
Secure Location Sharing

Mahdi Zamani
Department of Computer Science

University of New Mexico
Albuquerque, NM, USA

zamani@cs.unm.edu

Mahnush Movahedi
Department of Computer Science

University of New Mexico
Albuquerque, NM, USA

movahedi@cs.unm.edu

ABSTRACT
In the last decade, the number of location-aware mobile de-
vices has mushroomed. Just as location-based services grow
fast, they lay out many questions and challenges when it
comes to privacy. For example, who owns the location data
and for what purpose is the data used? To answer these
questions, we need new tools for location privacy. In this
paper, we focus on the problem of secure location sharing,
where a group of n clients want to collaborate with each
other to anonymously share their location data with a lo-
cation database server and execute queries based on them.
To become more realistic, we assume up to a certain frac-
tion of the clients are controlled arbitrarily by an active
and computationally unbounded adversary. A relaxed ver-
sion of this problem has already been studied in the lit-
erature assuming either a trusted third party or a weaker
adversarial model. We alternatively propose a scalable fully-
decentralized protocol for secure location sharing that toler-
ates up to n/6 statically-chosen malicious clients and does
not require any trusted third party. We show that, unlike
most other location-based services, our protocol is secure
against traffic-analysis attacks. We also show that our pro-
tocol requires each client to send a polylogarithmic number
of bits and compute a polylogarithmic number of operations
(with respect to n) to query a point of interest based on its
location.

1. INTRODUCTION
Nowadays, mobile users share their location data with

other parties in order to receive information that is cus-
tomized based on their location. For example, mobile users
frequently ask location-based services (LBS) to find points
of interest near them, to receive information about traffic
along their route, or to receive customized advertising. On
the other hand, shared location data can be used by oth-
ers (e.g., providers and governments) for precise surveillance
and hence, compromising user privacy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FOMC’14, August 11, 2014, Philadelphia, PA, USA.
Copyright 2014 ACM 978-1-4503-2984-2/14/08 ...$15.00.
http://dx.doi.org/10.1145/2634274.2634281.

Although most organizations likely have good intentions,
location information may be unintentionally leaked due to
software bugs and vulnerabilities. The potential danger is
that by compiling location patterns over time, untrusted
parties could create an intimate picture of personal infor-
mation like political and religious beliefs, health status, etc.
The documents provided by Edward Snowden in 2013 show
that NSA is collecting data about the locations of millions of
cell phones by tapping into mobile networks [17]. Such data
can be used to track the movements of individuals precisely
and to find relationships between people by correlating var-
ious patterns in the locational data.

Due to the increasing concerns about location privacy,
many governments and organizations have initiated stud-
ies on location privacy. For example, the U.S. government
has recently initiated the discussion on the Location Privacy
Protection Act [1], which is aimed at forcing companies to
receive user consent before collecting mobile location infor-
mation.

So far, most privacy-preserving LBS have assumed the
existence of a trusted third party [21, 16, 26, 3], which is
often used for anonymizing location data. Unfortunately,
finding such trusted parties in practice is usually very hard
or even impossible. Due to the huge number of mobile users
interested in sharing their location data frequently, such cen-
tralized parties should be powerful servers that are usually
owned by large companies and governments. Moreover, cen-
tralized parties may be subject to governmental control, and
may be banned or forced to disclose sensitive location infor-
mation.

LBS Privacy Approaches. Main approaches for achiev-
ing location privacy can be divided into two categories that
provide either location confidentiality or location anonymity.
Location confidentiality is to hide1 user’s location and to
process locational queries over hidden data. Such data are
never revealed to any authority although it might be possi-
ble to link the user’s identity to its hidden query. Location
anonymity, on the other hand, is to hide the connection be-
tween a locational query and the user who issues the query.
In anonymity terminology, this is often called unlinkability,
which means that a particular message is not linkable to
any sender (or recipient), and that to a particular sender
(recipient), no message is linkable [28].

While location confidentiality provides a great level of pri-
vacy, processing queries over hidden (e.g., encrypted) data

1By hiding, we mean using techniques like encryption,
steganography, and secret sharing for obscuring data.

1

is usually hard and expensive. For example, homomorphic
encryption [19] and private information retrieval [11] can be
used for privacy-preserving query processing but known such
techniques are still computationally intensive. On the other
hand, if the number of users having queries is large, which is
often the case for LBS, then the queries can be anonymized
efficiently to provide a strong level of privacy.

Adversarial Model. In designing location-based services,
there is a need to ensure reliability even against the most
powerful type of adversary, called active adversary. Such an
adversary controls a certain fraction of the parties to run
sophisticated active attacks like jamming, corruption, and
forging, as well as simple passive attacks like eavesdropping
and non-participation. In an age where governments and
financial entities increasingly engage in sophisticated cyber-
warfare, we believe protecting against active attacks is cru-
cial.

Resistance to Traffic-Analysis. One challenging problem
with most anonymity-based location services is resistance
against traffic-analysis. A global adversary can sniff traf-
fic exchanged between the user and the service provider to
link a query containing location information to the user who
has issued that query. Such a powerful adversary was as-
sumed to be unrealistic in the past but it might be real-
istic today if the service provider is controlled or compro-
mised by a state-level surveillance authority [15]. Unfor-
tunately, most anonymity-providing protocols like Casper
[26], Prive [20], and Tor [14] are not secure against traffic
analysis attacks. Recently, Zamani et al. [31] proposed a
provably-secure anonymous broadcast protocol that resists
traffic-analysis attacks. Unfortunately, their protocol has
polylogarithmic rounds of communication and is vulnerable
to collisions common to DC-Net-based protocols [10].

k-Anonymous LBS. Several LBS are built upon a relaxed
notion of anonymity called k-anonymity [21, 26, 20, 16],
where the adversary is assumed to be unable to identify the
actual sender/receiver of a locational query from a set of
k parties (called anonymity set). Even though k-anonymity
often increases efficiency significantly, choosing small k’s can
result in severe privacy problems. For example, attackers of-
ten have background knowledge and it is shown that small
anonymity sets are likely to leak privacy when attackers have
such knowledge [25]. We argue that this is often the case for
location anonymity as queries issued by people in different
locations usually contain side information about their loca-
tion. For example, a person located in New Mexico is more
likely to search for a restaurant serving chili stew than a
person in Vermont. Thus, we believe an algorithm is needed
that scales well with the size of anonymity set, k.

Location Cloaking. In a seminal work, Gruteser and Grun-
wald [21] introduced two key ideas for achieving location k-
anonymity called spatial cloaking and temporal cloaking. In
spatial cloaking, a client’s location (e.g., a two-dimensional
point) is converted into a spatial area such that there are k
mobile clients located in the area. While a spatially-cloaked
location can be calculated efficiently (e.g., using the tech-
niques of [21, 16, 26, 20]), the inaccuracy associated with
the cloaked location often results in sending unnecessary in-
formation back to the user. In temporal cloaking, location
anonymity is achieved by delaying the user’s query until k
clients also issue their queries. One drawback of this method

is increased latency, especially when k is large. On the other
hand, with the fast growth of the number of mobile users
sharing their location information, this latency problem is
becoming less important.

1.1 Our Contribution
We design a decentralized protocol for private location

sharing that is secure against active attacks including traffic-
analysis. Our protocol is efficient and scales well with the
number of clients. Moreover, our protocol is load-balanced
meaning that each client handles a roughly equal amount
of communication and computation. This is crucial for our
model since mobile devices usually have limited resources.
We use techniques from multi-party computation (MPC),
where a set of n parties, each having a secret value, com-
pute a known function over their inputs, without revealing
the inputs to any party.

In the last three decades, a large body of work has been
devoted to designing MPC protocols [6, 5, 18, 12]. Unfor-
tunately, most of these protocols are inefficient and scale
poorly with the number of parties. Recently, Boyle et al. [7]
and Dani et al. [13] proposed scalable solutions to general
MPC. Unfortunately, neither of these protocols are practical
due to large logarithmic and constant factors in their com-
munication/computation costs. Moreover, the protocol of
Boyle et al. is not load-balanced making it hard to be used
in settings where the parties have limited resources like mo-
bile networks. Inspired by [7] and [13], our main strategy
for achieving scalability is to perform local communications
and computations in logarithmic-size groups of parties called
quorums, where the number of adversary-controlled parties
in each quorum is guaranteed not to exceed a certain frac-
tion. Using quorums, we develop an efficient multi-party
shuffling protocol for anonymizing client queries.

Our protocol is provably-secure as it is based on a for-
mal security framework, which follows from the secrecy of
MPC. We show that the anonymity achieved by this method
is, in particular, resistant to traffic analysis. We also pro-
vide provable anonymity against a priori knowledge that
an adversary might have regarding the potential communi-
cating parties. Moreover, unlike the majority of previous
work which rely on centralized trusted servers, our protocol
is fully-decentralized and does not require any trusted party.

Protocol Overview. In our protocol, we use the tempo-
ral cloaking approach to wait until k clients each hold a
locational query. The k clients, then, participate in a MPC
protocol to jointly compute a shuffling function that ran-
domly permutes their queries. The shuffled queries are then
sent to the location-based server to be processed. Finally,
the results are broadcast by the LBS to all participating
clients. More specifically, our protocol builds a set of quo-
rums in a one-time setup phase and then uses them in the
online phase for shuffling client queries. We represent the
desired shuffling function by an arithmetic circuit. We as-
sign the computation of each gate of the circuit to a quorum
and evaluate the circuit level by level, passing the outputs
of one level as the inputs to the next level. Figure 1 shows
our protocol architecture. Each circle depicts a quorum of
mobile users who connect to their local base station. Once
the local computation is finished in each quorum, the result
is forwarded to the next quorum via one-to-one communica-

2

Location-Based Server

ffsff

BTS

BTS

BTS

BTS

(x 1, ,x n)

x1

P1

xn

Pn

Figure 1: Our architecture

tion with clients of the next quorum. Finally, at the highest
level, the shuffled queries are computed and sent to the LBS.

2. MODEL
We consider a network of n clients whose identities are

common knowledge. We assume there is a private and au-
thenticated communication channel between every pair of
clients and the communication is synchronous. Our protocol
does not require the presence of any trusted third party, and
we do not assume the existence of a reliable broadcast chan-
nel. We assume t < (1/6 − ε)n of the clients are controlled
by an active adversary, for some fixed, positive constant ε.
We assume our adversary is computationally unbounded and
is actively trying to prevent the protocol from succeeding
by attacking the privacy of the parties, and the integrity of
communications, by attempting to corrupt, forge, or drop
messages. We say that the clients controlled by the adver-
sary are dishonest and that the remaining clients are honest
meaning that they strictly follow our protocol. We finally
assume that the adversary is static meaning that it must se-
lect the set of dishonest clients at the start of the protocol.

3. OUR RESULTS
We provide a decentralized protocol for location-based ser-

vices with polylogarithmic communication and computation
costs with respect to the number of clients. We prove the
following main theorem in Section 7.

Theorem 1. Consider n clients in a fully connected syn-
chronous network with private channels, where each client
has a locational query to send to a server. There exists an
n-party protocol such that if all honest clients follow the pro-
tocol, then with high probability:

• Each honest client sends its query to the server anony-
mously and receives the result of query from the server.

• The protocol tolerates up to t < (1/6 − ε)n malicious
clients.

• Each client sends Õ(1) bits and computes Õ(1) opera-
tions.

• The protocol has O(log2 n) rounds of communication.

4. RELATED WORK
Using anonymity for location privacy was first proposed

by Kong and Hong [24]. They propose an anonymous rout-
ing protocol called ANDOR that targets mobile ad-hoc net-
works. They address two closely-related unlinkability prob-
lems, namely route anonymity and location privacy. Based
on a route pseudonymity approach, ANODR prevents the
adversary from exposing local wireless transmitters’ identi-
ties and tracing network packet flows. For location privacy,
their protocol ensures that the adversary cannot discover
the real identities of local transmitters.

Gruteser and Grunwald [21] show that location data in-
troduces new and potentially more severe privacy risks than
network addresses pose in conventional services. Moreover,
they analyzed the technical feasibility of k-anonymous location-
based services and showed the privacy risks can be reduced
through it. They propose an algorithm and service model
that that can be used by a centralized location broker service
and guarantee k-anonymous location information.

Zhong et al. [32] propose three protocols, Louis, Lester
and Pierre, to achieve location privacy for a service that
alerts a person of his nearby friend. Location privacy guar-
antees that users of the service can learn a friend’s location
if and only if the friend is actually nearby. Their approach
was based on secure two-party computation and all three
protocols exploit homomorphic encryption. The Louis pro-
tocol requires a semi-trusted third party that does not learn
any location information. The Lester and Pierre protocols
do not need a third party. The Lester protocol has the draw-
back that a user might be able to learn a friend’s location
even if the friend is in an area that is no longer considered
nearby by the friend. The Pierre protocol does not have this
disadvantage at the cost of not being able to tell the user
the precise distance to a nearby friend.

The Casper framework of Mokbel et al. [26] consists of two
main components called location anonymizer and privacy-
aware query processor. The location anonymizer is a trusted
third party that acts as a middle layer between mobile users
and the location-based database server. It receives the loca-
tion information, blurs the information into cloaked spatial
areas, and sends the cloaked spatial areas to the location-
based database server. The authors also design a privacy-
aware query processor that helps database server to deal
with anonymous queries and cloaked spatial areas rather
than the exact location information. Unfortunately, the
cloaked locations in Casper are usually very large and the
algorithm lacks a mechanism to dynamically determine the
size of cloaking regions.

Ghinita et al. [20] propose a decentralized model that
helps mobile users self-organize into a fault-tolerant over-
lay network in order to run privacy-preserving anonymous
location-based queries. Their protocol develops a rectangu-
lar area enclosing k users called k-Anonymous Spatial Region
(k-ASR) in order to guarantee query anonymity even if the
attacker knows the locations of all users. k-ASRs are built
in a decentralized fashion, therefore the bottleneck of a cen-
tralized server is avoided. The empirical results confirm that

3

the system achieves efficient and scalable anonymization and
load-balancing with low maintenance overhead, while being
fault-tolerant. On the other hand, the protocol does not
provide provable security guarantees and can only tolerate
non-adversarial fail-stop faults.

Gedik and Liu [16] develop a k-anonymizer that is run by
a trusted server. Their algorithm enables each mobile client
to specify the minimum level of anonymity it desires and
the maximum temporal and spatial tolerances it is willing
to accept when requesting for k-anonymity. The authors
propose a location cloaking algorithm called CliqueCloak,
which combines the ideas of spatial and temporal cloaking.
Unfortunately, the algorithm is expensive and shows poor
performance for large k as it relies on the ability to locate a
clique in a graph to perform location cloaking.

The PrivacyGrid framework of Bamba et al. [3] is com-
posed of dynamic grid-based spatial cloaking algorithms for
providing location k-anonymity and location `-diversity (as
defined in [25]) for mobile environments. The algorithms
find the smallest possible cloaking region meeting desired
privacy levels by measuring several metrics for k-anonymity
and `-diversity. While the algorithms are shown to be highly
efficient and to achieve higher anonymization success rate,
they rely on a trusted server for location tracking and anonymiza-
tion service.

5. PRELIMINARIES
In this section, we define standard terms, notation, and

results used throughout the paper.

5.1 Notation
An event occurs with high probability, if it occurs with

probability at least 1−1/nc, for any c > 0 and all sufficiently
large n. We denote the set of integers {1, ..., n} by [n]. Also,
let Zp denote the additive group of integers modulo a prime
p.

5.2 Basic Tools
In this section, we review the definitions of standard basic

tools used throughout the paper.

Verifiable Secret Sharing. An (n, t)-secret sharing scheme,
is a protocol in which a dealer who holds a secret value shares
the secret among n parties such that any set of t parties can-
not gain any information about the secret, but any set of at
least t+1 parties can reconstructs it. An (n, t)-verifiable se-
cret sharing (VSS) scheme is an (n, t)-secret sharing scheme
with the additional property that after the sharing phase, a
dishonest dealer is either disqualified or the honest parties
can reconstruct the secret, even if shares sent by dishonest
parties are spurious. In our protocol, we use the constant-
round VSS protocol of Katz et al. [22] that is based on
Shamir’s secret sharing scheme [29]. This result is described
in Theorem 2.

Theorem 2. [22] There exists a synchronous linear (n, t)-
VSS scheme for t < n/3 that is perfectly-secure against a
static active adversary. The protocol requires one broadcast
and three rounds of communication.

Quorum Building. A good quorum is a set ofN = O(logn)
parties that contains a majority of honest parties. King et
al. [23] showed that a Byzantine Agreement (BA) protocol

can be used to bring all parties to agreement on a collec-
tion of n good quorums. In this paper, we use the fast BA
protocol of Braud-Santoni et al. [8] to build n good quorums.

Theorem 3. [23, 8] There exists an unconditionally-secure
protocol that brings all good parties to agreement on n good
quorums with high probability. The protocol has Õ(n) amor-
tized communication and computation complexity2, and it
can tolerate up to t < (1/3− ε)n malicious parties.

Secure Broadcast. In the malicious setting, when parties
have only access to secure pairwise channels, a protocol is re-
quired to ensure secure (reliable) broadcast3. Such a broad-
cast protocol guarantees all parties receive the same message
even if the broadcaster (dealer) is dishonest and sends dif-
ferent messages to different parties. It is known that a BA
protocol can be used to perform secure broadcasts. In our
protocol, we use the BA algorithm of Braud-Santoni et al. [8]
to perform secure broadcasts.

Theorem 4. [8] There exists an unconditionally-secure
protocol for performing secure broadcasts among n parties.
The protocol has Õ(n) amortized communication and com-
putation complexity, and it can tolerate up to t < (1/3− ε)n
malicious parties.

Sorting Networks. A sorting network is a network of com-
parators. Each comparator is a gate with two input wires
and two output wires. When two values enter a compara-
tor, it outputs the lower value on the top output wire, and
the higher value on the bottom output wire. Ajtai et al. [2]
describe an asymptotically-optimal O(logn) depth sorting
network called AKS. Unfortunately, the AKS network is not
practical due to large constants hidden in the depth com-
plexity. Batcher [4] constructs a simple and efficient sorting
circuit with depth 1/2 log n(1+logn) = O(log2 n). The idea
of Batcher’s circuit is to sort n = m1 +m2 elements by sort-
ing the first m1 and the last m2 independently, and then
applying a (m1,m2)-merging network to the result. In our
protocol, we use the this Batcher’s circuit for shuffling client
queries efficiently.

Secure Comparison. Given two linearly secret-shared val-
ues a, b ∈ Zp, Nishide and Ohta [27] propose an efficient
protocol for computing a sharing of ρ ∈ {0, 1} such that
ρ = (a ≤ b). Their protocol has O(1) rounds and requires
O(`) invocations of a secure multiplication protocol, where
` is the bit-length of elements to be compared. We refer
to this protocol by Compare. We also describe a fast mul-
tiplication protocol to be used along with the comparison
protocol of [27] for implementing fast comparator gates.

Share Renewal. In our protocol, a shuffling circuit is se-
curely evaluated. Each gate of the circuit is assigned a quo-
rum Q and the parties in Q are responsible for comparison
of secret-shared inputs. Then, they send the secret-shared
result to any quorums associated with gates that need this
result as input. Let Q′ be one such quorum. In order to
secret-share the result to Q′ without revealing any informa-
tion to any individual party (or to any coalition of dishonest

2Amortized communication complexity is the total number
of bits exchanged divided by the number of parties.
3We are not aware of any easy approach to physically imple-
ment a broadcast channel without assuming a trusted party.

4

parties), a fresh sharing of the result must be distributed
in Q′. To this end, we use the share renewal protocol of
Zamani et al. [30]. Combined with the VSS scheme of The-
orem 2 in a group of n parties with t < n/3 dishonest parties,
this protocol has only one round of communication and re-
quires each party to send O(n) field elements. We refer to
this protocol by RenewShares throughout our protocol.

6. OUR PROTOCOL
In this section, we describe our protocol for secure loca-

tion sharing. Consider n parties P1, P2, ..., Pn each having a
locational query xi ∈ Zp, for a prime p and all i ∈ [n]. The
parties want to anonymously send their queries to a location-
based server (LBS) and receive the results back. We assume
the queries have already been collected via temporal cloak-
ing and up to t < (1/6− ε)n of the parties are controlled by
a malicious adversary.

We first describe an ideal functionality of our protocol
where a hypothetical trusted party P computes the desired
protocol outcome by communicating with all parties4. In ev-
ery run of the protocol, P executes a shuffling protocol over
the queries and sends the shuffled sequence of queries to the
location-based server. Once the queries are processed, the
server broadcasts the results to the parties. The shuffling
protocol first chooses a uniform random number ri ∈ Zp
to form an input pair (ri, xi) for each party Pi and for all
i ∈ [n]. The protocol then uses a shuffling circuit that is
based on the Batcher’s sorting network [4] to sort the set
of pairs {(r1, x1), ..., (rn, xn)} with respect to their first el-
ements (Figure 2). We later show that this functionality
randomly permutes the set of inputs {x1, ..., xn}.

In our protocol, we denote the shuffling circuit by C, which
has m gates. Each gate is essentially a comparator gate and
is denoted by Gi, for i ∈ [m]. Our protocol first creates n
quorums and then assigns each gate of C to a quorum. For
n parties, the circuit has dn/2e input gates as each gate has
two inputs. We label the quorums assigned to the input
gates by Q1, ..., Qdn/2e and call them input quorums. C also
has dn/2e output gates, which correspond to output quorums
labeled by Q′1, ..., Q

′
dn/2e.

We now implement the real functionality of our protocol
based on the ideal functionality described above. Protocol 1
defines our main algorithm. Throughout the protocol, we
represent each shared value s ∈ Zp by 〈s〉 = (s1, ..., sn)
meaning that each party Pi holds a share si generated by the
VSS scheme of Theorem 2 during its sharing phase. Using
the natural component-wise addition of representations, we
define 〈a〉+ 〈b〉 = 〈a+ b〉.

For multiplication, we define 〈a〉 · 〈b〉 = Multiply(〈a〉, 〈b〉),
where Multiply is the multiplication protocol of Zamani et
al. [30]. This protocol is based on a well-known technique
proposed by Beaver [5] and generates a shared multiplica-
tion triple (〈u〉, 〈v〉, 〈w〉) such that w = u · v. The triple is
then used to convert multiplications over shared values to
additions. The first step of this protocol is independent of
the inputs and thus, for efficiency purposes, it can be per-
formed in an offline phase to generate a sufficient number of
multiplication triples.

In our protocol, we use a simple and well-known technique
(as described by Beaver [5]) for generating uniformly random

4We are inspired by the standard ideal/real world definition
for multi-party protocols proposed by Canetti [9].

secrets by adding uniformly random secrets shared by each
party. We refer to this algorithm by GenRand.

7. PROOFS
In this section, we prove the correctness and secrecy of

Theorem 1. First, in Lemma 2, we show that for sufficiently
large k > 0 and q > 3

2
kn2 logn, LocationSharing computes a

random permutation of the input queries with high proba-
bility.

Definition 1. [Perfect Random Permutation] Con-
sider a set of n ≥ 1 elements A = {a1, a2, ...an}. A perfect
random permutation of A is a permutation chosen uniformly
at random from the set of all possible n! permutations of A.

Lemma 1. Consider a sequence of input pairs (r1, x1),...,
(rn, xn), and a sorting protocol Π that sorts the pairs accord-
ing to their first elements. Π computes a perfect random
permutation of the pairs if their first elements are chosen
uniformly at random and are distinct.

Proof. Let X = (r1, x1), ..., (rn, xn) be the input se-
quence and Y = (s1, y1), ..., (sn, yn) be the output sequence
of Π. Note s1, ..., snis the sorted sequence of {r1, ..., rn}. An
arbitrary output sequence of pairs Y ′ = (s′1, y

′
1), ..., (s′n, y

′
n)

is said to be equal to Y if yi = y′i, for all i ∈ [n]. We
want to prove that the probability of Y ′ being equal to Y
is 1

n!
. In general, for any i ∈ [n], yi = y′i if and only if

s′i is the i-th smallest element in {r1, ..., rn} conditioned on
knowing the i − 1 smallest elements, which happens with
probability 1

n−i+1
. Thus, the probability that Y = Y ′ is

1
n
· 1
n−1
· ... · 1

2
· 1 = 1

n!
.

In the random generation step of LocationSharing, it is pos-
sible that two or more input quorums choose the same ran-
dom elements from Zq. In this situation, we say a colli-
sion happens. Collisions reduce the level of anonymity our
protocol guarantees because the higher the probability of
collisions, the higher the chance the adversary is given in
guessing the correct sequence of inputs. On the other hand,
we observe that if the field size (i.e., q) is sufficiently large,
then the probability of collisions becomes overwhelmingly
small. Lemma 2 gives a lower bound on q such that colli-
sions are guaranteed to happen with negligible probability.

Lemma 2. Let Zq be the field of random elements gener-
ated in the random generation step of LocationSharing. The
probability that there is a collision between any two parties
is negligible if q > 3

2
kn2 logn, for some k > 0.

Proof. Based on Theorem 3, all input quorums are good.
Based on the correctness of GenRand, all elements gener-
ated by the input quorums in the random generation step of
LocationSharing are chosen uniformly at random and inde-
pendent of all other random elements generated throughout
the protocol. Let Pi and Pj be two parties and ri and rj
be the random values assigned to them respectively by their
corresponding input quorums. The probability that ri = rj
is 1/q. Let Xij be the following indicator random variable
and Y be a random variable giving the number of collisions
between any two parties,

Xij =

{
1, ri = rj

0, otherwise
, Y =

∑
i,j∈[n]

Xij .

5

P1

(r2 ,x2)

P2

(r3 ,x3)

P3

(r4 ,x4)

P4

(r5 ,x5)

P5

(r6 ,x6)

P6

(r7 ,x7)

P7

(r8 ,x8)

P8

(r1 ,x1)

a b

a b

a b

a b

b a

a > b

Figure 2: The shuffling circuit for n = 8 (left), and the behavior of a comparator gate (right)

Using the linearity of expectations,

E(Y) = E
(∑
i,j∈[n]

Xij
)

=
∑
i,j∈[n]

E(Xij) =
1

q
(n2) =

n(n− 1)

2q
.

We want to find an upper bound on the probability of colli-
sions using the Chernoff bound defined by

Pr(Y ≥ (1 + α)E(Y)) ≤ e−
α2E(Y)

3 .

To ensure that no collision happens with high probability,

we need to have (1 + α)E(Y) < 1 while e−
α2E(Y)

3 < 1
nk

,

for any k > 0. Choosing α < 1
E(Y)

− 1 and solving the

inequalities for E(Y) we get

e−
α2E(Y)

3 < 1
nk

⇒ e−
α2E(Y)

3 < e−k logn ⇒
1− α2E(Y)

3
< −k logn ⇒ (α+1)2E(Y)

3
> k logn ⇒

1
3E(Y)

> k logn ⇒ E(Y) < 1
3k logn

.

Since E(Y) = n(n−1)
2q

< 1
3k logn

, solving this for q gives the

bound q > 3
2
kn2 logn and α < 3k logn− 1.

7.1 Proof of Theorem 1
We prove in the real/ideal world model as described by

Canetti [9]. First, we consider the protocol in an ideal model.
In this model, all parties send their input to a trusted party
who computes the shuffling circuit. Then, it sends the re-
sult to the location-based server. Let A be the sequence of
inputs and A′ be the sequence of sorted inputs according
to the random numbers associated with them. Recall that
we have at least n − t honest parties. Based on Lemma 1
and conditioned on the event that no collision happens with
high probability (Lemma 2), the elements of A′ that cor-
respond to honest parties can be any permutation of the
elements of honest parties in A. In other words, the prob-
ability that the adversary can successfully map A′ to A is

less than 1
(n−t)! which guarantees (n − t)-anonymity (i.e.,

full anonymity). Protocol LocationSharing is the realization
of the above ideal model. The real model, computes the
circuit in a multi-party setting. We prove this realization is
correct and secure.

Setup. The correctness and secrecy follows from the proof
of Theorem 3.

Input Broadcast. The correctness and secrecy follows from
the proof of the VSS scheme of [22]. After this step, each
input quorum Qi has a correct sharing of Pi’s input. This
is the base case for our proof of circuit computation step.

Random Generation. The correctness and secrecy follows
from the proof of the GenRand algorithm.

Circuit Computation. Correctness. We prove by induc-
tion in the real/ideal model. The invariant is that if the in-
put shares are correct, then the output of each gate is equal
to the output when the gate is computed by a trusted party
in the ideal model, and the result is shared between parties
of the quorum correctly. For the base case, note that the
invariant is true for input gates. Induction step is based on
the universal composability of Compare and Multiply. More-
over, based on the correctness of RenewShares, the output
resharing step generates new shares without changing the
output.

Secrecy. We prove by induction. The adversary cannot ob-
tain any information about the inputs and outputs during
the computation of each gate of the circuit. Let Q, and
Q′ be two quorums involved in the computation of a gate,
where Q provides an input to the gate, and Q′ computes the
gate. Consider a party P . Let S be the set of all shares P
receives during the protocol. We consider two cases. First,
if P /∈ (Q ∪ Q′), then elements of S are independent of the
shares Q sends to Q′. Moreover, elements of S are indepen-
dent of the output of Q′ since Q′ also re-shares its output(s).

6

Protocol 1 LocationSharing

1. Setup: Parties run the quorum building protocol of
Theorem 3 jointly with all parties to agree on n good
quorums Q1, ..., Qn, and assign each gate Gi to the
(i mod n)-th quorum. For each quorum Q, each party
in Q runs the key generation protocol of VSS scheme
of Theorem 2 jointly with other parties in Q.

2. Input Broadcast: Parties Pi and Pi+1 secret share
their inputs xi and xi+1 among all parties of Qdi/2e.

3. Random Generation: Parties in each input quorum
Qdi/2e run GenRand twice to generate sharings 〈ri〉 and
〈ri+1〉 of two random elements ri, ri+1 ∈ Zq, for some
prime q. At the end of this step, Qdi/2e holds two pairs
of sharings (〈ri〉, 〈xi〉) and (〈ri+1〉, 〈xi+1〉).

4. Circuit Computation: The circuit is evaluated
level-by-level starting from the input gates. For each
gate G and the quorum Q associated with it, parties
in Q do the following.

(a) Gate Computation: Let (〈r〉, 〈x〉) and
(〈r′〉, 〈x′〉) be the sharings associated with
the inputs of G. Parties compute 〈ρ〉 =
Compare(〈r〉, 〈r′〉), where ρ = (r ≤ r′). Then,
they compute the output pairs (〈s〉, 〈y〉) and
(〈s′〉, 〈y′〉) from

〈s〉 = 〈ρ〉 · 〈r〉+ (1− 〈ρ〉) · 〈r′〉
〈y〉 = 〈ρ〉 · 〈x〉+ (1− 〈ρ〉) · 〈x′〉
〈s′〉 = 〈ρ〉 · 〈r′〉+ (1− 〈ρ〉) · 〈r〉
〈y′〉 = 〈ρ〉 · 〈x′〉+ (1− 〈ρ〉) · 〈x〉

For every addition over two shared values 〈a〉
and 〈b〉 performed above, parties computes 〈c〉 =
〈a〉 + 〈b〉. For every multiplication, they run
〈c〉 = Multiply(〈a〉, 〈b〉).

(b) Output Resharing: Parties run RenewShares
over 〈s〉, 〈y〉, 〈s′〉, and 〈y′〉 to re-share them in
the quorum associated with the parent gate.

5. Query Processing: Let (〈si〉, 〈yi〉) and
(〈si+1〉, 〈yi+1〉) be the pairs of shared values each
output quorum Q′i receives. Parties in Q′i run
zi= Reconst(〈yi〉) and zi+1= Reconst(〈yi+1〉) and
send zi and zi+1 to the LBS. For all the zi and zi+1

messages received from parties of Q′i, the LBS picks
two via majority filtering. Then, the LBS processes
the queries z1, ..., zn, and sends the results to all
parties.

Hence, S reveals nothing about the inputs and outputs of
the gate.

Second, if P ∈ (Q∪Q′), then the inductive invariant is that
the collection of all shares held by dishonest parties in Q
and Q′ does not give the adversary any information about
the inputs and the outputs. As the base case, it is clear that
the invariant is valid for input gates. The induction step
is as follows. The adversary can obtain at most 2(N/6) =
N/3 shares of any shared value during the computation step;
N/6 from dishonest parties in Q and N/6 from dishonest
parties in Q′. By the secrecy of the VSS scheme, at least
N/3+1 shares are required for reconstructing the secret. By
the secrecy of RenewShares and Multiply, when at most N/3
of the shares are revealed, the secrecy of the computation
step is proved using universal computability of multi-party
protocols.

Query Processing. The correctness and secrecy follows
from the proof of the Reconst algorithm and the standard
assumption that the location-based server correctly executes
the queries and sends the results back to the parties.

Lemma 3. The protocol LocationSharing sends Õ(n) bits,

computes Õ(n) operations, and has O(log2 n) rounds of com-
munication.

We first compute the cost of each step of the protocol sepa-
rately and then compute the total cost. Based on [22], the
communication and computation complexity of the VSS sub-
protocol is O(poly(n)) when it is invoked among n parties.
Also, the VSS protocol takes constant rounds of communi-
cation.

• Setup. The communication and computation costs are
equal to those costs of the quorum building algorithm
of Theorem 3, which is Õ(1) for each party. This pro-
tocol takes constant rounds of communication.

• Input Broadcast. The input broadcast step invokes the
VSS protocol n times among N = O(logn) parties.
So, this step sends O(n · poly(N)) bits and performs
O(n · poly(N)) operations. Since the VSS scheme is
constant-round, this step also takes constant rounds.

• Random Generation. It is easy to see that the sub-
protocol GenRand sends O(N ·poly(N)) messages, per-
forms O(N · poly(N)), and has constant rounds.

• Circuit Computation. The Batcher’s sorting network [4]
has O(n log2 n) gates. So, the communication cost
of this step is equal to the communication and com-
putation cost of running O(n log2 n) instantiations of
Compare and RenewShares. Compare requires O(log q)
invocation of Multiply which sends O(poly(N)) mes-
sages and computes O(poly(N)) operations. Renew-
Shares also sends O(poly(N)) messages and computes
O(poly(N)) operations. Hence, the circuit computa-
tion phase sends O(n logn · log q · poly(N)) messages
computes O(n logn · log q · poly(N)) . Since the sort-
ing network has depth O(log2 n), and Compare takes
constant rounds, this steps takes O(log2 n) rounds of
communication.

• Query Processing. The costs are equal to the commu-
nication and computation costs of running n instan-
tiations of Reconst. Thus, this step sends Õ(n) mes-

sages and performs Õ(n) operations. Since Reconst

7

is a constant-round protocol and the communications
with the server take constant rounds, this step of the
protocol also takes constant rounds.

• Total. Since q > 3
2
kn2 logn, for a constant k, q =

O(n3) and log q = O(logn). Thus, Protocol 1 sends

Õ(n) bits and computes Õ(n) operations. Finally, the
protocol requires O(log2 n) rounds of communication.
This completes the proof of Theorem 1.

8. CONCLUSION AND OPEN PROBLEMS
We described a secure location sharing protocol that is

fully decentralized and tolerates up to n/6 active faults.
Moreover, our protocol is load-balanced and can tolerate
traffic-analysis attacks. The amount of information sent and
the amount of computations performed by each client scales
polylogarithmically with the number of parties. The scala-
bility is achieved by performing local communications and
computations in groups of logarithmic size and by relaxing
the latency requirements.

Several open problems remain. For example, can we de-
sign a spatial cloaking technique to trade-off anonymity for
efficiency while preserving the traffic-analysis resistance? Or,
can we decrease the number of rounds of our protocol using a
smaller-depth sorting circuit? For example, since our proto-
col sorts uniform random numbers, it seems possible to use a
logarithmic depth non-comparison-based sorting circuit like
bucket sort to achieve O(n)-anonymity.

9. ACKNOWLEDGMENTS
The authors would like to acknowledge supports from the

National Science Foundation (NSF) under grant number
CCF-1320994. The authors would also like to thank Jared
Saia from University of New Mexico and Aniket Kate from
Saarland University for their valuable contributions to the
discussions and for their supportive comments.

10. REFERENCES
[1] S.1223 - Location Privacy Protection Act of 2012.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in
c logn parallel steps. Combinatorica, 3(1):1–19,
January 1983.

[3] Bhuvan Bamba, Ling Liu, Peter Pesti, and Ting
Wang. Supporting anonymous location queries in
mobile environments with privacygrid. In Proceedings
of the 17th International Conference on World Wide
Web, WWW ’08, pages 237–246, New York, NY, USA,
2008. ACM.

[4] K. E. Batcher. Sorting networks and their
applications. In Proceedings of the April 30–May 2,
1968, spring joint computer conference, AFIPS ’68
(Spring), pages 307–314, New York, NY, USA, 1968.
ACM.

[5] Donald Beaver. Efficient multiparty protocols using
circuit randomization. In Joan Feigenbaum, editor,
Advances in Cryptology – CRYPTO ’91, volume 576
of Lecture Notes in Computer Science, pages 420–432.
Springer Berlin Heidelberg, 1991.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi
Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed

computing. In Proceedings of the Twentieth ACM
Symposium on the Theory of Computing (STOC),
pages 1–10, 1988.

[7] Elette Boyle, Shafi Goldwasser, and Stefano Tessaro.
Communication locality in secure multi-party
computation: how to run sublinear algorithms in a
distributed setting. In Proceedings of the 10th theory
of cryptography conference on Theory of Cryptography,
TCC’13, pages 356–376, Berlin, Heidelberg, 2013.
Springer-Verlag.

[8] Nicolas Braud-Santoni, Rachid Guerraoui, and Florian
Huc. Fast Byzantine agreement. In Proceedings of the
2013 ACM Symposium on Principles of Distributed
Computing, PODC ’13, pages 57–64, New York, NY,
USA, 2013. ACM.

[9] Ran Canetti. Universally composable security: a new
paradigm for cryptographic protocols. In Proceedings
of the 42nd Annual Symposium on Foundations of
Computer Science, FOCS ’01, pages 136–145, Oct
2001.

[10] David Chaum. The dining cryptographers problem:
Unconditional sender and recipient untraceability.
Journal of Cryptology, 1:65–75, 1988.

[11] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and
Madhu Sudan. Private information retrieval. J. ACM,
45(6):965–981, November 1998.

[12] I. Damg̊ard, Y. Ishai, M. Krøigaard, J. Nielsen, and
A. Smith. Scalable multiparty computation with
nearly optimal work and resilience. Advances in
Cryptology – CRYPTO ’08, pages 241–261, 2008.

[13] Varsha Dani, Valerie King, Mahnush Movahedi, and
Jared Saia. Quorums quicken queries: Efficient
asynchronous secure multiparty computation. In
Distributed Computing and Networking, volume 8314
of Lecture Notes in Computer Science, pages 242–256.
Springer Berlin Heidelberg, 2014.

[14] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: the second-generation onion router. In
Proceedings of the 13th USENIX Security Symposium,
pages 21–21, Berkeley, CA, USA, 2004. USENIX
Association.

[15] Joan Feigenbaum and Bryan Ford. Seeking anonymity
in an Internet panopticon. e-Print arXiv:1312.5307,
March 2014.

[16] B. Gedik and Ling Liu. Location privacy in mobile
systems: A personalized anonymization model. In
Distributed Computing Systems, 2005. ICDCS 2005.
Proceedings. 25th IEEE International Conference on,
pages 620–629, June 2005.

[17] Barton Gellman and Ashkan Soltani. NSA tracking
cellphone locations worldwide, snowden documents
show. The Washington Post, December 2013.

[18] R. Gennaro, M.O. Rabin, and T. Rabin. Simplified
VSS and fast-track multiparty computations with
applications to threshold cryptography. In Proceedings
of the 17th Annual ACM Symposium on Principles of
Distributed Computing, PODC ’98, pages 101–111.
ACM, 1998.

[19] Craig Gentry. Fully homomorphic encryption using
ideal lattices. In Proceedings of the 41st annual ACM
symposium on Theory of computing, STOC ’09, pages
169–178, New York, NY, USA, 2009. ACM.

8

[20] Gabriel Ghinita, Panos Kalnis, and Spiros
Skiadopoulos. Prive: Anonymous location-based
queries in distributed mobile systems. In Proceedings
of the 16th International Conference on World Wide
Web, WWW ’07, pages 371–380, New York, NY, USA,
2007. ACM.

[21] Marco Gruteser and Dirk Grunwald. Anonymous
usage of location-based services through spatial and
temporal cloaking. In Proceedings of the 1st
International Conference on Mobile Systems,
Applications and Services, MobiSys ’03, pages 31–42,
New York, NY, USA, 2003. ACM.

[22] Jonathan Katz, Chiu-Yuen Koo, and Ranjit
Kumaresan. Improving the round complexity of vss in
point-to-point networks. In Luca Aceto, Ivan
Damg̊ard, LeslieAnn Goldberg, MagnusM.
Halldorsson, Anna Ingolfsdottir, and Igor
Walukiewicz, editors, Automata, Languages and
Programming, volume 5126 of Lecture Notes in
Computer Science, pages 499–510. Springer Berlin
Heidelberg, 2008.

[23] Valerie King, Steven Lonargan, Jared Saia, and
Amitabh Trehan. Load balanced scalable Byzantine
agreement through quorum building with full
information. In MarcosK. Aguilera, Haifeng Yu,
NitinH. Vaidya, Vikram Srinivasan, and RomitRoy
Choudhury, editors, Distributed Computing and
Networking, volume 6522 of Lecture Notes in
Computer Science, pages 203–214. Springer Berlin
Heidelberg, 2011.

[24] Jiejun Kong and Xiaoyan Hong. Anodr: Anonymous
on demand routing with untraceable routes for mobile
ad-hoc networks. In Proceedings of the 4th ACM
International Symposium on Mobile Ad Hoc
Networking &Amp; Computing, MobiHoc ’03, pages
291–302, New York, NY, USA, 2003. ACM.

[25] Ashwin Machanavajjhala, Daniel Kifer, Johannes
Gehrke, and Muthuramakrishnan
Venkitasubramaniam. `-diversity: Privacy beyond
k-anonymity. ACM Trans. on Knowledge Discovery
from Data, 1(1), March 2007.

[26] Mohamed F. Mokbel, Chi-Yin Chow, and Walid G.
Aref. The new casper: Query processing for location
services without compromising privacy. In Proceedings
of the 32nd International Conference on Very Large
Data Bases, VLDB ’06, pages 763–774. VLDB
Endowment, 2006.

[27] Takashi Nishide and Kazuo Ohta. Multiparty
computation for interval, equality, and comparison
without bit-decomposition protocol. In Tatsuaki
Okamoto and Xiaoyun Wang, editors, Public Key
Cryptography – PKC 2007, volume 4450 of Lecture
Notes in Computer Science, pages 343–360. Springer
Berlin Heidelberg, 2007.

[28] Andreas Pfitzmann and Marit Köhntopp. Anonymity,
unobservability, and pseudonymity – a proposal for
terminology. In Hannes Federrath, editor, Designing
Privacy Enhancing Technologies, volume 2009 of
Lecture Notes in Computer Science, pages 1–9.
Springer Berlin Heidelberg, 2001.

[29] Adi Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[30] Mahdi Zamani, Mahnush Movahedi, and Jared Saia.
Millions of millionaires: Multiparty computation in
large networks. Cryptology ePrint Archive, Report
2014/149, 2014.

[31] Mahdi Zamani, Jared Saia, Mahnush Movahedi, and
Joud Khoury. Towards provably-secure scalable
anonymous broadcast. In the 3rd USENIX Workshop
on Free and Open Communications on the Internet,
FOCI ’13, 2013.

[32] Ge Zhong, Ian Goldberg, and Urs Hengartner. Louis,
lester and pierre: Three protocols for location privacy.
In Proceedings of the 7th International Conference on
Privacy Enhancing Technologies, PET’07, pages
62–76, Berlin, Heidelberg, 2007. Springer-Verlag.

9

	1 Introduction
	1.1 Our Contribution

	2 Model
	3 Our Results
	4 Related Work
	5 Preliminaries
	5.1 Notation
	5.2 Basic Tools

	6 Our Protocol
	7 Proofs
	7.1 Proof of Theorem 1

	8 Conclusion and Open Problems
	9 Acknowledgments
	10 References

