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ABSTRACT
Crowdsourced traffic monitoring employs ubiquitous smart-
phone users to upload their GPS samples for traffic estima-
tion and prediction. The accuracy of traffic estimation and
prediction depends on the number of uploaded samples; but
more samples from a user increases the probability of the
user being tracked or identified, which raises a significant pri-
vacy concern. In this paper, we propose a privacy-preserving
upload mechanism that can meet users’ diverse privacy re-
quirements while guaranteeing the traffic estimation quality.
In this mechanism, the user upload decision process is for-
malized as a mutual objective optimization problem (user
location privacy and traffic service quality) based on an in-
complete information game model, in which each player can
autonomously decide whether to upload or not to balance
the live traffic service quality and its own location privacy
for utility maximization. We theoretically prove the incen-
tive compatibility of our proposed mechanism, which can
motivate users to follow the game rules. The effectiveness
of the proposed mechanism is verified by a simulation study
based on real world traffic data.
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1. INTRODUCTION
Crowdsourced traffic monitoring is an important applica-

tion of mobile crowdsourcing for estimating real-time traf-
fic status and providing live traffic and navigation services.
Ubiquitous GPS-enabled smartphone users when traveling
along road segments in cities or rural areas are utilized to
collect traffic data by uploading their GPS samples con-
taining position, velocity, and time information to a central
server [1] [2]. Based on the collected GPS samples, the server
can estimate real time traffic status on the corresponding
road segments and quickly provide live traffic services such
as congestion warning, path planning, and navigation.

Typically, the quality of traffic services for a road seg-
ment provided by a crowdsourced traffic monitoring system
depends on the number of uploaded GPS samples for that
segment [3] [4] – more samples provide a more accurate traf-
fic estimation and prediction. However, the uploaded fine-
grained information about location and velocity from GPS-
enabled smartphones may reveal users’ sensitive information
such as traffic law violations, political affiliations, and med-
ical conditions [5]. Therefore, a smartphone user would not
use the crowdsourced traffic monitoring system unless its
location privacy can be fully protected.

Although smartphone users can upload GPS samples in
an anonymous way, the spatio-temporal characteristics of
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the uploaded samples from a vehicle and the vehicular mo-
bility constraints still allow vehicles to be tracked [6] [7].
In order to reduce the spatio-temporal correlations, a dis-
tributed approach is sought in this paper, in which smart-
phone users decide when and where to update GPS samples.
The grant challenge is to meet the diverse privacy require-
ments of smartphone users as different users may have differ-
ent privacy requirements and these requirements may vary
with time and location.
We propose a privacy-preserving upload mechanism that

can meet users’ diverse privacy requirements while guaran-
teeing the overall traffic estimation quality. The challenge
of our design lies in finding the upload strategy profile of the
users, who may not know others’ privacy levels, to meet the
basic requirement of traffic estimation. We formalize a mu-
tual objective optimization problem (user location privacy
and traffic service quality) to characterize the user upload
decision process based on an incomplete information game
model. In this game, each user is assigned a type, whose
probability density function (pdf) captures the distribution
of the user’s privacy level. A user, according to its belief
about its opponent’s type, balances the live traffic service
quality and its own location privacy to maximize its utility.
Base on the analytical results of the Nash equilibrium, we
take advantage of the feedback from the server to design a
mechanism that meets the basic requirements of traffic esti-
mation. Our major contributions are listed as follows:

• We quantify live traffic service quality and location
privacy by modeling the live traffic service quality as
a function of the number of upload users on a road
segment, and modeling location privacy as a function
of tracking incorrectness and identity uncertainty.

• We propose a privacy-preserving traffic data collec-
tion mechanism based on a game theoretic model, and
demonstrate that our mechanism achieves the dual
goal of traffic estimation quality guarantee and user
privacy protection. The incentive compatibility of our
mechanism also motivates the users to follow the game
rules.

This paper is organized as follows. Section 2 outlines the
related work. We present our crowdsourced traffic moni-
toring system model in Section 3 and describe our problem
formulation in Section 4. In Section 5, we present our incom-
plete information game model for analyzing users’ upload
behaviors. We then propose an optimal privacy-preserving
upload mechanism in Section 6. In Section 7, we evaluate
our mechanisms through a simulation study based on real
world traffic data. We conclude this paper in Section 8.

2. RELATED WORK
In crowdsourced traffic monitoring systems, smartphone

users may upload GPS samples in an anonymous way to pro-
tect their location privacy. However, anonymization tech-
niques are not sufficient for such a purpose [6–8]. Mon-
tjoye et al. [6] studied a fifteen-month mobility trace data of
one and half million individuals and found that four spatio-
temporal points are enough to uniquely identify 95% of them.
Though anonymization can hide obvious identifiers, vehicu-
lar mobility constraints and spatio-temporal characteristics
of the samples from an anonymous vehicle allow itself to be
traced.

Various methods to reduce the spatio-temporal correlation
against the tracking attack were proposed [8]. These tech-
niques can be classified as either centralized or distributed.
In the centralized approaches [9–11], GPS samples are be-
ing processed, i.e., reducing the number of recorded sam-
ples, integrating the recorded samples, or introducing noise
deliberately to the samples, at a trusted centralized privacy
server before they are used to estimate traffic. An obvious
drawback of centralized approaches is their dependence on
the trusted privacy server. Once a server is compromised,
the privacy of all associated users is disclosed [12].

Distributed approaches [4, 13, 14] do not depend on any
centralized server, but allow smartphone users to determine
when or where to update GPS samples at their own wills. As
a distributed approach, mix-zone anonymizes user identity
by enforcing that a set of users enter, change pseudonyms,
and exit a mix-zone in a way such that the mappings between
their old and new pseudonyms are not revealed. Palanisamy
et al. [13] proposed a mix-zone framework to protect loca-
tion privacy of mobile users traveling on road networks. Liu
et al. [14] aimed to address the problem of optimal multiple
mix-zone placement. We claim that mix-zones can hardly
support traffic monitoring because users can not upload their
locations before exiting a mix-zone. In [4], Hoh et al. pro-
posed a system to specify geographic markers that indi-
cate where vehicles should provide location updates. These
markers can be placed to guarantee the maximum tracking
uncertainty and to avoid particular privacy sensitive loca-
tions. Nevertheless, the markers can hardly meet the diverse
privacy requirements of all users. Our approach not only al-
lows users to control their own privacy, but also achieves a
dual goal of traffic estimation quality and user privacy.

As game theory is suitable for investigating strategic de-
cision making of multiple players with different objectives,
there has been a growing interest in applying game-theoretic
approaches to study the issues of mobile network security
and privacy [15–18]. Freudiger et al. [16] analyzed the non-
cooperative behaviors of mobile nodes in a popular loca-
tion privacy protection mechanism (mix-zone) with a game-
theoretic model. Yang et al. [17] provided a truthful auction-
based incentive mechanism for mobile users to join an anony-
mous set so that k-anonymity can be achieved. Shokri et al.
[18] studied the location-privacy of mobile users in location-
based services (LBSs) by using the framework of Stackelberg
Bayesian games. In our approach, we adopt an incomplete
information game to analyze the behaviors of smartphone
users with mutual objectives (location privacy vs. traffic
service quality) in a crowdsourced traffic monitoring system,
and propose a privacy-preserving mechanism that possesses
an important property of incentive compatibility.

3. SYSTEM MODEL
In crowdsourced traffic monitoring, each user is required

to periodically upload its GPS samples, which can be used
to estimate the real-time traffic condition by a server [2]. In
return, the user can get traffic services such as live traffic
and navigation from the server. In practice, the accuracy
of the traffic estimation, i.e., the QoS Q of the traffic ser-
vices in a period of time, depends on the number k of the
involved smartphone users who upload GPS samples peri-
odically [4]. For clarity and simplify, we consider individual
road segments, which can be easily extended to road net-
works. Assume a set of smartphone users P = {1, 2, · · · , n}
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on a road segment are willing to provide their GPS samples
because they expect to get a better Q. For the problem of
malicious users lying about their values, reputation mecha-
nism is one possible solution, which is outside the scope of
the paper. Since smartphones are owned by different indi-
viduals, it is reasonable to assume that users have different
location privacy levels LP . The location privacy loss caused
by uploading a GPS sample is denoted by c. We also as-
sume that the server is curious but honest, it honestly pro-
vides traffic services but intends to disclose the users’ private
information.

3.1 Traffic Service Model
As described above, the accuracy of traffic estimation Q

depends on the number k of involved smartphone users on
a road segment [4]. A larger k leads to a larger value of Q.
Our empirical study1 indicates that the root-mean-square
(RMS) error of speed estimates on road segment i exhibits
a monotonic decrease with the number of upload users, de-
noted by ki, on the segment (Fig. 1(a)). Let Qi = 1−1RMS

denote the accuracy of the traffic estimation on road seg-
ment i, where 1RMS represents the normalized RMS error.
Then we can fit an empirical pdf of Qi for the given road
segment i with a logarithmic function:

Qi = logα(1 + kiβ), (1)

where α and β are system parameters, and the logα(1+kiβ)
term reflects the Qi’s diminishing return on ki, the number
of upload users. In this study, we obtain the values of α
and β from an empirical pdf of Q by using unconstrained
nonlinear minimization over real world data (Fig. 1(b)). In
our experiment, we consider three kinds of road segments:
straight sections, ramps, and intersections. To achieve a
spatial accuracy of 83% (RMS < 10), the server needs a
minimum of 3 uploads per km for straight sections, 5 uploads
per km for ramps, and 8 uploads per km for intersections.

3.2 Privacy Threat Model
The threats to the location privacy of users by an adver-

sary can be classified into two types: i) tracking individual
vehicles from a mix of anonymous uploaded samples, and ii)
finding the true identities of a given uploaded sample.

3.2.1 Tracking Inference Attack
In this attack, the adversary’s goal is to extract a sub-

set of samples generated by the same vehicle, given a series
of GPS samples mixed from multiple users. The adversary
associates a prior uploaded sample with the next one clos-
est to its prediction, or with the most likely sample. The
formulation of such a procedure is described by:

argmax
x

p(x|xi−1), (2)

where the conditional probability p(x|xi−1) is defined as the
probability of the next uploaded sample at location x given
the prior sample at xi−1. In a straight section, an adver-
sary can predict the next uploaded location x according to
x̂ = v∆t + xi−1, where v is the reported speed at the prior
time or the average speed in historical samples, and ∆t is
the difference between the timestamps of the two uploaded

11. A month of GPS data from 28,000 taxis in Beijing were
used to simulate the upload behavior of smartphone users
on road segments. http://www.datatang.com/data/2987
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Figure 2: The mobility profile and speed profile in
a ramp or an intersection.

samples. In a ramp or intersection, an adversary, knowing
the mobility profile Pij and the speed profile Vij (as shown
in Fig. 2), which can be obtained by historical traces and
general mobility constraints [5], can infer the location where
the vehicle will reside at the next time.

3.2.2 Identity Inference Attack
In an identity inference attack, a GPS sample with un-

known true identity is given, and the adversary’s goal is to
infer the most likely owner of the sample with the collected
side information. The formulation of such a procedure is
described below. Given a specific sample, compute

argmax
i

Pr(ri(t)|x(t)), (3)

where ri(t) is the side information about the location of
user i at time t collected by the adversary, and x(t) is the
recorded location at time t in the sample. In practice, the
side information may be obtained through a number of prac-
tical means as follows: i) the locations of the users can be
extracted from other public databases [9] such as attendance
records and automatic payment records; and ii) users may
disclose information on their whereabouts either voluntarily
or inadvertently, i.e., by a casual conversation, or by pub-
lished media [7] [19].

4. PROBLEM DESCRIPTION

4.1 Traffic Service Quality
According to Section 3.1, the accuracy of traffic estimation

depends on the number of upload users. Let si be the upload
strategy of user i, with two possible values: upload (Y ) or
not (N). Then (1) can be rewritten as:

Q = logα(1 + β

n∑
i=1

I(si, Y )), (4)

where I(x, y) = 1 if x = y and 0 otherwise.
The objective is to guarantee the upload strategy pro-

file (s1, s2, · · · , sn) of the users such that Q ≥ Qmin, where
Qmin is the minimum service quality requirement. Since
users are more concerned about the change of traffic status
at rush hours, the update frequency of live traffic informa-
tion should be increased, and the number of upload users
should be limited in order to improve the server’s process
efficiency. At the light traffic case, there is still a need for
one or two users to upload their GPS samples in order to
handle unexpected situations such as accidents.

4.2 Location Privacy
The location privacy of a user is determined by tracking

incorrectness [5] and identity uncertainty of the user (see
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Figure 1: Fitting estimation accuracy using logarithmic functions, where α = 5.0239 × 106 and β = 1.024 × 105

for straight sections, α = 7.1693× 106 and β = 1.011× 105 for ramps, and α = 2.4625× 106 and β = 3.060× 104 for
intersections. To achieve a spatial accuracy of 83% (RMS < 10), the server needs a minimum of 3 uploads for
straight sections, 5 for ramps, and 8 for intersections, per kilometer.

Section 3.2). The incorrectness of the tracking attack is de-
fined to be the expected distance between the true location
xi and its estimate based on p̂(x|xi−1), which can be com-
puted by the following sum:∑

x

p̂(x|xi−1)Iε(x, xi), (5)

where Iε(x, xi) equals 0 if and only if ∥x− xi∥ < ε, with ε
being a small positive real number, and 1 otherwise.
We quantify the uncertainty of the identity inference using

the entropy of the distribution p̂(P = IDi|x):

H =
∑
i

p̂(P = IDi|x)log2
1

p̂(P = IDi|x)
(6)

The entropy H shown above indicates how hard to pinpoint
a single outcome IDi out of P at location x. The higher
the entropy, the higher the adversary’s uncertainty about
an identify.
By combining (5) and (6), we obtain the normalized loca-

tion privacy of user i immediately before it makes a decision
regarding whether to upload or not:

LP−
i =

1

2

(
H

log2n
+

∑
x∈R

p(x|xi−1)Iε(x, xi)

)
(7)

Notice that uploading GPS samples suffers from location
privacy loss because the adversary can get more information
about users’ location to obtain more accurate inference out-
comes. Let ci be the upload cost of user i, 0 < ci < 1, then
the location privacy level according to user i’s strategy can
be computed by

LPi(si) =

{
LP−

i − ci, si = Y,
LP−

i , si = N.
(8)

Typically, the higher the privacy level LP−
i , the lower the

probability of being traced and identified, the lower the cost
ci.

The objective of user privacy protection is to let each user
determine its upload strategy si so as to maximize (8). Since
user privacy is in conflict with service quality, users should
consider a tradeoff between traffic service quality and their
own privacy to make a decision.

4.3 Optimization Problem
Given the minimum service quality requirement Qmin and

the privacy level LP−
i of each user on a road segment, the

optimization problem is to find the upload strategy profile
s = (s1, s2, · · · , sn) that maximizes the total privacy level∑

i LPi such that Q ≥ Qmin. The solution approach must
consider the following two challenges: 1) user i may not
know others’ privacy level; and 2) how to estimate the min-
imum service quality requirement Qmin.

For the first challenge, we introduce an incomplete infor-
mation game model [20] in which each user is assigned a type
θ, whose probability density function f(θ) indicates the dis-
tribution of the user’s privacy level. In other words, each
user is aware of only the privacy level distribution, not the
actual privacy level. For the second challenge, we exploit the
server’s global view (i.e., historical traffic status) to estimate
the minimum service quality requirement.

5. GAME MODEL
We introduce the incomplete information game [20] in

this section to model the upload decision process of smart-
phone users. In this game, players balance their location
privacy requirements and traffic estimation accuracy to de-
termine whether or not to upload. The set of players P =
{1, 2, · · · , n} corresponds to the set of smartphone users on
a specific road segment. Each player has two possible moves
si: upload (Y ) or not (N). The reward received by user i is
determined by the traffic estimation quality and its privacy
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level, and the utility of user i is defined by:

ui(si(θi), s−i(θ−i)) = wQi(si(θi), s−i(θ−i)) + LPi(si(θi)),
(9)

where Qi(si, s−i) is the traffic service quality determined by
the moves of the user i and its opponents −i, LPi(si) is
the location privacy of user i , w can be considered as the
expectation degree of users to Q, and θi is the type of user
i according to a common probability distribution f(θi) [20].
Note that θi can be considered as the location privacy level
immediately before the game.

5.1 Nash Equilibrium
The concept of Bayesian Nash Equilibrium [16] for the

incomplete information game is introduced as follows.

Definition 1. A strategy profile s∗ = {s∗i (θi), s∗−i(θ−i)}
is a pure-strategy Bayesian Nash equilibrium (BNE) if, for
each player i:

s∗i (θi) ∈ argmax
si∈{Y,N}

∑
θ−i

f(θ−i)ui(si, s
∗
−i(θ−i)), ∀θi (10)

The BNE in our user upload game can be obtained by
comparing the average utility of Y with that ofN , as follows:

E[ui(Y, s−i)] = wE[Q(Y, s−i(θ−i))] + LP−
i − ci

E[ui(N, s−i)] = wE[Q(N, s−i(θ−i))] + LP−
i

(11)

where Y is the NE strategy of user i for ci < w(E[Q(Y, s−i(
θ−i))] − E[Q(N, s−i(θ−i))]), and N is the NE strategy of
user i for ci ≥ w(E[Q(Y, s−i(θ−i))]− E[Q(N, s−i(θ−i))]).
We denote the upload probability of user i by pi =∫ 1

θ̃i
f(θi)dθi, where θ̃i is the minimum privacy level at which

user i is willing to upload. Let PY be a subset of k up-
load users in the given set P ; thus the probability that
the number of upload users is equal to k is Pr(K = k) =∏

i∈PY
pi

∏
j∈P−PY

(1− pj). Therefore, the average quality
of traffic estimation is shown as follows:

E(Q) =

n∑
k=1

Pr(K = k)logα(1 + βk), (12)

and there exists k̂ such that logα(1 + k̂β) ≈ E(Q). Hence
we have

E[Q(Y, s−i(θ−i))]− E[Q(N, s−i(θ−i))] ≈ logα
1 + β(1 + k̂)

1 + βk̂
.

(13)
From (11) and (13), we can rewrite the upload threshold as

wlogα
1+β(1+k̂)

1+βk̂
.

6. THE UPLOAD MECHANISM
Our design goals are to provide users with an appropri-

ate level of privacy preservation and to achieve an overall
optimality of the traffic service quality and user privacy.

6.1 Upload Algorithm
We propose our privacy-preserving traffic data collection

algorithm in this section, which is called UploadGame. Illus-
trated in Algorithm 1, UploadGame consists of two phases:
the k determination phase and the upload user selection
phase.
In the k determination phase, the server estimates the re-

quired number of upload users according to the historical

Algorithm 1 UploadGame

1: //Phase 1: Server determines k, the number of upload
users.

2: Calculate Q(v) according to the estimated average
speed:

3: Q(v) = ρ

σ
√

2π
e
− (v−µ)2

2σ2

4: Calculate k according to Q(v):

5: k = αQ(v)−1
β

6: //Phase 2: Users make a decision regarding whether
to upload or not.

7: Calculate w according to k:
8: w = λ

F−1(1−k/n)logα(1+β(k+1))/(1+βk)

9: if ci < wlogα
1+β(1+k)

1+βk
then

10: Play Y
11: else
12: Play N
13: end if

traffic status. More specifically, we depict the function rela-
tionship between the required quality of traffic estimation on
a road segment and the historical estimates of the average
speed based on the users’ expectation of the traffic estima-
tion quality (see Section 3.1). Here, we assume the function
obeys a normal distribution:

Q(v) =
ρ

σ
√
2π

e
− (v−µ)2

2σ2 , (14)

where ρ > 0 is a system parameter, µ and σ are respectively
the mean and standard deviation, and v is the historical es-
timate of the average speed. This equation reflects that the
required quality is not high for a low speed because the low
speed at rush hours does not change abruptly; and the re-
quired quality is also not high for a high speed because the
high speed in free flowing traffics does not need an accurate
estimation. Of course, we can use other function relation-
ships, i.e., if users more concern about accident occurrence,
we use the function relationship between Q and ∆v to cap-
ture the changes in the traffic. According to the required
traffic estimation quality in (14), we have k = (αQ(v)−1)/β,
where k is the required number of upload users we need to
get.

In the upload user selection phase, each user calculates
the value of w for which the NE can be achieved, and then
decides whether to upload or not based on w. Recall that
the desired NE is achieved if and only if we choose an ap-
propriate value of w. If the players are aware of the upload
costs of their opponents, i.e., c1 ≤ c2 ≤ · · · ≤ cn, it is easy
to get w = ck

logα(1+β(k+1))/(1+βk)
. However, since each player

does not know the privacy levels and privacy costs of others,
we need to estimate the value of ck. Typically, the higher
the current privacy level, the lower the upload cost. There-
fore we assume LPi = λ/ci. As the privacy level obeys the
distribution f(θi), we have

k

n
=

∫ 1

θ

f(θi) dθi, (15)

where n is the number of smartphone users in the road seg-
ment. According to (15), we have θ = F−1(1− k/n). Then
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the estimate value of ck is:

ĉk = λ/θ =
λ

F−1(1− k/n)
(16)

Furthermore, we obtain the value of w by:

w =
λ

F−1(1− k/n)logα(1 + β(k + 1))/(1 + βk)
(17)

Then users decide whether to upload or not according to the
threshold defined in Section 5.1.

6.2 Game Analysis

6.2.1 Nash Equilibrium Result
The existence and uniqueness of a NE in the incomplete

information game imply the convergence of Algorithm 1,
given by Theorem 1.

Theorem 1. The strategy profile computed by Algorithm 1
is a unique NE of UploadGame.

Proof. Without loss of generality, assume that c1 ≤ c2 ≤
· · · ≤ cn, and s∗ = {Y 1, Y 2, · · · , Y k, N1, · · · , Nn−k} is
an upload strategy profile computed by Algorithm 1. We
first prove that the strategy profile s∗ is a NE. Let g(x) =
logα(1+βx)− logα(1+β(x−1)) be a real-valued continuous
function on the interval [1, n], where α, β > 0 are defined ac-
cording to Fig. 1. Then the derivative of g(x) with respect
to x is given by:

g′(x) =
−β2

(1 + βx)(1 + β(x− 1)) ln a
< 0 (18)

Since the derivative of g(x) is negative, g(x) is a monotoni-
cally decreasing function. Let c(x) be a real-valued contin-
uous function on the interval [1, n] such that c(i) = ci and
c′(x) ≥ 0. Then the derivative of G(x) = wg(x)− c(x) with
respect to x is G′(x) = wg′(x) − c′(x) < 0. Note that from
Algorithm 1, G(1) < 0 < G(n). According to the intermedi-

ate value theorem, there exists k̃ such that G(k̃) = 0. When

i ≤ k = ⌊k̃⌋, we have

ui(Y, s−i)− ui(N, s−i)

= wlogα
1+β(k̃)

1+β(k̃−1)
− c(i)

= wlogα
1+β(k̃)

1+β(k̃−1)
− c(k̃) + c(k̃)− c(i)

= G(k̃) + (c(k̃)− c(i)) > 0

Thus Y is the dominant strategy for i ≤ k. When i > k =
⌊k̃⌋, we have

ui(Y, s−i)− ui(N, s−i)

= wlogα
1+β(k̃+1)

1+βk̃
− c(i)

= G(k̃ + 1) + (c(k̃ + 1)− c(i)) > 0

Thus N is the dominant strategy for i > k.
Therefore, s∗ = {Y 1, Y 2, · · · , Y k, N1, · · · , Nn−k} is a NE

of the upload game.
We next prove the uniqueness. Assume that s∗ = {Y 1, · · · ,

Y h, N1, · · · , Nn−h} is also a NE of the upload game. From
Algotithm 1, we conclude that h ≤ k. For q < h, there ex-

ists ch+1 such that ch+1 < wlogα
1+β(1+k̃)

1+βk̃
. In other words,

user h + 1 can increase its utility by unilaterally changing
its strategy from N to Y , contradicting the NE assumption.
Therefore k = h, which proves the uniqueness of s∗.

6.2.2 Incentive Compatibility of UploadGame
We analyze the incentive compatibility of UploadGame in

this section. Incentive compatibility is a characteristic of
a mechanism whereby each participant knows that its best
strategy is to follow the rules, no matter what other par-
ticipants would do [17]. Being incentively compatible, the
mechanism can eliminate users’ fears about market manip-
ulation.

Definition 2. A mechanism is incentively compatible if
the direct-revelation mechanism can induce a Bayesian-Nash
equilibrium s∗() = (s∗1(), · · · , s∗n()) such that s∗i (θi) = θi,
∀θi ∈ Θi, ∀i ∈ N .

In other words, a user achieves its optimal utility if it
reports a true valuation (the cost in this paper).

Theorem 2. UpdateGame is incentively compatible.

Proof. Let the upload cost of user i be ci, while user i
chooses c′i. Consider the following two cases.

Case 1: ci < wlogα
1+β(k+1)

1+βk
. If c′i < ci or ci < c′i <

wlogα
1+β(k+1)

1+βk
, it does not affect the upload outcomes of the

users and their utilities do not change. If c′i ≥ wlogα
1+β(k+1)

1+βk
,

user i does not upload its GPS samples, and its utility be-
comes ui(N, s∗−1) = wlogα(1+βk)+LP−

i ≤ wlogα(1+β(k+
1)) + LP−

i − ci = ui(Y, s
∗
−1). User i can increase its utility

by unilaterally changing its strategy from N to Y , so user i
’s utility is reduced by cheating with c′i.

Case 2: ci ≥ wlogα
1+β(k+1)

1+βk
. If c′i > ci or ci > c′i ≥

wlogα
1+β(k+1)

1+βk
, user i does not upload and its utility does

not change. If c′i < wlogα
1+β(k+1)

1+βk
, user i chooses to upload

and its utility becomes ui(Y, s
∗
−1) = wlogα(1 + β(k + 1)) +

LP−
i − ci < wlogα(1 + βk) + LP−

i = ui(N, s∗−1). Cheating
would reduce user i’s utility.

Therefore, UpdateGame is incentively compatible.

7. EXPERIMENTAL EVALUATION
We verify the effectiveness and incentive compatibility of

UploadGame in this section. The traffic data used in the ex-
periments contains one month of GPS coordinates for 28,000
taxis in Beijing, and the GPS coordinate update period of
each taxi is less than 30 sec [21]. In the simulation, we con-
sider two specific scenarios: free-flowing traffic and stop-and-
go traffic (rush hours). As shown in Fig. 3, we recursively
divide the geographic region of interest into four smaller
rectangles (or quadrants). Each rectangle is defined by a
triplet < level, x, y >, where level is the depth of recursion,
x and y are the offsets from the top left corner of the region.
Here we set level = 3, which corresponds to 8 × 8 = 64
rectangles.

7.1 Tradeoff between Location Privacy and Traf-
fic Estimation Quality

We experimentally compare our mechanism UploadGame
with a naive upload mechanism, in which the users decide
whether or not to upload according to the strategy thresh-
old with a fixed value of w. In this study, user 1 and user
3 (correspondingly user 5 and user 7) are driving on route
1 from < 3, 8, 1 > to < 3, 2, 7 > with a free flowing traffic
(correspondingly stop-and-go traffic); user 2 and user 4 (cor-
respondingly user 6 and user 8) are driving on route 2 from
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Figure 3: Region partition.

< 3, 1, 8 > to < 3, 8, 3 > with a free flowing traffic (corre-
spondingly stop-and-go traffic). User location privacy and
the estimated traffic quality are computed once every two
minutes, and the results are reported in Fig. 4 and Fig. 5,
respectively.
We observe that the user location privacy level in the stop-

and-go traffic is higher than that in the free flowing traffic
(Fig. 4). This is because more number of users increases
the tracking incorrectness and the identity uncertainty in
stop-and-go traffic. As expected, UploadGame improves
about 25% of user privacy in stop-and-go traffic compared
to the naive scheme, while maintaining an appropriate pri-
vacy preservation in the free flowing traffic. Notice that
there exist sudden fallings and risings in the curves. These
are attributed to the facts that a user’s upload at the cor-
responding time increases the possibility of being tracked
and identified (causing fallings), and that it is hard to trace
a user when it passes a ramp or an intersection (causing
risings).
Fig. 5 demonstrates the QoS of traffic estimation received

by the users. The QoS in stop-and-go (> 83%) is higher
than that in free flowing traffic (< 83%) because of the larger
number of upload users in the stop-and-go traffic case. For-
tunately, there is no need to have a high QoS in the free
flowing traffic case as users have less concerns. However, in
order to handle unexpected events, UploadGame encourages
users to upload their GPS samples, resulting in a higher QoS
(Fig. 5(a) and Fig. 5(b)) in free flowing traffics.

7.2 Incentive Compatibility of UploadGame
We also verify the incentive compatibility of UploadGame

by randomly picking 4 users in free flowing traffic and 4 users
in stop-and-go traffic at the region < 3, 4, 3 >. These users
are allowed to choose upload costs that are different from
their true costs. We illustrate the results in Fig. 6. As one
can see, the users achieve their optimal utility if they play
truthfully. The markers in the graph are the users’ utilities
according to their true upload costs. We notice that users
choosing other privacy costs can not increase their utilities.

8. CONCLUSION
In this paper, we propose an upload mechanism to pro-

tect user location privacy in crowdsourced traffic monitoring.
Our mechanism is user-centric, and can achieve the dual goal
of traffic estimation quality guarantee and user privacy pro-
tection. We first quantify the traffic service quality and user
location privacy. Then we design the user upload algorithm
UploadGame that meets the basic traffic service quality re-
quirement, and meanwhile provides with a strong privacy
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Figure 6: Incentive compatibility of UploadGame.

guarantee. Through the incomplete information game anal-
ysis, we theoretically prove the convergence and incentive
compatibility of the UploadGame mechanism. Finally, we
verify the effectiveness of UploadGame with a real world
traffic data.
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Figure 4: Location Privacy of users for both the free flowing traffic and the stop-and-go traffic.
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