannot prove JCan to be “total hiding”, but we
can prove it to be “values hiding”. Intuitively, that is because we are considering
the indexes of a list in a credential as keys which can give away some information

Selective Disclosure Verifiable Credentials 13

of the credential’s structure. For example, “employees. lid#2: Jane” reveals the
information that likely there is a hidden message “employees. lid#1: X ”. The
above problem has an easy solution, which is to transform every list in the
credential to a mapping between a random key and the elements of the list (i.e.,
instead of lid#i use lid#ri with ri random). However, we deemed the gained
simplicity of the algorithm to be warranted.

Lemma 4. There is no PPT algorithm AOCan

that for credential C, and a sub
credential S ◁ C on input (C, S, JCanC(S)) will return 1 with non negligible

advantage over semantic interpretation. The advantage of AOCan

is defined in
Equation 1.

Proof. From the definition of AOCan

’s advantage for S of Equation 1, we can see

that essentially is the advantage that AOCan

has in distinguishing the distribu-
tions

{
(C, S, JCanC(S)) : C ∈ UP(S)

}
and

{
(C ′, S, JCanC(S)) :

C,C ′ ∈ UP(S)
C ̸= C ′

C ′ Rval←−−− C/S

}

Note also that we give AOCan

access to the OJCan(· , ·) oracle. Next we will con-

struct a credential C ′ Rval←−−− C/S and prove that OJCan(C, S) = OJCan(C ′, S).
Let C = (n, ϕ, g) and S ⊂ C with S = (nS , ϕS , gS). We create a random creden-
tial C ′ = (n, ϕC′ , gC′) with ϕC′ = ϕC and,

gC′(i) =

{
gS(i) i ∈ [nS]
ri i ∈ [n] \ [nS], ri random value

It is trivial to show that S ◁ C ′ and that ψC(S) = ψC′(S). For the last equality
note that if [a1, a2, ..., aL] and [b1, b2, ..., bL′] are lists of C and C ′ correspondingly,
if there is some indexes IS for which the elements of those lists also appear in a
list of S then

[ai]i∈IS = [bi]i∈IS ⇒
ψC([ai]i∈IS) = {Ii : ai}i∈IS = {Ii : bi}i∈IS = ψC′([bi]i∈IS)

All other elements of S (i.e., not lists) will remain constant. We can see that since
ψC(S) = ψC′(S) ⇒ JCanC(S) = JCanC′(S) ⇒ OJCan(C, S) = OJCan(C ′, S).

Note that AOCan

can use only its internal state, coin flips or the random values
of C ′ to decide on what other queries to send the Oracle, which means that those
will not help distinguish the 2 distributions (since it will be the same in both

cases). As a result AOCan

will have 0 advantage above semantic interpretation,
in distinguish the two distributions above.

14 Vasilis Kalos, George C. Polyzos

4.3 Real Life Example

In practice, as we mentioned, there will be only one algorithm and the Holder
will send to the Verifier the necessary information to canonicalize the derived
credential correctly. In effect, CanC(S) will be Can(S, InfoC) or Can(SC), where
the necessary information is directly encoded in the credentials. That said, all
the security requirements defined in Section 3 (i.e., Definitions 4, 5 and 6) apply
exactly, with the only difference that InfoC should be passed as an input to the

adversary AOCan

in Definition 6. Accordingly, we define JCan to be Algorithm 2
without the transformation by ψC(·) in the first step (i.e., by replacing ψC(·)
with the Identity function).

Consider the example of Figure 3. The Issuer will start with the credential
C ∈ CR[K,V]. Then, they will transform that credential (using ψ) to the cre-
dential C ′ ∈ SCR[K,V] and finally they will canonicalize it to get the messages
that they will sign. Next, they will send credential C ′ along with the signature
to the Holder. The Holder will then choose the credential S ◁ C ′ that they want
to disclose and canonicalize it, using again JCan. From the messages returned
from JCan(S) and JCan(C ′) (note that JCan(S) ⊆ JCan(C ′)) they will derive
a proof (for example a zero-knowledge proof of knowledge of the signature and
the rest of the messages) that they will send to the Verifier, together with the
credential S. Finally, the Verifier will get the messages JCan(S) and use them
to validate the Holder’s proof. Note from Figure 3, that the messages returned
from JCan depend on the credential C (hence the reason we index JCan with C
in our modelling), but they do not reveal any information about the undisclosed
values of C (as proven in Lemma 4).

����

�����

{"name": "Jan",
 "colleagues":
 ["Alice",
 "Kyle"]}

{"name": "Jan",
 "colleagues": {
 _lid#1: "Alice",
 _lid#2: "Kyle"}}

{"name": "Jan",
 "colleagues": {
 _lid#1: "Alice",
 _lid#2: "Kyle"}}

{"name": "Jan",
 "colleagues": {
 _lid#1: "Alice"}}

{"name": "Jan",
 "colleagues": {
 _lid#1: "Alice"}}

"name" "Jane"
"colleagues._lid#1" "Alice"
"colleagues._lid#2" "Kyle"

"name" "Jane"
"colleagues._lid#1" "Alice"

"name" "Jane"
"colleagues._lid#1" "Alice"

Issuer

Holder

Verifier

C

S

JCan(C')

JCan(C')

C'

C'

(= C(C)) (=JCanC(C))

S JCan(C')

Fig. 3. Real life flow example for the signing, proof derivation and verification of a
credential and sub-credential process.

Selective Disclosure Verifiable Credentials 15

5 Evaluation and Performance

We benchmarked and compared the URDNA canonicalization algorithm and the
JCan algorithm (Algorithm 2). The benchmarking procedure was executed on
a personal computer using an Intel i5 with 3.2 GHz clock and 16 GBs of RAM.
Also note that a JSON-LD credential before it is canonicalized it must first be
expanded. The expansion process brings the credential to the proper form, so
it can be correctly canonicalized. In the results below we do not include the
expansion algorithm as part of the process of canonicalizing a credential, to get
a more accurate performance measurement of just the URDNA algorithm.

5.1 Benchmarking Results

For the benchmarking procedure5, we generated credentials of max depth (max-
imum number of continuously nested objects) 2, 4, 8 and 16. For each different
JSON depth, we created credentials with 10, 20, 40 and 80 claims and bench-
marked the 2 algorithms multiple times on each credential. Finally, we measured
the mean canonicalization time of each algorithm, over the credentials with dif-
ferent number of claims, for each different JSON depth value. The results are
shown in Figure 4. Note that JCan runs 5× to 9× times faster than the URDNA
algorithm. The examples for the benchmarks were generated purposefully to aid
URDNA and hinder JCan, so we can get an accurate estimation of the perfor-
mance differences.

2 4 6 8 10 12 14 16
Number of nested objects

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
tim

e
(m

se
c)

Benchmarking Results
JCan
URDNA

Fig. 4. Benchmarking results comparing the URDNA to JCan (Algorithm 2). The
credentials used have only one chain of nested objects (i.e., max depth = number of
nested objects). This creates a worst case scenario in favor of URDNA over JCan.

5 Code used: https://github.com/BasileiosKal/JCan

16 Vasilis Kalos, George C. Polyzos

6 Conclusion

In this work we considered the use of anonymous credentials using W3C’s cre-
dentials data model to preserve privacy in user-centric applications. We noted
that the cryptographic solutions developed do not consider what the interface
with the higher layers will be (i.e., those of JSON and JSON-LD credentials
etc.). We then proposed the key security properties that all canonicalization al-
gorithms should possess for the serialization to be secure. We also presented a
novel modelling of a JSON credential that we used to propose an efficient al-
gorithm and formally analyse its security. For future work, we want to use our
threat model and JSON modelling to analyse and construct security proofs for
other canonicalization algorithms as well. We also plan to use those algorithms
to construct a complete anonymous credentials system and formally analyse the
security of all its aspects. Finally, we want to apply our model on canonicaliza-
tion algorithms intended to be used by credentials systems supporting additional
properties beyond selective disclosure (e.g., range proofs, etc.).

Acknowledgements. This work has been funded in part by subgrant Secur-
ing Content Delivery and Provenance (SECOND) of EU H2020 project NGIat-
lantic.eu, under grant agreement No 871582.

References

1. Alpár, G., van den Broek, F., Hampiholi, B., Jacobs, B., Lueks, W., Ringers, S.:
IRMA: Practical, Decentralized and Privacy-friendly Identity Management using
Smartphones. HotPETs 2017 (2017)

2. Arnold, R., Longley, D.: RDF Dataset Canonicalization. https://lists.w3.org/
Archives/Public/public-credentials/2021Mar/att-0220/
RDFDatasetCanonicalization-2020-10-09.pdf (2020), Accessed: 2022-03-06

3. Bauer, D., Blough, D.M., Cash, D.: Minimal Information Disclosure with Efficiently
Verifiable Credentials. In: Proceedings of the 4th ACM Workshop on Digital Iden-
tity Management. pp. 15–24. Association for Computing Machinery (2008)

4. Brands, S.: The Problem(s) with OpenID. https://web.archive.org/web/20110516
013258/http://www.untrusted.ca/cache/openid.html (2007), Accessed: 2021-09-15

5. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Annual International Cryptology Conference. pp. 56–72.
Springer (2004)

6. Camenisch, J., Van Herreweghen, E.: Design and Implementation of the idemix
Anonymous Credential System. In: Proceedings of the 9th ACM Conference on
Computer and Communications Security. pp. 21–30 (2002)

7. Chaum, D.: Blind Signatures for Untraceable Payments. In: Advances in Cryptol-
ogy. pp. 199–203. Springer (1983)

8. Chaum, D.: Security without Identification: Transaction Systems to Make Big
Brother Obsolete. Communications of the ACM 28(10), 1030–1044 (1985)

9. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof-Systems. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing. p. 291–304. STOC ’85, ACM New York, NY, USA (1985)

Selective Disclosure Verifiable Credentials 17

10. Hanzlik, L., Slamanig, D.: With a Little Help from My Friends: Constructing Prac-
tical Anonymous Credentials. In: Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security. pp. 2004–2023 (2021)

11. Kalos, V., Polyzos, G.C.: Verifiable Credentials Selective Disclosure: Challenges
and Solutions. https://mm.aueb.gr/master theses/polyzos/2021-Kalos.pdf (Octo-
ber 2021), M.Sc CS Thesis, Accessed: 2022-02-01

12. Lagutin, D., Kortesniemi, Y., Fotiou, N., Siris, V.A.: Enabling Decentralised Iden-
tifiers and Verifiable Credentials for Constrained IoT Devices using OAuth-based
Delegation. In: Proceedings of the Workshop on Decentralized IoT Systems and
Security (DISS 2019), in Conjunction with the NDSS Symposium, San Diego, CA,
USA. vol. 24 (2019)

13. Neira, B., Queern, C.: Introduction to Azure Active Directory Verifiable
Credentials. https://docs.microsoft.com/en-us/azure/active-directory/verifiable-
credentials/decentralized-identifier-overview (2021), Accessed: 2021-09-15

14. Otto, N., Lee, S., Sletten, B., Burnett, D., Sporny, M., Ebert, K.: Verifi-
able Credentials Use Cases. Working Group Note, W3C (September 2019),
https://www.w3.org/TR/vc-use-cases/

15. Paquin, C., Zaverucha, G.: U-Prove Cryptographic Specification V1.1.
Revision 3. Technical Report, Microsoft Corporation (December 2013),
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/U-
Prove20Cryptographic20Specification20V1.1.pdf

16. Sakimura, N., Bradley, J., Jones, M., Medeiros, B.D., Mortimore, C.: OpenID
connect core 1.0. https://openid.net/specs/openid-connect-core-1 0.html (2014),
Accessed: 2022-02-01

17. Sporny, M., Longley, D., Chadwick, D.: Verifiable Credentials Data Model 1.0. Rec-
ommendation, W3C (November 2021), https://www.w3.org/TR/vc-data-model/

18. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Champin, P.A., Lindström,
N.: A JSON-based Serialization for Linked Data. Recommendation, W3C (July
2020), https://www.w3.org/TR/json-ld11/

19. Zhiyi, Z., Michal, K., Alberto, S., Lixia, Z., Etienne, R.: EL PASSO: Efficient
and Lightweight Privacy-Preserving Single Sign On. In: Proceedings on Privacy
Enhancing Technologies. pp. 70–87. Sciendo (2021)

