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ABSTRACT
Information and communication technology (ICT) infras-
tructure plays an important role to realize the full poten-
tial of Smart Grid applications. Smart grids utilize ICT
entities to enhance efficiency, reliability and sustainability
of power generation and distribution network. Majority of
the architectures proposed hitherto focus only on a specific
architectural aspect, like communication, storage, process-
ing requirement, etc. Recent studies have shown that lack of
knowledge on which architecture best satisfies certain infor-
mation management requirements has hindered large scale
smart grid deployments. In this paper, we investigate the
cost-benefit analysis of four data processing architectures
for various applications in smart grid. We introduce several
key cost indicators to analyze hierarchical data processing
architectures for the smart grid. In our evaluation, we con-
sider realistic deployments for both dense and sparse envi-
ronments. Results reported here are significant for smart
grid designers, who can use them to discern the architecture
that best fits the system requirements.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General - Sys-
tem architectures; I.6.3 [Simulation and Modeling]: Ap-
plications

Keywords
Data Processing, Distributed Information Systems, Smart
Grid, Cost-Benefit Analysis

1. INTRODUCTION
Smart Grid (SG) takes advantage of communication and

control technologies to integrate the power infrastructure
with an information infrastructure [1]. The power infras-
tructure comprises of an interconnected network of power
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systems that carries electricity from power plants to con-
sumers. The various actors in power infrastructure includes
generators, distributors, transformers, circuit breakers, etc.
The information infrastructure comprises of ICT objects to
measure and control power infrastructure and thus, support-
ing reliable and robust operation of the grid. The informa-
tion infrastructure supports sensing, computation, control
and information exchange capabilities. Actors in smart grid
operate autonomously, but need to communicate with other
actors to balance energy supply and demand. Smart grid
is an ensemble of several applications such as demand re-
sponse, demand forecast, emergency management, anomaly
detection, adaptive pricing, etc. A fundamental building
block for all these applications is Advanced Metering In-
frastructure (AMI) - a system that measures, collects and
analyzes data about energy usage [2].

Wireless Sensor Networks (WSNs) with sensing, computa-
tion, communication and control capabilities are widely be-
ing deployed to monitor energy consumption of consumers.
Bidirectional communication between these devices and util-
ity providers can provide immediate feedback on power us-
age, power quality, pricing details to the customers. An es-
timate from a utility provider indicates 22 gigabytes of data
being generated every day from its 2 million customers [3].
The overwhelming data generated by smart meters call for
developing information management mechanisms for large
scale data storage and processing. While there have been
deployments of SG (e.g., Grid4EU1 and SmartWatts2) with
a few participants, the design of suitable architecture to sup-
port envisaged SG applications on a large scale is an impor-
tant research topic currently [4], [7].

In this paper we provide comprehensive insights about
which architecture best satisfy certain information manage-
ment requirements, such as the accuracy and granularity of
collected data, or the privacy level. In particular, (i) we
model different data processing architectures (centralized,
decentralized, distributed and hybrid) for hierarchical power
distribution networks; (ii) we consider realistic SG deploy-
ments in both dense (i.e., urban) and sparse (i.e., rural)
environments; (iii) we introduce and model several key cost
indicators, such as energy consumption, processing power,
storage requirements, communication bandwidth, accuracy
and privacy; (iv) we provide a detailed cost-benefit analysis
of the proposed architectures, which Smart grid designers
can use to select the architecture that best fits their require-
ments.

1 http://www.grid4eu.eu/ 2 http://www.smartwatts.de/
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The remainder of the paper is organized as follows. Sec-
tion 2 describes the related literature. Section 3 outlines the
different data processing architectures proposed and Sec-
tion 4 describe various key cost indicators considered for
evaluation. Section 5 presents our evaluation setup and sim-
ulation parameters considered. We describe the performance
results of each architecture and cost-benefit analysis in Sec-
tion 6 and our conclusions are presented in Section 7.

2. RELATED WORK
The majority of architectures proposed hitherto focus only

on a specific architectural aspect, like communication or
storage or processing requirement. In recent SG deploy-
ments, smart meters collect data at an interval of 5 to 15min
compared to traditional way that only records the meter
data once a month [2]. Data values obtained as an average
over a 15 minute interval may not be sensitive to realize con-
cepts such as advanced distribution automation, asset man-
agement, and appliance energy disaggregation [5]. Thus,
smart meters in the near future may well measure values
every 30 s, posing a significant challenge in processing and
storage of huge amount of data generated.

A secure decentralized data-centric information infrastruc-
ture for the SG is proposed in [6]. Kim et al., describe
challenges in low latency communication protocols, and se-
curity mechanisms for SG. Balancing supply and demand
is mapped to constraint satisfaction problem and evaluated
using a decentralized hierarchical architecture in [7]. Cloud
based SG information management model is proposed in [8]
and [9], along with a discussion on key challenges. The fo-
cus on cloud computing approaches is to provide adequate
resources for the SG. In contrast with the above works, in
this paper we not only propose and analyze several archi-
tectures, but we also model important key cost indicators
such as energy, communication, storage, processing, accu-
racy and privacy based on the physical topology of the grid.
Cloud based Demand Response (CDR) architecture using
a distributed information infrastructure is proposed in [10].
Scalability aspects of data storage and processing of monthly
bills in SG is investigated in [11]. Several data storage mech-
anisms like centralized relational database, distributed rela-
tional database and file systems are compared and evalu-
ated. Similarly, scalability aspects of data communication
for AMI application in SG is investigated in [4]. Zhou et
al., study how communication cost scales with the number
of smart meters and sampling frequency.

A comparison of centralized and distributed monitoring
architectures for billing and demand response applications
is proposed in [12]. Martinez et al., explore the potential
benefits of having distributed architectures compared with
centralized ones. In [12], authors evaluate the proposed
architectures by considering a fixed number of houses. In
comparison, our work improves on the existing literature to
provide a comprehensive analysis of various data processing
architectures with realistic environments viz, urban and ru-
ral environments. We consider accuracy and privacy cost
indicators to provide a detailed cost-benefit analysis along
with other cost indicators like energy, communication, stor-
age, and processing. Thus we provide a holistic approach
to model and analyze all key cost indicators in urban and
rural environments. The proposed models and cost-benefit
analysis are generic and can be applied to any smart grid
deployment.

3. DATA PROCESSING ARCHITECTURES
The current topology of the power distribution network

is arranged according to the voltage [13]. The distribution
network is organized into multiple subgrids and consequently
forming a hierarchical topology. In this paper, our architec-
tural model adopts hierarchical topology of the power dis-
tribution networks. The key elements of our architectural
model are the following.

Home Area Nodes (HANs)- are devices interconnected
with the smart meter at the consumer premises. HAN re-
ceives energy consumption information from all appliances
in the household and can employ mechanisms or receive in-
formation to match supply and demand at the household
level.

Neighborhood Area Nodes (NANs)- act as an interme-
diate node between consumers and utility providers, and it
serves a small geographical area, i.e., a neighborhood con-
sisting of several houses. NAN receives information from
the households within the neighborhood. Multiple NANs
are deployed to cover utility’s territory.

Utility Control Unit (UCU)- are the central control en-
tity of utility providers. This node is responsible for billing,
maintaining data, determining electricity price and carrying
out demand response. UCU acts as the root node in our
architectural model.

Design Choices
In our architectural model, the HANs at each household pe-
riodically senses energy consumption and transmits to the
respective NAN. NANs act as the intermediate node be-
tween HANs and UCU. Communication between HANs and
NANs is based on sub − 1GHz transceivers which are best
suited for both indoor and outdoor environments [14]. The
interconnection between NANs and UCU is based on IEEE
802.16 (WiMAX) which supports a maximum data rate up
to 1 Gbps. The communication choice in this work is sup-
ported by some of the recent works [4], [13]. It should be
noted that, the analysis in this paper can be further applied
to any communication technology.

Data aggregation at the nodes can minimize the overall
data communicated and also help in preserving sensitive
information of customers. Three major data aggregation
mechanisms considered in literature are:
a) Time-wise aggregation: where consecutive time-stamped
energy consumption readings are aggregated to reduce the
granularity of the data collected.
b) Value-wise aggregation: where similar energy consump-
tion readings are bucketed to obtain discrete energy readings
and thus reducing number of readings.
c) Consumer-wise aggregation: where the energy consump-
tion values of several individual customers are aggregated
into one time series to obfuscate the consumption of each
individual customer.

In this work, we consider only time-wise data aggrega-
tion with different granularity. UCU can acquire informa-
tion from the households by initiating a query and nodes
can respond to the query depending on their roles. Based
on the data aggregation, processing and storage capabilities
of HANs, NANs and UCU, different architectures are pro-
posed. By default, all nodes can send and receive a message,
which is the minimum capability assumed at each node. The
storage and processing icons in the Fig. 1, shows the addi-
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Figure 1: Data processing architectures for the smart grids.

tional capability available at each node depending on the
architecture.

3.1 Centralized Architecture
In centralized architectures as illustrated in Fig. 1a, only

the UCU has data processing and storage capability. HANs
periodically sense and transmit the energy consumption val-
ues to the respective NANs. NANs act as relays and forward
it to the UCU. UCU has all the information and is responsi-
ble for processing and storage of the data. Thus, the infor-
mation flow is uni-directional from HANs to UCU via NANs.
No data aggregation is applied in centralized architecture.

3.2 Decentralized Architecture
In this architecture, only NANs have data processing and

storage capabilities as shown in Fig. 1b. HANs transmit
data periodically to the respective NAN similar to the cen-
tralized architecture. Instead of forwarding the data, NAN
stores and processes this data locally. In decentralized archi-
tectures, since all data is available at the NAN, fine grained
data aggregation is possible. NANs can aggregate hourly
energy consumption and report to UCU. UCU generates
queries to retrieve information from the NANs only when
required. Thus, NANs act as central entities in this archi-
tecture.

3.3 Distributed Architecture
In distributed architectures, all HANs have data process-

ing and storage capabilities. HANs periodically sense and
store the energy consumption values locally. UCU initiates
a query to fetch data, which is forwarded to the NAN and
in turn to the HANs. HANs process the query and send
the reply to UCU via NAN. Thus, making the architecture
completely distributed as illustrated in Fig. 1c. HANs are
assumed to have sufficient data storage and processing ca-
pability and communicate only upon reception of a query.

3.4 Hybrid Architecture
In hybrid architectures, HANs and NANs both have data

processing and storage capabilities as shown in Fig. 1d. Hy-
brid architectures are extension of distributed architectures,
where HANs not only sense and store but also transmit ag-
gregated energy values to NANs. For instance, HANs can
sense and store energy values periodically and at the end of
the day send an aggregate energy consumption reading to
the NAN. The data aggregation granularity may vary de-
pending upon the applications considered.

4. COST INDICATORS
Architectures proposed in the previous section are charac-

terized based on the availability of data storage and process-
ing capabilities at the node, hence monetary costs of a node
needs to be modeled in architecture evaluation. Data aggre-
gation is employed by architectures to reduce the amount of
data communicated as well as increasing the privacy of the
customer. However, data aggregation results in decreased
accuracy, since the UCU might need to disaggregate energy
readings that have been aggregated over time by the HAN
or the NAN. The trade-off between accuracy and privacy
cost as a function of data aggregation granularity provides
a key insight in the design of architectures. Our cost-benefit
analysis hence considers monetary cost, accuracy and pri-
vacy as the key cost indicators to evaluate the performance
of proposed architectures.

4.1 Monetary cost
Monetary cost CM is the cost (in $) to deploy and operate

the nodes in the architecture (HANs, NANs, UCU).

CM = CD + CO. (1)

The deployment cost CD is a one-time cost that accounts for
the deployment of storage, processing and communication
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capacity.

CD = CS + CP + CT , (2)

where CS is the cost of storage, CP is the cost of the pro-
cessing units, and CT is the cost of the transceivers.

The operational cost CO is the cost incurred for the oper-
ation of the entire network for one month period.

CO = Etotal · fE , (3)

where Etotal is the average energy (in Joules) required by all
nodes to be operational for a period of one month, and fE
is the price of energy (in $/Joule), which is assumed to be
constant.

Apart from these factors, the deployment and operational
cost may include other factors such as cooling, sensors, pe-
ripherals and maintenance, which are not considered in our
cost modeling. The components of CD and CO are described
in detail in the following sections.

4.1.1 Energy consumption
The energy required for the operation of the entire net-

work (expressed in Joules, J) includes the various activities
the nodes can perform, such as reading from and writing
into the storage, communicating, processing, etc. Energy
consumption is calculated for the duration of one month.
The energy consumed by a HAN is given by,

EHAN = EH→N
t + EH

r/w + EH
p , (4)

where EH→N
t is the energy consumed for communication,

EH
r/w is the energy consumed for reading from and writing

into the storage, and EH
p is the energy consumed for pro-

cessing.
The energy consumption for communication is,

EH→N
t = eH→N

tx ℓH→N
tx + eH→N

rx ℓH→N
rx , (5)

where eH→N
tx (eH→N

rx ) is the energy required for transmis-
sion (reception) of one byte of information between HAN
and NAN, and ℓH→N

tx (ℓH→N
rx ) is the length in bytes of the

messages that have been transmitted (received) by the HAN
in one month. The energy consumption due to storage is de-
fined as,

EH
r/w = eHr ℓHr + eHw ℓHw , (6)

where eHr (eHw ) is the energy required to read (write) one
byte of information, and ℓHr (ℓHw ) is the length in bytes of
the messages that have been read from (written into) the
storage in one month. Finally, the energy consumption of
processing is defined as,

EH
p = eHp nH

p , (7)

where eHp represents the energy required for processing a
byte of information at HAN, and nH

p is the number of pro-
cessed bytes.

Similarly, energy consumption for a NAN is given by,

ENAN = EH→N
t + EN→U

t +EN
r/w + EN

p , (8)

where EH→N
t is the energy consumed for communication

between HANs and NANs, EN→U
t is the energy consumed

for communication between NANs and UCU, EN
r/w is the

energy consumed for reading from and writing into the stor-
age, and EN

p is the energy consumed for processing. These

terms are defined as,

EH→N
t = eH→N

tx ℓH→N
tx + eH→N

rx ℓH→N
rx

EN→U
t = eN→U

tx ℓN→U
tx + eN→U

rx ℓN→U
rx

EN
r/w = eNr ℓNr + eNw ℓNw

EN
p = eNp nN

p .

(9)

Finally, for the UCU we have,

EUCU = EN→U
t +EU

r/w + EU
p . (10)

The terms EN→U
t (energy consumption for communication),

EU
r/w (energy consumption for storage reading/writing) and

EU
p (energy consumption for processing) are defined as,

EN→U
t = eN→U

tx ℓN→U
tx + eN→U

rx ℓN→U
rx

EU
r/w = eUr ℓ

U
r + eUwℓ

U
w

EU
p = eUp n

U
p .

(11)

Thus, the total energy consumption for the entire network
in a month is,

Etotal = EUCU +
∑

i∈N

ENAN(i) +
∑

j∈M

EHAN(j), (12)

where N is the set of NANs and M is the set of HANs in
the network.

4.1.2 Communication
The communication cost accounts for the data rate (ex-

pressed in bits per second, bps) needed to transmit data
from a HAN to the UCU through a NAN. Data rate for a
HAN is expressed as,

THAN =
8 ℓH→N

m

tH→N
, (13)

where ℓH→N
m is the length of the message that has to be

transmitted from the HAN to the NAN, and tH→N is the
time period within which a HAN needs to transmit its in-
formation to the NAN. Given THAN, the resulting monetary
cost for communication at HAN j is,

CT (j) = THAN · fT (THAN), (14)

where fT (·) is a non-linear function that models the cost of
bandwidth (expressed in $/bps). Similarly, data rate for a
NAN is expressed as,

TNAN =
8 ℓN→U

m

tN→U
. (15)

The resulting monetary cost for communication at NAN i
is,

CT (i) = TNAN · fT (TNAN). (16)

Therefore, the total communication cost required for trans-
mission between HANs to NAN and NANs to UCU is ex-
pressed as,

CT =
∑

i∈N

CT (i) +
∑

j∈M

CT (j). (17)

4.1.3 Storage
The storage cost accounts for the total amount of storage

capacity (expressed in bytes) required by the node. The
storage cost depends on the sampling interval τ and the
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time duration∆ T for which storage is needed. Thus, the
storage requirement for a node k is expressed as,

Sk = ∆T
ℓm
τ

, (18)

where ℓm indicate the length of a message. Depending on
the architecture selected and application requirement, ℓm
and τ varies for each HANs, NANs and UCU. Given Sk, the
resulting monetary cost for storage at node k is,

CS(k) = Sk · fS(Sk), (19)

where fS(·) is a non-linear function that models the cost of
storage (expressed in $/byte).

Thus total storage cost of the network for one month is
given as,

CS = CS(UCU) +
∑

i∈N

CS(i) +
∑

j∈M

CS(j). (20)

4.1.4 Processing
The processing cost accounts for the number of opera-

tions (ops) required to respond to a query received at the
node. The in-node operations to respond to a query includes
mainly arithmetic and relational operations. Processing cost
depends on the number of messages to be processed and
number of operations to be performed based on the query.
The processing cost at node k calculated for one month is
expressed as,

Pk =
∑

q∈Q

nm · nq , (21)

where Q is the set of queries generated in the network, which
depends on the supported applications, nm is the number of
messages to be processed and nq represents the number of
operations to be performed for query q. These values depend
on the architecture selected, the types of query and the node.
Given Pk, the resulting monetary cost for processing at node
k is,

CP (k) = Pk · fP (Pk), (22)

where fP (·) is a non-linear function that models the cost of
processing (expressed in $/ops).

Thus total processing cost of the network for one month
is given as,

CP = CP (UCU) +
∑

i∈N

CP (i) +
∑

j∈M

CP (j). (23)

4.2 Accuracy cost
As mentioned before, in order to reduce storage and com-

munication, a possible strategy is to do a time-wise aggrega-
tion of consecutive energy readings. In this way, an original
time-series X of n readings is reduced to a smaller time-
series Y of length m, (where m < n) by aggregating each
k consecutive values in X into a single value y in Y . How-
ever, certain applications may need to restore the original
time series X from Y , using a disaggregation algorithm. The
restored time-series X̂ may differ from the original one, X.

Accuracy is therefore an important measure of how ac-
curately the original data can be retrieved from aggregated
data. We utilize Normalized Root Mean Square Error (NRMSE)
as our accuracy cost. Let xt ∈ X be the real energy con-
sumption value of a HAN j at time t, and x̂t ∈ X̂ the energy

consumption value that has been inferred through the dis-
aggregation algorithm. The NRMSE is expressed as,

NRMSE(j) =
RMSE(j)

xmax − xmin
, (24)

where xmax and xmin are the maximum and minimum real
energy consumption values of X, and

RMSE(j) =

√∑n
t=1 (xt − x̂t)

2

n
. (25)

The accuracy cost CA is therefore defined as the average
NRMSE among all the HANs. Formally,

CA =
1

|M|
∑

j∈M

NRMSE(j). (26)

4.3 Privacy cost
Although the compression of the original time-series X

into Y through time-wise aggregation reduces the accuracy
of the restored time-series X̂, it also enhances the customer
privacy. In fact, Y can be considered as an obfuscated ver-
sion of X. To quantify the privacy of the aggregation of k
consecutive values into a single aggregated value y, we use
Shannon entropy [15] associated with the disaggregation of
y into k values. In general, higher the entropy, the higher is
the customer privacy. The entropy of a system with S states
is expressed as,

H(y) =
∑

s∈S

−p(s) · log(p(s)), (27)

where p(s) is the probability that the system is in state s.
In our case, S is the set of all possible disaggregations, i.e.,
all the possible ways a value y can be split into k values such
that the sum of the k values equal y. The number of possible
disaggregations (i.e., the state space size |S|) is called weak
integer composition of y into k parts, and it is computed as,

|S| =
(
y + k − 1
k − 1

)
=

(y + k − 1)!
(k − 1)! · y! .

Assuming that each disaggregation of y into k values has the
same probability, we can rewrite Eq. (27) as,

H(y) = log (|S|) . (28)

The average entropy of the aggregated time-series Y of HAN
j is,

H(j) =

∑
y∈Y H(y)

|Y | . (29)

Thus, the privacy cost CH of a data processing architecture
is defined as,

CH = − 1
|M|

∑

j∈M

H(j). (30)

In the next section we present our evaluation setup and
simulation parameters considered.

5. EVALUATION SETUP
Applications in SG have different data requirements, which

imply different data acquisition queries generated by the
UCU. In our evaluation we consider Billing and adaptive
pricing (BAP), Demand Response (DR), Demand Forecast
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Table 1: Queries generated (E=energy consumption)

Queries generated BAP DR DF EM

E / 10 seconds X X
E / 30 seconds X X
E / 15 minutes X X X

E / hour X X
E / day X X X X

E / month X X X
(Min, Max, Avg)E / day X X

(Min, Max, Avg)E / month X X

(DF) and Emergency Management (EM) applications. The
requirements of the applications considered for our cost-
benefit analysis are described in Table 1.

Billing and adaptive pricing (BAP). In the future,
utility providers will be able to bill consumers based on the
real-time demand-supply balance. Consumers will also get
real-time pricing information in order to alter their energy
demand. Thus, queries related to minimum, maximum and
average energy consumption, as well as hourly and monthly
energy consumption are generated by UCU for this applica-
tion.

Demand-response (DR). DR strategies are designed to
reduce or shift energy consumption from peak periods to off-
peak periods. Thus, energy consumption readings at high
frequency during peak periods and low frequency consump-
tion readings at off-peak periods are required to envisage
DR.

Demand forecast (DF). Demand forecast algorithms can
assist utility providers towards efficient distribution of elec-
tricity and better planning of resources. Aggregate energy
consumption readings and high frequency readings at peak
periods can assist in accurate demand forecast.

Emergency Management (EM). Cascading failures and
robustness of the grid are some of the challenges that are
handled using emergency management strategies. To detect
abnormal energy consumption patterns, readings at high fre-
quency are required.

5.1 Environment
In our cost-benefit analysis we consider two environments

viz, urban and rural. We define the number of HANs and
NANs in an urban and rural setup based on Electric Power
Research Institute (EPRI) [16] survey about the NAN, pop-
ulation density and number of households in the USA.

Average total population in an urban environment is around
4.8M , with a maximum population density of roughly 33.7K
persons per km2 and land area of 121 km2. Thus, an ur-
ban environment is composed of 1.6M households. To pro-
vide adequate coverage to the collection of energy data from
the households, 73 NANs operating at sub-1GHz are re-
quired [16].

Rural environments with different terrain and population
density is considered to have total population of 1.4M and
land area of 215000 km2. Thus, rural environment consists
of around 476K households, with 76 NANs operating at sub-
1GHz to provide coverage [16].

5.2 Simulation parameters
In this work, a standard wireless sensor node (WSN) is

considered as HAN and its configuration depends on the ar-

Table 2: Energy consumption for different operations. [17]

Operations Energy consumption

Transmission @sub-1GHz 0.164 mJ/byte
Reception @sub-1GHz 0.08 mJ/byte

Transmission @IEEE 802.16 0.324 mJ/byte
Reception @IEEE 802.16 0.100 mJ/byte

Read from flash 0.09 µJ/byte
Write to flash 0.8 µJ/byte
Processing 0.14 µJ/byte

chitecture. Each HAN samples data by default every 5 min-
utes, which can be programmed based on the requirement or
upon reception of the query. Each HAN is associated with a
sub-1GHz transceiver to communicate with the NAN. Simi-
larly, NANs are equipped with both sub-1GHz and WiMAX
transceivers to communicate with HANs and UCU respec-
tively. Table 2 shows the energy consumption for different
operations performed by the HAN.

In this work, Data message contains HAN number, time
stamp and energy consumption values. The Query message
includes the HAN number and query number. Similarly, the
Query-reply message carries the energy consumption value,
HAN number and query number. Finally, the Aggregated
data includes HAN number, aggregation granularity and ag-
gregated energy consumption value. Message size of data,
query, query-reply, aggregated messages are considered to
be 50, 5, 10 and 10 bytes respectively.

6. PERFORMANCE RESULTS
This section describes the performance of each architec-

ture based on the key cost indicators for urban and rural
environments. To calculate the key cost indicators, we used
the data over a duration of one month in our simulations.

6.1 Energy consumption
Energy consumption cost per architecture for both ur-

ban and rural environments3 is illustrated in Fig. 2a and
Fig. 2b. In urban environments, it is evident that cen-
tralized architecture consumes significant amount of energy
compared to other architectures. In centralized architec-
ture, complete data needs to be relayed to the UCU, thus
increasing the number of transmissions and the energy re-
quired. Distributed and hybrid architectures consume much
lower energy compared to centralized and decentralized ar-
chitectures. The significant energy saving in distributed
approaches is due to the reduced number of transmissions.
Energy consumption of the hybrid architecture is the lowest
compared to all other architectures. This energy saving is
achieved by sending aggregated data to NANs as compared
to storing data only at HANs, as in distributed architecture.

In general, the total energy consumption increases rapidly
as the number of houses increases for centralized and de-
centralized architectures. In case of distributed and hybrid
architectures, the increase in energy consumption is very

3 In our experimental evaluation we considered two cases:
(i) each NAN has the same number of HANs, and (ii) each
NAN has a uniformly distributed random number of HANs.
We found that there is not much difference in energy con-
sumption between the two cases. Thus, for simplicity we
consider equal number of HANs being allocated to each
NAN.
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Figure 2: Energy consumption across architectures.

Table 3: Energy consumption distribution for urban envi-
ronments with 1.6M HANs.

Architectures Storage Proc. Comm. Total Energy

Centralized 4% 12.6% 83.4% 554.0 MJ
Decentralized 2.3% 16.2% 81.5% 213.5 MJ
Distributed 15.9% 20.4% 63.7% 19.8 MJ
Hybrid 7.1% 3% 89.9% 9.6 MJ

gradual, thus increasing their scalability. Similar trends can
be seen for rural environments, as shown in Fig. 2b.

Table 3 shows energy consumption distribution for differ-
ent architectures (number of HANs = 1.6M). We remark
that the energy consumption considers only communication,
storage and memory operation, although other factors could
be considered, such as cooling, lights, etc. It is evident that
the most significant energy factor in all the architectures is
communication. Hence, reducing communication needs can
in turn reduce overall energy consumption, as can be seen
in distributed and hybrid architectures.

6.2 Communication
The communication cost as described in Section 4.1.2 is

the average data rate required to support the SG applica-
tions considered in this work. The time of reference tH→N

and tN→U in Eq. (13) and Eq. (15) are considered to be
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Figure 3: Bandwidth required in urban environment.

Table 4: Bandwidth required for various architectures.

Urban Rural
Architectures HAN NAN HAN NAN

Centralized 480 bps 11 Mbps 480 bps 3 Mbps
Decentralized 480 bps 32 Mbps 480 bps 1 Mbps
Distributed 144 bps 3 Mbps 144 bps 1 Mbps
Hybrid 138 bps 2 Mbps 138 bps 0.5 Mbps
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Figure 4: Required storage in urban environment.

1 s. Table 4 shows the average bandwidth requirement at
each HAN and NAN for both urban and rural environments
with 1.6M HANs and 476K HANs respectively. Data rate
requirement for a HAN is same, irrespective of the environ-
ment, as each HAN transmits the same data based on the
architecture selected. However, the data rate required at
NANs in urban environment is higher than rural environ-
ment, since more HANs are associated with each NAN in
an urban environment. It is evident that the bandwidth
supported by our communication choice of sub-1GHz and
WiMAX can indeed allow all network operations. The band-
width requirements from HANs to NAN and NANs to UCU
in an urban environment are shown in Fig. 3a. The needed
bandwidth between HANs and NAN is higher for centralized
and decentralized architectures.However, since distributed
storage and processing is adopted in distributed and hybrid
architectures, the number of transmissions performed at the
HAN is reduced. Thus, the bandwidth requirement is signif-
icantly reduced in these architectures. Similarly, the average
bandwidth requirement between NANs and UCU is shown
in Fig. 3b. In general, the bandwidth increases with the
number of houses as seen in the Fig. 3. Similar trends with
scaled-down bandwidth requirements are observed for rural
environments.

6.3 Storage
Storage required by each node for different architectures

in urban environment, for duration∆ T = 1 year is shown in
Fig. 4a. The default sampling interval of 5 minutes is consid-
ered to determine the storage cost as described in Eq. (18).
As with other costs, storage cost for centralized architecture
is the highest compared to other architectures, as all data
is stored at one place i.e. the UCU. The storage required
by other architectures is much lower than the centralized
architecture, with distributed architecture having the low-
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Figure 5: Monetary cost details for deployment, operational and each node in urban environment.

Table 5: Processing operations in urban environment.

Architectures Number of operations

Centralized 9000 M-ops
Decentralized 9000 M-ops
Distributed 0.36 M-ops
Hybrid - NAN 15.75 M-ops
Hybrid - HAN 0.008 M-ops

est. As the number of HANs increase, the required storage
increases linearly in centralized architectures. On the other
hand, since equal number of HANs are allocated to each
NAN, for all the other architectures storage is constant, as
seen in the Fig. 4a.

Finally, the required storage as a function of sampling in-
terval is shown in Fig. 4b. Higher sampling intervals indicate
less frequent sensing of energy values. Storage cost in gen-
eral decreases with increase in sampling interval, regardless
of the architecture.

6.4 Processing
Processing accounts for the number of operations per-

formed to respond to a query as described in Section 4.1.4.
Processing requirements depend on the number of messages
the node has to process before replying. For each query, all
messages until the reception of query is processed and each
query is independent of other queries. Thus the process-
ing requirement depends on when the query is received (in
turn number of messages to be processed) and the opera-
tions performed. The processing requirement for one month
duration in an urban environment with 1.6M HANs is shown
in Table 5.

In centralized architectures, since UCU performs all pro-
cessing, the processing requirements increase with the num-
ber of houses. Since, number of HANs per NAN is con-
stant, processing at each NAN in decentralized architectures
is merely a constant with increase in number of houses. In a
distributed architecture, processing is done in a distributed
manner at each HAN, thus reducing the number of opera-
tions at each HAN by order of four compared to decentral-
ized architecture. In hybrid architectures, processing effort
is distributed at both HANs and NANs and has the least
processing cost at each HAN. Similar trends are also ob-
served for rural environments.

6.5 Cost-Benefit Analysis
Monetary cost. The monetary cost as described in Sec-
tion 4.1 accounts for deployment and operational costs. De-
ployment cost is the cost for installing nodes (HANs, NANs,
UCU) and varies based on the capabilities provided to each
node with respect to processing, storage and communica-
tion. Operational cost is calculated based on the energy
required to operate all nodes for one month. The cost of
electricity (fE) in Eq. (3) is considered to be 0.194 $/KWh,
based on Pacific Gas and Electric Company4 yearly aver-
age electricity costs. Based on the storage, processing and
communication requirements obtained in previous Section,
appropriate modules and price details are considered from
digikey5. In general, fS(·) in Eq. (19) model the cost of
storage per byte and is considered to vary from 2$ to 60$
for 256KB to 500GB of storage. Similarly fT (·) in Eq. (14)
models the cost of transceivers and is considered to be 5$ and
10$ for sub − 1GHz and WiMAX transceivers respectively.
fP (·) in Eq. (22) model the cost of processing and varies
from 5$ (MSP43016xx processor) to 60$ (ARM Cortex-M3
processor).
The deployment cost for each architecture as a function of
number of houses is shown in Fig. 5a. Since processing and
storage is performed by only UCU in centralized architec-
ture, the total deployment cost is the lowest compared to all
other architectures. In decentralized architectures, all the
NANs have storage and processing capabilities. The distri-
bution of processing and storage capabilities to the NANs
overcome single point failure but follows the same trend in
monetary cost as compared to centralized architectures. In
distributed architecture, each HAN is equipped with pro-
cessing and storage capabilities, thus increasing the mone-
tary cost of each node in the network. Due to sheer num-
ber of HANs, the total deployment cost of the distributed
architecture increases rapidly with number of HANs. The
deployment cost in hybrid architectures is lower compared
to a distributed architecture, since processing and storage is
distributed at both HANs and NANs.

The operational cost for various architectures in urban en-
vironment is shown in Fig. 5b. Similar to energy consump-
tion cost (refer Fig. 2), the operational cost is the highest for
centralized architectures and lowest for hybrid architectures.

4 http://www.pge.com/. 5 http://www.digikey.com/
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Figure 6: Accuracy, privacy and cost-benefit analysis.

Fig. 5c shows the break-up of monetary cost incurred for
each architecture in urban environment with 1.6M HANs.
The figure shows the cost in $ for each HAN, NAN, UCU
(with storage, processing, communication), as well as the op-
erational and deployment cost across various architectures.
As seen in the figure, adding storage and processing features
to each HAN increases the deployment cost of distributed
and hybrid architectures. However, distributed and hybrid
architectures has the least operational cost compared to cen-
tralized and decentralized architectures and hence more en-
ergy efficient.

Accuracy cost. Centralized and distributed architectures
do not employ data aggregation, as data is stored either in
UCU or HAN. Since complete data is available at each NAN
in a decentralized architecture, low data aggregation granu-
larity of 1 hour is employed. In hybrid architecture, NAN re-
ceives data aggregated with granularity every 12 hours from
each HAN. In this work, NRMSE is the metric used to de-
termine the accuracy based on data aggregation granular-
ity. To calculate the accuracy cost, we used two weeks of
data collected by the REDD initiative [18]. Data aggrega-
tion granularity of 1, 6, 12, 24 hours are considered, while
the step-size of the time-series to be restored is assumed
to be 5 minutes. The focus of this paper is not on accu-
rate disaggregation algorithms. For this reason, we employ
a rather simple algorithm that equally split an aggregated
reading into the 5 minute buckets of the time-series to be
restored. Fig. 6a shows the NRMSE values for various data
aggregation granularities. It is evident that, higher the data
aggregation granularity, the higher is the NRMSE and thus
lower is the accuracy.

Privacy cost. This cost factor also depends on the data
aggregation granularity. Intuitively, higher the data aggre-
gation granularity, the higher is the entropy and thus lower
is the privacy cost. In centralized architectures, all sensi-
tive data of customers is available at UCU, thus making
centralized architecture the least privacy-preserving archi-
tecture. On the other hand, distributed architectures with
distributed storage ensure that customer’s sensitive data is
stored locally at HAN, making them completely privacy-
preserving.

However, privacy cost varies in decentralized and hybrid
architectures. As before, we used two weeks of data col-

lected by the REDD initiative [18] to calculate the privacy
cost. Fig. 6b shows the average entropy for different data ag-
gregation granularities. The figure shows that the higher the
data aggregation granularity, the higher the entropy, there-
fore the lower the privacy cost (see Eq. (30)).

Cost-Benefit Analysis. The radar plot in Fig. 6c shows
the performance of each architecture according to the mon-
etary, accuracy and privacy costs. All cost indicators have
been normalized to the [0,1] interval. Clearly, the lower the
value of monetary, accuracy and privacy costs, the more de-
sirable is the architecture for the smart grids.

Centralized architectures has low monetary cost, high pri-
vacy cost and low accuracy cost, thus making them less
privacy-preserving but economically cheaper, since all data
is stored and processed at the UCU. Thus, centralized ar-
chitectures are less scalable and suffer from single point of
failure but with low deployment cost.

Decentralized architectures on the other hand have low
monetary cost, moderate privacy cost and moderate accu-
racy cost. The privacy cost reduction is achieved with data
aggregation at NANs, which also increases the accuracy cost.
Decentralized architecture distributes the processing and stor-
age efforts to the NANs thus achieving moderate privacy and
low monetary cost.

Distributed architectures have the highest monetary cost,
the lowest privacy and accuracy costs. Distributed architec-
tures are clearly the most privacy-preserving system, since
data is stored and processed locally, however this increases
the monetary cost of the architecture.

Hybrid architectures have lower monetary cost compared
to distributed architectures, with low privacy cost and mod-
erate accuracy cost. Distributing storage and processing at
both HANs and NANs reduces the deployment cost, with
a loss in accuracy due to data aggregation at NANs. Also,
hybrid architectures are more energy efficient but with high
deployment cost.

7. CONCLUSIONS
The future Smart Grid - relying upon an extensive ICT

infrastructure - will be fundamentally different from the cur-
rent power distribution systems. We presented different data
processing architectures for the smart grids. This paper
presents the first step towards understanding and modeling
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the key cost indicators for large scale deployment of smart
grids. To gain insights, the proposed architectures were eval-
uated based on energy consumption, processing power, stor-
age requirements, communication bandwidth, accuracy of
data collection and privacy. From our cost-benefit analy-
sis, we can conclude that even though centralized architec-
tures perform well in terms of accuracy and deployment cost,
they are less scalable and least privacy-preserving. On the
other hand, distributed architectures overcome privacy is-
sues with local storage and processing, but with additional
deployment cost. Decentralized architectures perform well
in terms of accuracy and monetary cost, while hybrid archi-
tectures increase the privacy by increasing the deployment
cost. Thus, the choice of the architecture could be to have
a more energy efficient architecture or highly scalable dis-
tributed architecture with high deployment cost or simple
less scalable architecture and depends upon the objective of
the implementation.
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