Network-Coded Connected Dominating Set Relaying for
Airborne Tactical Networks

Leonid Veytser and Bow-Nan Cheng
MIT Lincoln Laboratory
244 Wood St. Lexington, MA 02420
{veytser, bcheng}@Il.mit.edu

ABSTRACT

In recent years, there’s been a large push in the U.S. De-
partment of Defense to provide greater bandwidth efficiency
amidst congested spectrum. This is especially true in air-
borne tactical networks where transmit rates are limited
and optimized for interference mitigation. Airborne tacti-
cal networks (ATNs) differ from many ground networks in
that most of the traffic is broadcast and multicast. One
method to more efficiently utilize the medium is to build a
connected dominating set (CDS) backbone to reduce relay
redundancy with overlapping nodes. While building a CDS
has been shown to reduce retransmissions, thus saving band-
width, backbone nodes can easily become congested. In this
paper, we apply network coding to backbone CDS in air-
borne tactical networks to potentially mitigate the issues of
congestion. Specifically, we implement network coded CDS
(NCDS) in the Linux kernel and evaluate its performance
compared to no coding under various relevant topologies.
The results show that although NCDS can provide gains in
tightly controlled topologies, the gains are severely limited
in random and relevant ATN topologies.*

1. INTRODUCTION

In recent years, there’s been a great push in the U.S.
Department of Defense (DoD) to provide ubiquitous data
connectivity out to the tactical edge. This net-centric vi-
sion brings with it increased bandwidth requirements amidst
limited available spectrum and is especially challenging for
airborne tactical networks where transmit rates are limited
and optimized for interference mitigation [1]. Airborne tac-
tical networks (ATNs) like Link 16 differ from many ground
networks in that most of the traffic is broadcast and mul-

IThis work is sponsored by the Assistant Secretary of De-
fense - Research and Engineering (ASD-R&E) under Air
Force Contract #FA8721-05-C-0002. Opinions, interpreta-
tions, recommendations and conclusions are those of the au-
thors and are not necessarily endorsed by the United States
Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AIRBORNE’14, August 11, 2014, Philadelphia, PA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2985-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2636582.2636829.

11

ticast in nature and intended for multiple receivers. It is
therefore important to minimize the amount of redundant
relaying while ensuring maximum coverage of transmissions.

Traditional Relay

® ©
2 5 c
«—
—
4 Transmissions

®
I ,/’ @ I//’

Network Coded Relay
® | G
_’ c

a+ c

1\\\@

Can inter-flow network coding be used at 3 Transmissions

reduced relay set nodes to enhance multicast

efficiency? What are the tradeoffs? Packet a = 1010101

Packet c¢ = 1100111
Packet a & ¢ = 0110010

Figure 1: Applying inter-flow network coding to
mitigate congestion on CDS backbones

One method to reduce bandwidth utilization and mini-
mize wasted re-transmissions is to build a connected dom-
inating set (CDS) backbone to relay multicast messages.
CDS’s are built by exchanging periodic hello messages with
one or two hop information and selecting the relay nodes
that cover the maximum amount of neighbors with one trans-
mission. Although this method has been shown to be highly
effective in reducing retransmissions, depending on how the
CDS is formed, backbone nodes can exhibit high load and
congestion as they act as relays for all nodes in the network.
Figure 1 illustrates this problem. Nodes A, B, and C are
selected as the CDS for the network. Instead of classical
flood where all nodes relay traffic, as long as A, B, and C
relay all broadcast/multicast messages, all other nodes in
the network will receive a copy of the message. The result,
however, is high load on nodes A, B, and C.

To reduce the load on the CDS backbone, we look to inter-
flow network coding techniques. Figure 1 illustrates a basic
example of inter-flow network coding using XOR to encode
and decode packets. In traditional relay networks where the
medium is shared, if node A has data to send to node C
and node C has data to send to node A through a common
relay node B, four transmissions are required to ensure de-
livery: Node A sends a to node B, node C sends ¢ to node B,
node B relays a to node C, and Node B relays ¢ to node A.
By applying inter-flow network coding at the relay node B,
however, only three transmissions are required. In the case



of network coding, B knows that node A has packet a and
node C has packet ¢ and XORs a and c together to transmit.
Because node A and C can both hear B’s encoded message,
and because they can simply XOR the coded message with
the original message sent to recover the relayed message,
only three transmissions are required. By applying network
coding to CDS backbone nodes, significant load reduction
can potentially be realized.

In this paper, we present a network coded connected dom-
inating set (NCDS) approach to reduce broadcast/multicast
network load on highly congested CDS backbones. We eval-
uate the approach on several relevant airborne tactical net-
work topologies and draw insights on feasibility and gains of
the approach. Key contributions of the paper include:

e Design and implementation of a Linux kernel inter-flow
NCDS module

e Performance evaluation in several random and relevant
airborne tactical network (ATN) topologies

e Tmplications of using NCDS in ATNs

The rest of the paper is organized as follows: Section 2
surveys inter-flow network coding techniques for broadcast
wireless transmissions describing basic functionality, back-
ground and algorithms. Next, Section 3 overviews the NCDS
approach including design considerations and the Linux ker-
nel implementation of NCDS. Section 4 provides a basic eval-
uation of the implementation under several random as well
as ATN relevant topologies while Section 5 discusses findings
and relevant lessons learned. Finally, Section 6 concludes the

paper.

2. NCDS RELATED WORK

Although network coding has been researched and applied
to wired networks to facilitate efficient multicast dissemina-
tion as early as 2000 [2], it was first applied practically to
wireless networks in COPE [3]. In COPE, the broadcast
nature of 802.11 networks was leveraged to XOR together
several unicast flows from various sources and sinks in a
wireless mesh network to reduce bandwidth. The authors
showed that by opportunistically listening to traffic being
sent over the air, understanding neighborhood information,
and intelligently mixing packets from different unicast flows,
COPE’s throughput gains varied from 1.33 to 1.6 for various
fixed topologies. Although the concept presented in COPE
is interesting, due to the dominant nature of multicast traf-
fic on airborne tactical networks, this approach cannot be
directly leveraged.

In [4], Li Li et. al. extend the concept of COPE to wireless
broadcast transmissions, extending the XOR coding con-
cept to a Reed-Solomon approach. They show that apply-
ing a simple XOR-based coding scheme algorithm to broad-
cast traffic can solicit a 45% gain compared to non-coding
approaches. With the Reed-Solomon-based approach, the
gains increase to 61%.

Wang et. al [5] proposed calculating the maximum in-
dependent set (MIS) and applying network coding to only
those nodes in the relay set. Their work showed that NCDS
provides up to 161% gains compared to classical flooding
and 37% gains compared to CDS-based broadcasting with-
out network coding. Although the results are promising, the
work focused on tight coupling between CDS algorithm and

12

network coding strategy and measured energy reduction in
simulation. Our work examines packet delivery and network
load on live networks, decoupling CDS selection algorithms
from coding scheme. We leverage widely available routing
protocols like OSPF-MDR and NHDP, which perform CDS
calculation to select CDS and perform coding in a greedy
manner.

In [6], Veytser et. al. presented a Linux kernel implemen-
tation of broadcast inter-flow network coding. The evalua-
tion focused on simple fixed topologies and significant gains
were shown to be achieved. In the work, nodes were manu-
ally assigned to code and relay. We extend this work both in
implementation (dynamically electing CDS and coding over
CDS only and not all nodes) as well as evaluation (examin-
ing random and relevant ATN topologies). Additionally, we
introduce network coded connected dominating sets (NCDS)
to mitigate issues with CDS congestion.

3. NCDS OVERVIEW

There are two major components in the design of network-
coded connected dominating sets: the CDS selection algo-
rithm and the network coding technique. Our design de-
couples the two components so that multiple CDS selection
algorithms can be tested against multiple network coding
techniques. In this section, we overview the CDS selection
technique and the network coding algorithm as well as the
kernel implementation of NCDS.

The CDS selection algorithm operates in the control plane,
actively determining which nodes are elected as a relay. In
many cases, CDS algorithms require the exchange of 2-hop
neighbor information which is often a byproduct of the rout-
ing protocol discovery. Protocols like Neighborhood Discov-
ery Protocol (NHDP) [7] actively include 1-hop neighbors in
their hello messages, enabling all neighbors to acquire 2-hop
topology. Once 2-hop neighborhood information is discov-
ered, CDS selection algorithms can be applied to self-elect
and determine if the current node is a relay. If the node is
a relay, a flag is set to enable relaying and if not, the flag is
unset to disable relaying.

In our tests, we used the essential connected dominat-
ing set (E-CDS) algorithm described in [8, 9] to elect the
CDS nodes. E-CDS relays are “self-elected” using a Router
Identifier (Router ID) and an optional nodal metric (Router
Priority). Each node must have a consistent view of their
Router IDs and priorities. The E-CDS self-election process
follows two simple steps: If the node has a higher Router ID
and/or Router Priority than all of its symmetric neighbors,
then it elects itself to act as a forwarded for all received
multicast packets. Otherwise, if there does not exist a path
from the neighbor with the largest Router ID or Router Pri-
ority to any other neighbor, via neighbors with larger values
of Router IDs or Router Priorities, then it elects itself as a
relay node. The E-CDS algorithm is used in OSPF-MDR [8§]
to build a CDS backbone to relay link state advertisements
and has been shown to scale fairly well.

The network coding technique used is similar to [6] in that
relay nodes search through the queue to determine coding
opportunities and uses XOR, functions to encode packets to-
gether greedily. To determine which packets to encode, it is
important to know which neighbors can successfully decode
packets and maximize the opportunities to decode. Two
methods to determine whether a neighbor has packets that
can be used to decode a message are 1) if a neighbor is the



previous hop of the received packet, and 2) if a neighbor is
also a neighbor of another neighbor. In a broadcast medium,
neighbors of neighbors should have a high probability of re-
ceiving all packets sent by the neighbor. In our work, we
assume that all neighbors of our neighbors have successfully
received packets we have received and the NCDS module
maintains a list of all 2-hop neighbors as determined by the
routing protocol.

Packet encoding follows a greedy algorithm to find coding
opportunities by searching among the packets enqueued in
the local FIFO queue. For each sequential packet found in
the queue, a check is performed to see whether all of the
sender’s neighbors can decode the resulting packet if it is
combined with an already existing set of encoded packets.
To ensure that all the neighbors can decode a newly encoded
packet, the reception tables in the packet database are used
to verify that all of the sender’s neighbors have already re-
ceived at least n - I of these packets with high probability.
The reception probabilities can be calculated from link qual-
ity information passed down from higher layer protocols like
NHDP, OSPF, etc. If this decoding rule is not satisfied, then
some neighbors will be unable to decode the packet.

If a packet is deemed safe to encode with the existing
set of encoded packets, it is removed from the queue. The
packet is then handed to the encoding procedure. To encode
the packet with one or more other packets, the encoding
procedure XORs them together to create the payload of the
encoded packet. If the packets are of different length, the
smaller packets are padded with zeros. The network coding
header is modified to reflect the addition of another native
packet to the encoded payload. After all the queues have
been traversed, the resulting encoded packet is sent out.
If no coding opportunities are found the native packet is
transmitted without delay.

When an encoded packet is received by a node, the de-
coder performs a lookup in the packet database for all the
packet ID’s listed in the network coding header. If it can find
n - 1 packets (where n is the number of packets encoded) the
packet can be successfully decoded. To decode the packet,
the decoder XORs the payload of the encoded packet with
the n - I native packets. It then removes the network coding
header from the packet and modifies its EtherType to reflect
the protocol contained in the decoded packet (e.g. IPv4 or
IPv6). If necessary, the decoder removes the zero padding
and adjusts the length of the packet. It then stores the re-
sulting decoded packet in the packet database to help with
future decodings and passes it up the networking stack.

3.1 NCDS Kernel Implementation

In this section, we overview the key components of the
NCDS kernel implementation. The NCDS implementation
builds off the broadcast network coding kernel implemen-
tation [6], leveraging CDS calculations to make forwarding
decisions. The Linux kernel NCDS implementation operates
as a virtual device attached to a physical interface. Fig-
ure 2 illustrates the major functions and a sample packet
flow through the system. As shown in Figure 2, the module
enslaves a physical device and exposes a virtual network de-
vice that routing tables and processes can use to send and
receive data (ncX). The control interface allows user-space
programs to setup and configure the virtual network coded
devices as well as modify various NCDS module state. Pro-
cesses like OLSR [10], OSPF [8], and NHDP [7] are expected

13

Broadcast Network Coding Kernel Packet Flow

iproute2
_R
nc0

MEBCED L

SMF l NHDP/OSPFv3/etc }; Calculate 2-hop

User Space

Kernel Space

ﬂe:ic Netlink
Device and Port Han%g ‘
# TX Handling

TX FIFO Queue
¥ among packets

Devi@ce Qdisc V%ker
queued at device
. Use per packet
Encode A neighbor reception
@ tables to check

whether can

Create NC devices,
add slave ports,
change config via
RT Netlink

2-Hop
Neighborhood

Store all overheard
packets in local 4
database

Packet Database +
Per Packet Neighbor
Reception Tables

Packet
Identification

Look for coding
opportunities

Hash based packet D
identification |- - oo Ao

RX Handling

encode packet
1 Rx ™

Figure 2: Packet Flow Diagram for NCDS Module

to dynamically inject 2-hop neighbor and link quality infor-
mation into the NCDS module so the module knows which
2-hop neighbors are available and can potentially overhear
transmitted packets.

When a packet is received from the physical interface
(eth0) and delivered to the NCDS module, the packet is
first decoded by XOR-ing it with packets that have already
been overheard in the packet database. The resultant packet
is hashed and stored in the database to potentially be used
in another decoding. After decoding the packet and storing
a copy for future use, the packet is delivered up the stack.

Outgoing packets received from higher layers intended for
transmission are first placed in a local FIFO queue and a
copy placed in the packet database. The FIFO queue is
then serviced by a worker thread. For each packet leaving
the FIFO queue, the module’s FIFO queue and the device’s
queues are traversed to check whether the packet being sent
out can be encoded with one or more other packets that
are waiting in the queues. If candidate packets for encoding
are found, they are removed from their places in the queues
and handed to the encoding module. After the packets are
encoded by XOR-ing them together, the resulting packet is
sent to the slave physical device to be transmitted.

The NCDS module handles the receiving of packets that
are received on its slave device and sending of the pack-
ets that are given to it to send by the Linux kernel net-
working stack. It does not perform any packet forwarding.
An external process such as Simplified Multicast Forwarding
(SMF) [9] can be used to forward multicast and broadcast
packets over the ncX interfaces.

To facilitate network coding only at CDS nodes the mod-
ule relies on the forwarding mechanism (SMF) to determine
whether the node should transmit or not. SMF relies on
a routing protocol like OLSR, NHDP, or OSPF-MDR to
send hello messages and calculate CDS and flags (through
shared memory) whether a particular node should relay or
not. When a multicast or broadcast packet arrives at the
SMF process to relay, SMF will read the shared memory
and determine whether to relay or not based on OLSR,
NHDP, or OSPF-MDR’s CDS algorithm. If it is a relay,
it will send the packet down the NC device which will apply
network coding on the outgoing packet. If the node is not
elected as a relay (not in CDS), the packet will not be sent.
In this way, the implementation separates control (CDS al-



gorithm decision) from data flow and allows multiple CDS
algorithms and NCDS coding mechanisms to be employed
independently. More details of the implementation can be
found in [6]

4. PERFORMANCE EVALUATION

In this section, we provide a performance evaluation of
the NCDS implementation under various random and ATN-
relevant topologies [11]. We compare classical flooding (CF),
classical flooding with network coding applied on all nodes
(NCF), CDS reduced flooding based on NHDP’s implemen-
tation of essential connected dominating set algorithm (E-

CDS), and the network-coded CDS algorithm (NCDS). Specif-

ically, we examine aggregate received data rate with vari-
ous number of traffic lows under 10, 20, 30 node random
topologies and a 9 node airborne tactical topology. Aggre-
gate received data rate includes all data intended for the
node as well as relay data. For example, if a node receives
1 Mbps and is the intended recipient, but also receives 1
Mbps to relay, the aggregate received data rate will be 2
Mbps. It does not include duplicate packets received as well
data sourced from the node. All nodes are running SMF
for the forwarding engine with hash-based duplicate packet
detection (DPD) enabled.

To evaluate the NCDS implementation, Common Open
Research Emulator (CORE) [12] was used. CORE emulates
each node using Linux containers with each node having
its own separate network namespace. The topologies are
generated using CORE’s basic range model with 275 meter
transmission range, 0 ms jitter, 20 ms delay, and 0% error.
The topologies are static and the links in the topologies are
stable. Each node’s interface is configured with the token
bucket (TBF) queueing discipline at 1 Mbps with buffer and
limit set to 1600 bytes and 15,000 bytes respectively, effec-
tively making that data rate the transmit capacity of each
node. All the flows are generated using MGEN with packet
sizes of 1300 bytes at 1 Mbps with a periodic interval. Flows
are chosen with random multicast source and all destinations
and last for the duration of the experiment. Since topology
change due to mobility is fairly rare in airborne tactical net-
works [1], we simplify the tests by keeping all nodes fixed
and examining the effects of NCDS on these static topolo-
gies. Future work includes adding mobility and aircraft body
blockage. In the following subsections, we present results of
tests with random and ATN-relevant topologies. All tests
were averaged over 6 runs.

4.1 Random Topology Tests

Our initial tests focused on evaluating NCDS under var-
ious random topologies and traffic loads. Random topolo-
gies were generated in a 1500 meter x 1125 meter rectangle.
Node transmission radius was limited to 275 meters and full
connectivity checked prior to running the tests. In the tests,
we varied the number of random source 1 Mbps multicast
flows from 2 to the number of nodes in the network N and
measured the aggregate data rate received by all nodes.

Figure 3 shows the aggregate data rate received as a func-
tion of the number of number of senders. As expected, pure
CF delivered the lowest amount of traffic as the numbers
of senders increased due to network congestion. With fewer
senders (less than 15), NCF performed well (19-44% more
data delivered than CDS) because many nodes can aid in
coding the data. As the number of flows increase, however,

14

Total Recieved Data Rate vs. Number of Flows
(30 Node Random Topology)

140 T T

120 -

100 |- ; J,,_»:::..“.‘.'.'- -------- ]
.......... 3
8- e T

60
%
a0 <L

20 | Higher is Better 4

Total Received Data Rate (Mbps)

0 I I I I I I I I I I I I I I I
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of 1 Mbps Senders

Figure 3: Total data rate received vs. number of

senders

9 Node Airborne Tactical Topology

Figure 4: 9 node airborne tactical network topology

both E-CDS and NCDS begin to deliver more data than the
other approaches (NCDS 11-23% more than NCF) . The rea-
son for this is that with E-CDS, fewer nodes are relaying,
causing much fewer transmissions overall on the network and
less congestion. The gains of NCDS over E-CDS are fairly
consistent across the range of senders (10-19% better) as
NCDS builds off of E-CDS’s savings. Results for 10 and 20
randomly placed node topologies shows a similar effect.

4.2 Airborne Tactical Network Topology Tests

In this section, we evaluate NCDS over a representative
airborne tactical network topology. Figure 4 illustrates the
topology. There are 3 command and control (C2) aircraft
and 3 groups of 2-ship fighters. The C2 aircraft act as the
relay and backbone for the fighters and all nodes want to
obtain all the multicast traffic. As with the random topology
tests, we increase the number of random source 1 Mbps flows
from 2 to 9 and measure the total received data rate.

Total Recieved Data Rate vs. Number of Flows
(9 Node ATN Topology)

Higher is Better B

! ! ! ! ! ! ! !
2 3 4 5 6 7 8 9
Number of 1 Mbps Senders

Total Received Data Rate (Mbps)
5
T

Figure 5: Total rate received vs. number of senders



No Encoding Observed

("} NCF Encoding Nodes
(") NCDS Encoding Nodes
(") E-CDS Relay Nodes

Figure 6: Breakdown of encoders and relayers in 9
node ATN topology

Figure 5 shows the total received data rate as compared
to the number of senders in the ATN topology. CF, as ex-
pected, delivers the least amount of data because it overruns
the network with data. Oddly, in the ATN topology, E-CDS
performers worse than both NCF and NCDS (5-14% lower
data rate delivered). In fact, NCF seems to perform as good
or better than NCDS in almost all cases. To understand
what’s going on in this test case, it is important to under-
stand which nodes are acting as relays under E-CDS and
which nodes are encoding packets under NCF and NCDS.
Figure 6 highlights these cases. As can be seen, with NCF,
almost all nodes act as encoders and can combine packets
as needed, resulting in significant bandwidth savings. With
NCDS, however, only two nodes encode packets, resulting
in minimal gain compared to E-CDS.

One interesting observation is that the center node (shown
in Figure 6) performs no encoding. The greedy network cod-
ing algorithm employed attempts to ensure that all neigh-
bors can decode packets successfully. Because there are 3
disjoint sets of neighbors, the center node cannot assume any
neighbor has overheard the other neighbor’s transmissions.
As a result, it sends only unencoded packets. Additional
techniques can potentially be explored such as creating two
encoded packets instead of one to satisfy the disjoint neigh-
bor set [13]. These concepts are not explored in this paper.

5. DISCUSSION

Throughout the performance testing, there were several
lessons learned and interesting observations. First, because
network coding takes a packet off the egress queue and codes
it with an outgoing packet, encoding will never take place
until queues start becoming backlogged. For light loads, the
gains of intra-flow network coding are not seen. Second,
in general, N disjoint neighbor sets require N — 1 coded
packets to ensure all neighbors can decode the message. In
the case of the airborne tactical scenario, the center node
never encoded any packets because it had 3 disjoint neighbor
sets and could only send 1 coded packet at a time. Because
it could not ensure all neighbors could decode the packet, it
only send unencoded packets, leading to lack of gains.

Another observation is that under some topologies, run-
ning either E-CDS or NCF was sufficient to provide almost
all the gains. The addition of network coding on CDS re-
lay nodes only provided marginal benefit. In fact, the more
minimal the CDS election algorithm, the less effective NCDS
becomes. CDS selection algorithms attempt to minimize the
overlapping transmissions. In contrast, broadcast network
coding requires overlap to ensure neighbors have overhead
packets to be able to successfully decode. The opposite goals
of CDS and network coding can lead to little to no gains un-
der some topologies and with some CDS algorithms.

15

6. CONCLUSION AND FUTURE WORK

In recent years, there has been a large push in the DoD
and in particular, airborne tactical networks, to maximize
bandwidth efficiency and end-to-end reliability. Traffic on
airborne tactical networks are predominantly multicast. By
leveraging technologies like connected dominating set (CDS)
theory, reductions in relay traffic can be achieved. One is-
sue with using CDS selection is that CDS backbone nodes
suffer from high load. In this paper, we examine leverag-
ing network coding to reduce load from broadcast/multicast
traffic flow on CDS backbones. We introduce and implement
a network-coded connected dominating set (NCDS) kernel
implementation and quantify its performance on several ran-
dom and ATN-relevant topologies.

From the results, it can be seen that applying network
coding to multicast flooding can provide significant gains
to data delivery. However, the gains by applying network
coding to CDS nodes in airborne topologies only give minor
gains over pure CDS and little to no gains over NCF. The
reason is that ATN topologies are oriented in a way that cod-
ing opportunities are not available on CDS backbones. Ad-
ditionally, because CDS theory attempts to minimize node
overlap, and network coding thrives on node overlap, the two
techniques are diametrically opposed. Future work includes
evaluating larger ATN topologies and introducing link loss
and mobility.

REFERENCES
B.-N. Cheng et al., “Design Considerations for

Next-Generation Airborne Tactical Networks,” IEEE
Communications Magazine, May 2014.

R. Ahlswede et al., “Network information flow,” in
IEEE Transactions on Information Theory, 2000.

S. Katti et al., “XORs in The Air: Practical Wireless
Network Coding,” in ACM SIGCOMM, 2005.

L. Li et al., “Network coding-based broadcast in
mobile ad hoc networks,” in IEEE INFOCOM, 2007.
S. Wang et al., “Energy Efficient Broadcasting Using
Network Coding Aware Protocol in Wireless Ad hoc
Network,” in IEEE ICC, 2011.

L. Veytser et al., “A Linux Kernel Implementation of
Broadcast Interflow Network Coding,” in IEEE
MILCOM, 2013.

T. Clausen et al., “Mobile ad hoc network (manet)
neighborhood discovery protocol (nhdp),” IETF, RFC
6130, 2011.

R. Ogier et al., “Mobile Ad Hoc Network (MANET)
Extension of OSPF Using Connected Dominating Set
(CDS) Flooding,” IETF RFC 5614, 2009.

J. Macker et al., “Simplified multicast forwarding,”
Internet Engineering Task Force, RFC 6621, 2012.

T. Clausen and P. Jacquet, “Optimized Link State
Routing Protocol (OLSR),” IETF RFC 3626, 2007.
B.-N. Cheng and S. Moore, “An Evaluation of
MANET Routing Protocols on Airborne Tactical
Networks,” in IEEE Military Communications
Conference, MILCOM 2012, October 2012.

J. Ahrenholz, “Comparison of CORE Network
Emulation Platforms,” in IEEE MILCOM, 2010.

N. Jones et al., “Optimal Routing and Scheduling for
a Simple Network Coding Scheme,” in IEEE
INFOCOM, 2012.

1]

[6]

7]

8]

[9]
(10]

(11]

(12]

(13]





