
Intelligent Street Lighting Clustering

Richard Verhoeven
Eindhoven University of

Technology
P.O.Box 513

Eindhoven, The Netherlands
p.h.f.m.verhoeven@tue.nl

Natasa Jovanovic
Eindhoven University of

Technology
P.O.Box 513

Eindhoven, The Netherlands
n.jovanovic@tue.nl

Johan J. Lukkien
Eindhoven University of

Technology
P.O.Box 513

Eindhoven, The Netherlands
j.j.lukkien@tue.nl

ABSTRACT
The advances in dynamic street lighting introduce new func-
tionality for control and maintenance of the street lighting
infrastructure. Vital elements in this infrastructure are the
powerful controlling devices that control separate groups of
light poles and collect information from the system. For an
infrastructure based on wireless communication, this paper
describes a fast heuristic algorithm for selecting the locations
of these controllers and computing their light poles assign-
ments. In addition, we present the analysis of the simulation
results obtained by testing our algorithm for six street light-
ing networks with real geographic locations of their light
poles.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network topol-
ogy; C.2.1 [Network Architecture and Design]: Wire-
less communication; F.2.2 [Nonnumerical Algorithms and
Problems]: Routing and layout

Keywords
Citywide; clustering; segmentation; street lighting; wireless
network

1. INTRODUCTION
The installation of LED lighting in the street lighting sys-

tem of a city [1] provides considerable energy saving [2]
compared to existing technologies. Since LED technology
supports faster and fine-grained control, the introduction of
LED luminaires enables more advanced dimming regimes,
such as dynamic dimming based on detected activity on the
street. The street lighting infrastructure of a city can con-
sist of hundreds of thousands of light poles, which in order
to implement dynamic lighting control and run intelligent
lighting applications are coupled by outdoor luminaire con-
trollers (OLCs) that enhance the system by providing com-
munication capabilities. Given the size of the street light-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiMobCity’14, August 11, 2014, Philadelphia, PA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3036-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2633661.2633668.

ing network in large cities, the fully centralized approach
of managing such a network is neither desirable nor feasi-
ble. A semi-distributed network as the chosen architecture
introduces bridging devices called cluster controllers (CCs)
between individual light poles and the central management
system of the lighting operator. In this way, the entire net-
work is divided into a number of non-overlapping clusters
of OLCs, where each cluster is managed by one cluster con-
troller.

The size of a cluster of OLCs that can be managed by
a single cluster controller depends on the chosen commu-
nication technology. Due to the application requirements
such as uploading energy consumption statistics, individual
pole control and responding to detected activity, powerline
communication is often not sufficient for the data exchange
among OLCs and between OLCs and cluster controllers [1].
Especially cluster boundaries introduce problems in such a
network. By using wireless communication, the disadvan-
tages of powerline communication with respect to cluster
boundaries are overcome.

Due to mesh networking and multi-hop communication,
the number of OLCs managed by a single cluster controller
can be increased from 140 to 200 for powerline communica-
tion [3, 4] up to 500 to 4000 [5, 6] for wireless communica-
tion. Due to the large number of OLCs per cluster controller,
the number of cluster controllers per city is reduced greatly.
With a small number of cluster controllers, the positioning
of these controllers within a city becomes a complex opti-
mization problem, which should take into account wireless
communication properties like radio range, end-to-end delay,
bandwidth and reliability and hardware robustness. More-
over, the costs of hardware and installation of the cluster
controllers represent usually a significant portion of the total
hardware and installation costs, imposing an additional in-
centive to ensure the number of cluster controllers deployed
is as small as possible.

In general, for a given network of light poles (OLCs), the
street lighting clustering problem addresses three intercon-
nected questions; see Figure 1 for an illustration.

• Q1: In how many clusters should we divide the net-
work?

• Q2: How to assign light poles, i.e., wireless nodes to
clusters?

• Q3: Where to place the cluster controllers?

These questions implicitly lead towards the assumption
that we can define a multi-objective cost function that we

101

Figure 1: An illustration of a manual clustering of
one part of the street lighting network in Eindhoven.

can use to assess a certain clustering regardless of the method
that provided it. However, defining such a function to ob-
jectively quantify a clustering of a network taking into ac-
count all criteria mentioned above represents a challenge on
its own. In this paper, we focus on minimizing the average
end-to-end delay in the clusters of the network, where the
number of clusters is predefined. Hence, we use the average
hop distance between the cluster controller and its OLCs as
an objective measure of the quality of the clustering. In our
current and further work we examine other metrics.

The rest of the paper is organized as follows. We give
the formal problem statement in Section 1.1 and present
the state-of-the-art clustering methods in Section 1.2. In
Section 2 we present the heuristic algorithm that we devel-
oped for the street lighting clustering, as well as the time-
complexity analysis of that algorithm. The results of the
extensive testing of our algorithm in clustering of real street
lighting networks with tens of thousands of nodes are pre-
sented in Section 3. We conclude the discussion in Section 4.

1.1 System model and problem statement
Let P be a set of n outdoor luminaire controllers given

by their geographic locations and let G = (P,E) be a graph
representing the network of OLCs, with the set of nodes
P and the set of edges E, where an edge in E indicates
that its end nodes are within communication range of each
other. The street lighting clustering problem can be formally
defined as follows.

Given graph G, determine the set C = {c1, c2, . . . , ck} of
k cluster controller positions and the assignment A of each
OLC to exactly one of the cluster controllers, such that the
average hop distance between a cluster controller and an
OLC assigned to that controller is minimized.

In general, the positions of the cluster controllers can be
arbitrarily selected inside the area covered by the network.
However, for reasons of simplicity, we restrict the positions
of the cluster controllers to the positions of OLCs.

The clustering problem we defined above is certainly in-
tractable and determining the set of optimal solutions is not

feasible. However, in large scale networks like the street
lighting systems, finding the optimal clustering is not of es-
sential importance, especially because it is very difficult to
measure what is truly optimal in practice. Therefore, our
goal is to find a method that provides a solution that is
sufficiently good in terms of the network performance. This
automatic method is certainly an improvement over the clus-
tering manually done by humans that is based on objectives
such as historic, cultural or administrative divisions, which
are irrelevant for the network performance and reliability.

Although an optimal assignment of OLCs to cluster con-
trollers might be computed using a global algorithm, the ac-
tual assignment of OLCs to cluster controllers should prefer-
ably be done based on local information. In other words, in-
stead of using explicit configuration assignments, each OLC
selects a cluster controller based on information about the
direct neighborhood. In that case, the system can adjust it-
self to cope with changing network conditions, such as OLC
failures, failing network connections or failing cluster con-
trollers.

1.2 Related work
The optimal placement of cluster controllers is related to

the k-means [7] and k-medoids [8] clustering algorithms. The
k-means algorithm selects k centers within an n-dimensional
space, such that the sum of the squared distances between
each data point and its closest selected center is minimal.
Often, the Euclidean distance is used as the distance func-
tion, although it is possible to use arbitrary distance func-
tions. The k-medoids algorithms are similar to k-means,
except that k-medoids selects centers that are actual data
points. Both algorithms start with an initial selection of cen-
ters and update that selection until a fixed point is reached
where no further improvement is possible. The final selec-
tion is a local optimum, with limited guarantees in com-
parison with the global optimum. In particular, the initial
selection can have a significant impact on the performance
of the final solution [9].

To apply the standard k-medoids algorithm in the street
lighting clustering, the Euclidean distance function must be
replaced by a hop distance function, which is either compu-
tationally expensive or requires considerable preprocessing
and an excessive look-up table. The storage size and com-
putation effort to create a complete table of pair-wise dis-
tances based on the shortest path in the given graph quickly
becomes unmanageable for the expected datasets. Using
Floyd-Warshall’s algorithm and the transitive closure algo-
rithm, the storage size would be n×n, while the computation
time would be in the order of n3 ×MaxDistance. An alter-
native would be using the Breadth-First Search algorithm,
which results in a computation time in the order of n× |E|.

When the positions of CCs are restricted to a limited set,
for example due to city regulations, the optimal placement of
cluster controllers becomes an instance of the Facility Loca-
tion problem [10, 11], which is proven to be NP hard. When
the number of feasible positions is small, existing algorithms
for the FL problem can be applied. However, a cluster con-
troller can be placed in a small cabinet and attached to any
light pole, which typically results in a large number of fea-
sible positions, thus affecting the execution time of those
algorithms.

When the hop distance between an OLC and a CC is
restricted to a maximum, the optimal placement of clus-

102

ter controllers becomes an instance of the Dominating Set
problem. Since this problem is also known to be NP hard,
a polynomial exact algorithm is not possible, although ap-
proximation algorithms are available [12].

The selection of CC locations and the assignment of OLCs
is also related to the clustering of wireless sensor networks.
While energy consumption and network longevity represent
no issue in the street lighting networks, there are common
objectives with WSN regarding the clustering process and
the properties of the clusters formed and their cluster heads,
i.e., CCs in our case. The taxonomy of different WSN clus-
tering attributes, as well as a survey of a large number of
WSN clustering algorithms is presented in [13]. Other re-
lated work in this domain includes [14, 15, 16, 17, 18].

Although the street lighting clustering can be regard-ed
as instances of other problems for which there are many ap-
proximation algorithms, the hop distance function used re-
sults in significantly longer execution time compared to the
execution time of the same algorithms when the Euclidean
distance is used. The heuristic algorithm we present in the
next section is designed to deal with the specific constraints
implied by the wireless technology used and moreover, it is
fast enough that on top of it, we can build an interactive
interface that can provide solutions for a given manual in-
put or that can compute multiple metrics that would allow
comparison between different clusterings. In addition, since
the algorithm does not require an extensive preprocessing
step or a large look-up table, it is possible to manipulate
the graph to evaluate different network conditions.

2. STREET LIGHTING CLUSTERING
ALGORITHM

The street lighting clustering algorithm is an iterative al-
gorithm, where in each iteration

1. locations of k cluster controllers are selected, and

2. nodes(OLCs) are assigned to cluster controllers, i.e.,
grouped into clusters, based on the currently selected
locations of cluster controllers.

In more detail, for a selection of cluster controller locations
{c1, . . . , ck}, each node is assigned to the cluster controller
that is on the smallest hop distance from that node. The hop
distances between a specific node and the cluster controllers
can be computed for instance, using Dijkstra’s shortest path
algorithm. Note that this node assignment procedure based
on the shortest hop distance results in the connectedness
of each of the clusters separately. In addition, after the
assignment of nodes to the cluster controllers is completed,
the average hop distance in each cluster is easily computed
since the hop distances are already determined during the
assignment phase.

The set of CC locations in one iteration is selected such
that it represents an improvement over the set of locations
from the previous iteration. More precisely, in the j-th it-

eration of the clustering algorithm, the assignment A(j)
i of

nodes to the cluster controller on location s
(j)
i results in av-

erage hop distance HopDist
(j)
i between the nodes of that

cluster and their cluster controller. Within the set of node
locations of the assignment A(j)

i , we search for a CC loca-
tion that would result in average hop distance of that cluster

being smaller than HopDist
(j)
i . If such a location is found,

Figure 2: The initial selection of cluster controller
locations.

then that location becomes a selected CC location c
(j+1)
i

in iteration j+1, otherwise, the old location is kept, i.e.,

c
(j+1)
i = c

(j)
i . This search for a better cluster controller lo-

cation regarded as an optimization step, is done for all the
clusters in each iteration. The algorithm ends when for none
of the clusters a better CC location can be found.

It is important to note that unlike in the k-medoids al-
gorithms, we do not search for the optimal location of the
cluster controller within the set of nodes assigned to it. A
complete search would require the pair-wise shortest paths
for the nodes within that cluster, which is still computation-
ally intensive. Instead, we search for a better cluster con-
troller location within a limited set of node locations that
includes the centroid of the cluster and the local neighbor-
hood of the current CC location. The search is started by
computing the average hop distance within the cluster if the
cluster controller is placed on the node location that is the
closest to the geographic centroid of the cluster. If this lo-
cation does not provide an improvement, then the search is
continued within the local neighborhood of the current CC
location. This local neighborhood in the beginning consists
of about 25 neighboring nodes and it only gets expanded if
there was no change in CC location in two consecutive iter-
ations of the main loop. Finally, this means that in the last
iteration of the algorithm, the ”local” neighborhood would
expand to the point that it contains all the neighbors of the
cluster controller from the previous iteration.

The initial selection of locations for the placement of clus-
ter controllers can be done in many different ways. While
a random selection of k locations may be the easiest way,
such a selection should be avoided since there are no restric-
tions in the choice of locations. When randomly selected,
the locations may be very close to each other, which would
consequently result in either very slow convergence or a very
uneven clustering. There is a possibility to choose the initial
locations manually, however, for a fully automatic cluster-
ing of the network, we use algorithm 1 that selects locations

103

Figure 3: The clustering of the Washington DC
street lighting network based on Euclidean distance
results in four out of twenty clusters being discon-
nected.

based on the density of nodes in the network that are evenly
distributed on the geographic map.

Algorithm 1 Initial Controllers Placement

function InitialControllersPlacement(P)
Determine the smallest bounding box B of P ;
Split B into m×m rectangular grid;
Determine the k densest unit boxes B1, ..., Bk;
for i← 1 to k do

Find node pc closest to the center of Bi

ci ← pc
end for
return c1, ..., ck

end function

For a set of node locations given by their coordinates in a
geographic map, it is easy to determine the smallest bound-
ing box of that map, i.e., the smallest rectangle that contains
all node locations. The bounding box is then divided into
a rectangular grid by splitting it into m ×m identical unit
boxes (rectangles); see Figure 2. The number of unit boxes
must be at least equal to the number of clusters, thus, the
number m of rows and columns in the rectangular grid is
chosen such that k ≤ m2. For each unit box in the grid,
we determine the number of node locations that it contains.
From the total of m2 unit boxes, we choose the k densest
ones for the initial placement of cluster controllers. More
precisely, the selected k locations are the k node locations
closest to the centers of the densest boxes. Different choice
of the number m of rows and columns in the grid results
naturally in different sets of initial locations for the cluster
controllers. For small values of m, the cluster controllers are
guaranteed to be positioned far from each other. With in-
creasing of m, the density of nodes becomes the dominating

factor allowing the cluster controllers to be positioned close
to each other.

Below we present the pseudo-code of the clustering al-
gorithm. As previously stated, the input of the clustering
algorithm is the connectivity graph G representing the net-
work of n nodes. For a chosen number k of clusters, the
output of the algorithm is the set C of cluster controller lo-
cations and the corresponding assignment A of the nodes to
the cluster controllers. Since the hop distances between a
set of CC locations and all other nodes in G can be com-
puted in O(n + |E|), the worst-case time complexity of the
clustering algorithm is O(k(n+ |E|)).

The final remark in this section we make in order to justify
the use of computationally demanding hop distance metric
instead of a fairly simple Euclidean distance. Namely, af-
ter the selection of initial cluster controller locations, the
clustering based on Euclidean distance would result in a
two-dimensional Voronoi diagram [19] with k Voronoi cells,
which can be computed in O(k log k) time. Determining the
subsets of nodes that corresponds to each Voronoi cell can
be done in O(kn) time, which is practically linear in the
number of nodes, since k � n. However, this clustering can
result in disconnected clusters (see Figure 3), since the small
geographic distance between a cluster controller and a node
does not imply the connectivity between the two. Therefore,
the clustering based on Euclidean distance is not practically
useful in the domain of multi-hop wireless networks.

Algorithm 2 Clustering Algorithm

while Improvement detected do
if C is empty then

C ← InitialControllersPlacement(P)
else

for j ← 1 to k do
Compute the hop sum σ between
node pc closest to the centroid of Aj

and all other nodes in Aj

if σ < HopSum(Aj) then
cj ← pc . Improvement detected

else
Compute local neighborhood N of cj ;
Find a node p̄ ∈ N such that
hop sum σ between that node and
the nodes in Aj is minimized;
if σ < HopSum(Aj) then

cj ← p̄ . Improvement detected
end if

end if
end for
if No improvements and size(N)<max then

Increase size(N) . Improvement detected
end if

end if
Initialize assignments A1, ...,Ak, where cj ∈ Aj

and HopSum(Aj) = 0, j=1..k;
Using a breadth-first search algorithm
starting from c1, ..., ck,
compute for each pi,i=1..n the nearest cj ,j=1..k
and HopDist between pi and its nearest cj ;
Aj ← pi
Increase HopSum(Aj) for HopDist

end while

104

3. SIMULATION RESULTS
Using the clustering algorithm we presented in the previ-

ous section, we derived clusterings of six street lighting net-
works of the cities of Amersfoort, Eindhoven and Rotterdam
in the Netherlands and the cities of Los Angeles, San Diego
and Washington DC in the USA. For these cities, maps with
the GPS coordinates of their light poles are publicly avail-
able, hence, we used them to test our clustering algorithm
and explore the attributes of the computed clusters.

In a real deployment of the street lighting system, objects
like buildings, vehicles and trees influence the communica-
tion range and the actual hop distances between the nodes
can be accurately determined only after the system of OLCs
is deployed. Since the lack of deployments does not allow us
to collect the real data, we calculated the hop distances be-
tween the nodes using a simple radio communication model
with a specific communication range. More precisely, the
connectivity graph G for each of the six cities is determined
assuming the one hop distance to be any Euclidean distance
that is smaller than the given communication range r, i.e.,
E = {e(i, j)| i, j ∈ P, d(i, j) < r}, where d is the Euclidean
distance between a pair of nodes.

From the available datasets on the street lighting loca-
tions, we have extracted the largest connected subsets to test
the clustering algorithm, assuming a communication range
of 300 m (based on measurements using the 868MHz fre-
quency). The clustering algorithm assumes the input graph
(map) to be connected. There are well-known methods to
identify separate connected subgraphs of an arbitrary graph,
and this can be done in a preprocessing step. After the con-
nected subsets are identified, the clustering algorithm can
be used for subsets of size larger than 4000 nodes, since any
smaller subset can be assigned to a separate cluster con-
troller.

The size of the testing datasets ranges from 19448 nodes
in the largest connected subset of the Los Angeles network
to 94713 nodes in the largest connected subset of the Rotter-
dam network. Assuming that a cluster controller can sup-
port a maximum of 4000 nodes, the lower bound kmin on
the number of clusters can be determined for each of the
datasets, i.e., kmin =

⌈
n

4000

⌉
. We used the clustering algo-

rithm to derive clusterings with different numbers of clusters
(cluster controllers), starting from kmin and increasing that
number to at most 2 · kmin. Since increasing the number
of clusters results in decreasing the average cluster size, an
increase of k beyond 2 · kmin would result in the waste of
hardware capabilities and significant increase in all hardware
related costs. In addition, minimizing the number of cluster
controllers while keeping the network operational is one of
the main incentives behind the street lighting clustering.

Table 1: The minimum average hop distance in the
clustering of Los Angeles (19448 nodes)

Clusters Avg hop dist Max cluster size
5 8.23 4584
6 7.36 4646
7 6.71 3869
8 6.42 3869
9 6.10 3461
10 5.70 3137

Figure 4: The average hop distances in cluster-
ings of the street lighting networks of Amersfoort,
Eindhoven, Los Angeles, Rotterdam, San Diego and
Washington DC.

Table 2: The minimum average hop distance in the
clustering of Amersfoort (28666 nodes)

Clusters Avg hop dist Max cluster size
8 3.12 5009
9 3.00 5018
10 2.84 3924
11 2.72 3764
12 2.65 3748
13 2.55 2919
14 2.48 3297
15 2.38 3297
16 2.31 2485

Figure 4 and Table 1-6 present the average hop distances
of different clusterings derived using our clustering algorithm
on the six different datasets. From the results, it is easy
to notice that the average hop distance is a monotonically
decreasing function of the number of clusters. Higher hop
distances in the clusterings of Los Angeles and San Diego
in comparison to the other four cities are the consequence
of larger distances between the light poles. For the cities
of Amersfoort, Eindhoven, Rotterdam and Washington DC,
the algorithm provides clusterings with relatively low av-
erage hop distances, usually around 3 hops with a small
number of cluster controllers.

Table 1-6 also indicates the size of the largest cluster in
the corresponding clustering with the minimum average hop
distance. Although the average cluster size decreases with
increasing the number of clusters, the maximum cluster size
can still be larger in clusterings with more clusters than in
the ones with less clusters. Furthermore, the results indicate
that in many cases some of the clusters are of size larger
than 4000 nodes. This is the consequence of an uneven dis-
tribution of light poles in a city, with the downtown center
typically containing more light poles than residential areas,
parks and industrial zones. Since the clustering algorithm
assigns a light pole to the nearest CC (measured in hops)

105

Figure 5: Two different clusterings of the street lighting network of Los Angeles, as a result of two different
initial sets of 7 cluster controller positions.

Table 7: Total execution time and execution times of separate phases of the clustering algorithm given in
seconds and computed as an average over different number of clusters.

Pole First Iteration, Iteration, Iteration, Avg. Total
City Poles Edges assign. iteration |N |=25 |N |=100 |N |=400 #iter. execution

Los Angeles 19448 1149374 0.009 0.020 0.155 0.407 0.376 14.80 3.68
Amersfoort 28666 8168068 0.028 0.438 0.919 3.343 9.641 16.33 51.27
San Diego 33136 2246090 0.017 0.045 0.297 0.793 2.265 16.50 10.69
Eindhoven 50516 12964066 0.040 0.735 1.300 4.655 12.791 16.86 67.49

Washington DC 66094 10835358 0.064 0.455 1.568 5.627 10.198 22.96 105.76
Rotterdam 94713 28659169 0.131 1.561 3.909 13.784 44.479 21.79 345.83

Table 3: The minimum average hop distance in the
clustering of San Diego (33136 nodes)

Clusters Avg hop dist Max cluster size
9 9.05 7242
10 8.73 5450
11 8.23 5277
12 7.88 5390
13 7.61 5823
14 7.32 5012
15 7.01 5025
16 6.85 5025
17 6.66 5030
18 6.50 5004

regardless of the cluster size, large clusters are formed in
the dense city areas. It is a matter of future work to inves-
tigate how the restrictions on cluster size would affect the
average hop distance. Another related question that rises
is the one of comparing visually quite different clusterings
with a marginal difference in average hop distance, like the
two clusterings in Figure 5. Future research should identify
all metrics relevant to the network clustering, in which case
we could give objective assessments of different clusterings
considering multiple metrics.

Finally, in Table 7 we present the average execution times
of different phases of the clustering algorithm measured in
seconds, obtained by running the clustering algorithm on a
PC with an i5 processor on 3.2 GHz and a cache of 4 MB.
The average is computed over all computed clusterings of
one city for different number of clusters. As indicated ear-
lier, the execution times are proportional to the number of

Table 4: The minimum average hop distance in the
clustering of Eindhoven (50516 nodes)

Clusters Avg hop dist Max cluster size
13 3.34 6019
14 3.24 6126
15 3.15 5742
16 3.08 4379
17 2.94 4191
18 2.90 4454
19 2.82 4441
20 2.73 3320
21 2.69 3717
22 2.67 3837

edges in the graph. For example, this can be seen in com-
parison of the execution times for the cities of Amersfoort
and San Diego. Although Amersfoort has nearly 4500 nodes
less than San Diego, the number of edges is more than 3.5
times larger, resulting in considerably larger execution times
of separate iterations and consequently, 5 times larger total
execution time, where the average number of iterations for
both cities is the same. More importantly, the results indi-
cate short running times of the pole assignment phase and
the first iteration of the clustering algorithm, the former be-
ing mostly under 100 msec and the latter mostly under 1
sec, with slightly larger values obtained only for the Rotter-
dam dataset. As expected, the optimization phase takes the
largest part in the total execution times, where the running
of an iteration including the local search within 400 neigh-
bors can take up to 12 times more time than the running
of an iteration with the local search within 25 neighbors.

106

Table 5: The minimum average hop distance in the
clustering of Washington DC (66094 nodes)

Clusters Avg hop dist Max cluster size
17 4.28 5396
18 4.18 5401
19 4.05 5397
20 3.93 5409
21 3.86 5331
22 3.79 5295
23 3.73 5161
24 3.65 4530
25 3.56 5327
26 3.50 5165

Table 6: The minimum average hop distance in the
clustering of Rotterdam (94713 nodes)

Clusters Avg hop dist Max cluster size
24 3.37 7034
25 3.30 6264
26 3.18 6264
27 3.11 6264
28 3.07 6415
29 3.05 6415
30 3.01 5837
31 2.90 4736
32 2.87 5173
33 2.84 5173

Our tests also showed that 70 − 90% of the time is spent
on achieving an improvement in average hop distance of less
then 2%, and in rare situations this improvement can be
at most 10%. In other words, increasing the size of the lo-
cal neighborhood beyond 25 neighbors does not result in a
significant improvement in the average hop distance. Using
small neighborhoods for the local search reduces the total
execution time to just a few seconds. Short running time al-
lows the clustering algorithm to be incorporated in an inter-
active tool that can be used to compute any desired number
of clusterings and provide insights into the network perfor-
mance that is essential in the planning and deployment of
the intelligent street lighting system.

To verify the efficiency of the presented algorithm, the
performance is compared with an implementation of the k-
medoids algorithm in C, for which several metrics are pre-
sented in Table 8. For the construction of the pair-wise dis-
tance table, the breadth-first search algorithm is used which
has a complexity n×|E|. For the selected datasets, the exe-
cution time for table construction varies from a few minutes
to several hours, which is not suitable for the earlier men-
tioned interactive tools. The presented table size is based
on distance values that can be represented with single bytes.
For hop distances, that representation is sufficient for the se-
lected datasets. In the implemented k-medoids algorithm,
every iteration will search and select the best cluster con-
troller from each cluster. The computation time for each
iteration depends on the number of clusters and its com-
plexity is in the order of k×n+n2/k (under the assumption
that clusters have similar sizes). Since k is selected based
on the average number p of poles per cluster, the complexity

can be rewritten to n2/p + n × p. The execution times for
the iterations are presented for the two extreme values for
k. Since the execution times are independent of the number
of edges, the performance is more predictable. The average
number of iterations is determined by selecting random sets
of k initial cluster controllers and applying the k-medoids al-
gorithm to determine a stable local optimum solutions. The
number of iterations in this implementation is smaller than
the number of iterations in the algorithm we suggested in
Section 2, which can be addressed to the faster convergence
of the full search. The average execution time is based on the
same data as the average number of iterations. Although the
execution time for the optimization part of the k-medoids al-
gorithm is better, the execution time for the construction of
the pair-wise distance table should be included in overall
execution time of the algorithm. With information about
the mode of operation, it is unclear how often the computed
distance table can be reused. When the graph changes reg-
ularly, the reuse of the table will be limited.

For an interactive tool where an engineer or architect is
exploring the possible solutions for different network con-
figurations, the original k-medoids algorithm is less suitable
due to excessive preprocessing step to compute the pair-wise
distance table. In addition, the distance table results in se-
rious hardware requirements, especially when the method
should be applied to even larger cities. The suggested al-
gorithm has no excessive memory requirements other than
the input graph and no preprocessing steps other than load-
ing the graph or computing it. In an interactive tool, the
algorithm is able to present results immediately after it is
started.

4. CONCLUSION
To allow dynamic control and monitoring of the intelligent

street lighting, the network of wirelessly connected luminaire
controllers must be divided into clusters managed by cluster
controllers for which the suitable locations should be chosen.
As a solution to this challenging optimization problem, we
presented a fast heuristic algorithm that uses average hop
distance in the clusters as an objective metric of the network
performance to compute a clustering with a given number of
clusters. The short execution times measured when running
the algorithm on six street lighting networks of different size
and topology indicate that the algorithm is applicable in
practice.

5. REFERENCES
[1] C. Atici, T. Ozcelebi and J. J. Lukkien, Exploring

user-centered intelligent road lighting design: a road
map and future research directions. Consumer
Electronics, IEEE Transactions on, vol.57, no.2, pp.
788–793, 2011.

[2] E-streetlight Project Guide for energy efficient street
lighting installations, 2007.
http://www.e-streetlight.com/Documents/Homepage

[3] Philips LFC7065 Segment Controller, 2010.
http://www.lighting.philips.com/pwc li/
main/products/controls/assets/lfc7065ds.pdf

[4] Echelon CPD 3000 Outdoor Lighting Controller 2013.
https://www.echelon.com/products/
components/docs/CPD 3000.pdf

[5] Tvilight Tvilight Intelligent Street Lighting, 2013.

107

Table 8: Execution time for the k-medoids algorithm given in seconds and computed as an average over
different number of clusters.

Table Table Iteration Iteration Avg. Avg.
City Poles constr. size k = bn/2000c k = bn/4000c #iter. execution

Los Angeles 19448 0:02:25 360 MB 0.052 0.108 7.86 0.58
Amersfoort 28666 0:15:45 784 MB 0.086 0.143 7.33 0.81
San Diego 33136 0:07:27 1.02 GB 0.098 0.169 11.93 1.49
Eindhoven 50516 0:41:09 2.48 GB 0.154 0.256 8.11 1.59

Washington DC 66094 1:06:41 4.07 GB 0.253 0.415 10.96 3.35
Rotterdam 94713 3:51:22 8.35 GB 0.341 0.557 10.53 4.45

http://www.tvilight.com/wp-
content/uploads/2013/09/tvilight-brochure-en.pdf

[6] Philips LFC7300 Starsense Wireless Segment
Controller Kit Datasheet, 2012.
http://www.lighting.philips.com/pwc li/main/
products/controls/assets/sc-kit-lfc7300-datasheet.pdf

[7] J. B. MacQueen, Some methods for classification and
analysis of multivariate observations. Proc. of 5th
Berkeley Symposium on Mathematical Statistics and
Probability, pp. 281–297, 1967.

[8] L. Kaufman and P. J. Rousseeuw, Clustering by means
of Medoids. Statistical Data Analysis Based on the
L 1–Norm and Related Methods, ed. Y. Dodge,
North-Holland, 405–416, 1987.

[9] J. M. Peña, J. A. Lozano and P. Larrañaga, An
empirical comparison of four initialization methods for
the K-Means algorithm. Pattern Recognition Letters,
vol.20, Issue 10, pp. 1027–1040, 1999.

[10] H. Pirkul and V. Jayaraman A multi-commodity,
multi-plant, capacitated facility location problem:
formulation and efficient heuristic solution.
Computers & Operations Research, vol.25, Issue 10,
pp. 869–878, 1998.

[11] S. Li, A 1.488 approximation algorithm for the
uncapacitated facility location problem. Information
and Computation, vol.222, pp. 45–58, 2013.

[12] F. V. Fomin, D. Kratsch and G. J. Woeginger, Exact
(exponential) algorithms for the dominating set
problem. Graph-Theoretic Concepts in Computer
Science, Lecture Notes in Computer Science vol.3353,
pp. 245–256, 2005.

[13] A. A. Abbasi and M. Younis, A survey on clustering
algorithms for wireless sensor networks. In Computer
Communications 30(14), pp. 2826–2841, 2007.

[14] S. Banerjee and S. Khuller, A clustering scheme for
hierarchical control in multi-hop wireless networks. In
Proc. of IEEE INFOCOM 2001, Twentieth Annual
Joint Conference of the IEEE Computer and
Communications Societies, vol. 2, pp. 1028–1037, 2001.

[15] E. Ilker Oyman and C. Ersoy, Multiple sink network
design problem in large scale wireless sensor networks.
In Proc. of IEEE Intl. conf. on Communications, vol.
6, pp. 3663–3667, 2004.

[16] K. Akkaya, F. Senel and B. McLaughlan, Clustering of
wireless sensor and actor networks based on sensor
distribution and connectivity. Journal of Parallel and
Distributed Computing, 69(6), pp. 573–587, 2009.

[17] F. G. Nocetti, J. S. Gonzalez and I. Stojmenovic,
Connectivity based k-hop clustering in wireless
networks. Telecommunication systems, 22(1-4), pp.
205–220, 2003.

[18] S. Yang, J. Wu and J. Cao, Connected k-hop
clustering in ad hoc networks. In Proc. of IEEE Intl.
conf. on Parallel Processing, pp. 373–380, 2005.

[19] M. de Berg, M. van Kreveld, M. Overmars and
O. Schwarzkopf, Computational Geometry: Algorithms
and Applications. Springer, 2000.

108

