
Universal Routing in Multi Hop Radio Networks

Bogdan S. Chlebus
∗

Department of Computer
Science and Engineering

University of Colorado Denver
Denver, Colorado, USA

Vicent Cholvi
†

Department of Computer
Science

Universitat Jaume I
Castellón, Spain

Dariusz R. Kowalski
‡

Department of Computer
Science

University of Liverpool
Liverpool, UK

ABSTRACT

We study dynamic routing in multi-hop radio networks in
a specialized framework of adversarial queuing. We con-
sider cross-layer interactions of the following three compo-
nents of routing protocols: transmission policies for medium-
access control, scheduling policies on the network layer, and
hearing-control mechanisms through which transmissions in-
teract with a scheduler.

We propose a model of adversarial queuing in radio net-
works in which transmission policies are delegated to oracles
and adversaries control packet injection. For such a setting,
we propose a definition of universal stability that takes into
account not only how packets are injected, as in the wire-
line adversarial model, but also how transmission policies
behave.

We investigate which scheduling policies are universally
stable, depending on hearing control, and settle this question
for many popular scheduling policies.
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1. INTRODUCTION
Wireless data communication involves multiple technolo-

gies interacting with each other. In order to study commu-
nication algorithms for wireless networks, one needs models
that abstract from incidental details and capture the essen-
tial aspects of wireless networking.

A node of a wireless network can transmit messages within
its transmission range. Such a range is determined by the
power of the transmitting device and the surrounding to-
pography. A possible approach to model this is through
geometric wireless networks in which ranges are determined
by distances assigned to nodes. A popular special case of ge-
ometric networks has all the ranges equal, so that the topolo-
gies of such networks are unit-disk graphs; see [18, 27, 32].
Another alternative is a signal-to-interference-plus-noise ra-
tio (SINR) model which incorporates interference and noise
explicitly in determining ranges of reliable transmissions. In
a SINR setting, a transmission is successful when a suitable
ratio of “good” to “bad” components of a received signal is
above a threshold; see [16, 22, 23, 33].

Radio data networks model wireless communication in
which just one channel is used for transmissions. Signal
receptions at a node that overlap in time interfere with one
another, so that none can be received successfully. The feasi-
bility of a node-to-node direct transmissions determines how
nodes can reach each other; reachability so defined is a rela-
tion on the nodes of a network. This suggests modeling the
topology of a multi-hop network as an arbitrary connected
graph where edges represent direct reachability; see [12, 13].

The model used in this paper abstract from geometrical
constraints imposed on ranges of transmissions and repre-
sent the relation of reachability as a general graph. We con-
sider simple graphs, that is, with symmetric bi-directional
edges; see [25]. This is to make a dialog feasible between
pairs of nodes the can communicate by direct transmissions.
In particular, when a node receives a transmission then send-
ing back a response is possible in principle.

Dynamic store-and-forward routing in wireless networks
differs from the respective routing in wireline networks. In
wireline networks, a scheduling policy, that manages queues
of packets at nodes, is the only essential component of source
routing when packets have their routes determined from the
point of injection. This is because a node can transmit a
packet per round over any outgoing link, and simultane-
ously accept a packet per round over any incoming link,
these packets coming and going simultaneously. In wire-
less networks, coordinating timings of transmissions among
nodes, with the goal to avoid collisions resulting from receiv-
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ing overlapping transmissions, has the potential to improve
performance of routing. Such coordination is handled by a
transmission policy, which is another essential component
of a routing protocol. These two policies need to cooper-
ate with each other, which is delegated to a hearing control
mechanism.

The structuring of routing protocols we consider can be
related to the OSI model. Protocol stack separates subtasks
of a communication algorithm into layers of their individual
functionalities. Coordinating message transmissions among
nodes has the purpose to avoid collisions of messages, so it
can be considered to belong to the medium-access control
sublayer of the data-link layer. A mechanism of exchang-
ing control messages to provide hearing control belongs to
the logical-link control sublayer of the data-link layer. A
scheduling policy can be considered as operating on the net-
work layer.

Cross-layer approach proposes to relax these functional-
ity specifications to enhance efficiency. Such a relaxation is
accomplished by providing additional interactions between
layers. See [19, 21, 29, 31] for more on the motivation and
guidelines in developing cross-layered algorithms.

Our results.
We study dynamic routing in multi-hop radio networks in

the framework of adversarial queuing. We consider cross-
layer interactions of the following three components of rout-
ing protocols: transmission policies for medium-access con-
trol, scheduling policies on the network layer, and hearing-
control mechanisms through which transmissions interact
with a scheduler.

We propose a model of adversarial queuing in radio net-
works in which transmission policies are delegated to oracles
and adversaries control packet injection. For such a setting,
we propose a definition of universal stability that takes into
account not only how packets are injected, as in the stan-
dard wireline adversarial model, but also how transmission
policies are integrated with scheduling.

We investigate which scheduling policies are universally
stable, depending on hearing control, and settle this question
for many popular scheduling policies.

Previous work.
Routing in radio networks was considered as early as in

Gitman et al. [20]; for recent contributions see Kuhn et al.
[26, 28]. For surveys of routing in wireless networks see An-
drews [4], Rajaraman [30], and Urrutia [32]. In particular,
paper [4] discusses methods of assigning wireless resources
under scenarios when the rates at which users can receive
data are time-varying and user depending, due to channel
fading and user mobility. A difference between our radio
adversarial model and the one addressed by Andrews in [4]
is that we incorporate collisions into the model while they
assume that a node can transmit to only one neighbor in
a round. Adversarial queuing in general wireless networks
was studied by Andrews and Zhang [7, 8], and by Cholvi
and Kowalski [15]. Wang et al. [34] proposed an analyti-
cal model to study interplay between medium access control
and packet routing disciplines.

Related work.
Adversarial queuing in wireline networks, as a method-

ology to study stability in the worst case abstracting from

stochastic assumptions on traffic generation, was initiated
by Borodin et al. [10] and Andrews et al. [5]. They also in-
troduced the notions of universal stability of protocols and
networks. A systematic account of issues related to univer-
sal stability in adversarial routing was given by Àlvarez et
al. [2]. Extensions of adversarial queuing to address other
aspects of networks were proposed in the following works.
Àlvarez et al. [1] considered routing when packets have pri-
orities. Networks with links that occasionally fail were stud-
ied by Àlvarez et al. [3]. Networks with bandwidth and
delay parameters associated with links were considered in
Blesa et al. [9] and Borodin et al. [11]; such behavior of
networks can be considered as capturing some properties of
wireless networks. Aspects of adversarial queuing in wire-
line networks were addressed by Andrews et al. [6], Cholvi
and Echagüe [14], and Echagüe et al. [17].

2. TECHNICAL PRELIMINARIES
A network is modeled as a simple graph G = (V, E), where

V is the set of nodes and E is a set of edges. A node of the
graph represents a transceiver that can act both as a sender
and as a receiver. An edge (u,w) represents the property
that the nodes u and w can transmit directly to each other,
in the sense that there are two independent directed links
from u to w and from w to u available for direct transmis-
sions.

There are n nodes in the network. Each node is assigned
a unique name, which is an integer in [0, n− 1]. Every node
knows n and its own name, in the sense that they can be
used as a part of code of protocols.

Nodes have access to local clocks ticking at the same rate.
Time is divided into time intervals of fixed length that we
call rounds. Local computations at a node are considered to
be of negligible duration.

Messages.
The contents of transmissions are structured into chunks

of data that we call messages. Messages are of two kinds:
packets and control messages. A packet carries a header
that includes a destination address followed by this packet’s
contents. A control message carries a string of bits used
to coordinate actions among the nodes. Control messages
are significantly shorter than packet ones. We assume that
transmitting a control message takes an insignificant amount
of time compared to what is needed to transmit a packet of
data. Rounds are scaled to the amount of time it takes
to transmit a message with a packet. Packets and control
messages are interleaved in executions of routing protocols.

Data transmissions.
A node may transmit exactly one message in a round or

pause in this round. A message received successfully by a
node is said to be heard by that node.

Radio networks are defined by the following two proper-
ties. First, when two messages arrive at a node v transmit-
ted by its neighbor such that their receipt overlaps in time
then they interfere with each other and none can be heard
by v. Second, when only one neighbor of a node v transmits
a message then v hears this message.

Radio networks are single port in the sense that a node
can transmit at most one message in a round and hear at
most one message in a round.
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Routing.
A routing algorithm manages how packets traverse their

respective assigned paths. We consider distributed routing
algorithms, in which each node runs its code independently.
Packets to be forwarded to a node’s neighbors may need to
wait for their turn to be transmitted. Each node contains a
buffer space to temporarily store data to be transmitted in
the future, which is organized as a queue. Each node main-
tains a single queue, rather than a dedicated queue for each
outgoing link, as in the wireline adversarial queuing model.
Protocols we consider operate under the principle that no
packet is discarded until its delivery to the destination. To
make this meaningful, we assume that the buffer space at
a node can store an arbitrarily large number of packets, al-
though we want to keep bounded queues at nodes.

Packets get injected into nodes to be delivered to their
respective destination nodes by traversing paths. We con-
sider source routing in which the entire path of a packet is
known at the source where the packet is injected. When
a packet traverses a link from v to w on such a path, by
way of v transmitting the packet and w hearing it, then w
is the intended recipient of the packet transmitted by v. A
packet message carries a header which includes the packet’s
itinerary. This allows for a node that hears a packet mes-
sage to decide how to process the message. The following
are three cases of what occurs when a node v hears a mes-
sage. One case is when v is not the intended recipient of
the message: then v discards the message. The other occurs
when v is the final destination for the message: then v con-
sumes the message. The final case is when v is the message’s
recipient but not its final destination: then v enqueues the
message to wait to be forwarded to a neighbor.

Hearing control.
What we call hearing control is a mechanism that coor-

dinates scheduling with transmissions. One possibility is as
follows: when a node wants to transmit in a round, it first
obtains a list of neighbors that will hear the message in the
round. For 802.11 networks, this can be realized by using the
Carrier-Sense Multiple Access (CSMA) protocol, enhanced
with a Request-to-Send/Clear-to-Send (RTS/CTS) mecha-
nism [24]. An alternative to this hearing control is consid-
ered in Section 5.

Scheduling policies.
A scheduling policy is understood as a rule to select a

packet from a group of packets at a node. It is coordinated
with a hearing control. A scheduling policy selects a packet
to transmit from these parked in the queue for whom one
of the neighbors that will hear a message is their next stop
on their path to a destination node. When the packet is
eventually heard by the corresponding neighbor, then the
sending node removes this packet from its queue.

Popular queueing policies include Furthest-From-Source
(FFS), Furthest-To-Go (FTG), Nearest-To-Source (NTS),
Nearest-To-Go (NTG), Shortest-In-System (SIS), and Long-
est-In-System (LIS).

Transmissions.
Some transmissions, during an execution of a routing pro-

tocol in a radio network, may not be successful, in transfer-
ring packets to their intended recipients, due to collisions.
To mitigate this adverse effect, some nodes may be directed

by a routing protocol to pause in a round to create more
room in the only transmitting frequency available for the
neighbors to possibly transmit and hear successfully.

A transmission policy indicates to a node whether to trans-
mit in a round or rather to pause. Such an indication is ei-
ther in the affirmative, meaning “do transmit in this round,”
or in the negative, meaning “do not transmit in this round.”
The ultimate goal of a transmission policy is to facilitate
packet movement by avoiding collisions of packets transmit-
ted by different neighbors of nodes.

We abstract from implementing transmission policies, but
delegate such a task to a transmission oracle (or simply ora-
cle) that will indicate each node whether or not to transmit
in a round. This approach allows to abstract from specific
transmission policies to consider qualities of scheduling poli-
cies independently of transmission policies.

The relevant desirable functionality such transmission or-
acles needs to provide is that each link can successfully trans-
mit, when there is a packet ready to be transmitted, within
a bounded number of rounds. We say that an integer he > 0
is a hearing latency of link e if link e is guaranteed to be able
to successfully transmit at least one packet each he consec-
utive rounds; if such a number does not exist then e is said
to have an unbounded link hearing latency, denoted he = ∞.
We say that a transmission oracle provides a link latency h
when hearing latencies of all links are upper bounded by the
number h. We denote by Th the class of transmission oracles
that provide a link hearing latency of h.

Adversarial packet injection and stability.
Packets are injected by adversaries. An adversary is de-

termined by a pair of numbers (b, r), called the type of the
adversary, where burstiness b is a positive integer and in-
jection rate r satisfies 0 ≤ r < 1. We denote by A(b, r) an
adversary of type (b, r). Such an adversary specifies for each
injected packet its complete itinerary. Let I(τ, v) represent
the number of packets that the adversary injects during time
interval τ and has node v on its path. Adversary A(b, r) is
constrained such that the inequality

I(τ, v) ≤ r · | τ | + b

holds for any τ and v. When traffic demands are constrained
this way, then we say that they are admissible for rate r and
burstiness b.

A routing protocol based on a transmission oracle T and
a scheduling policy S is denoted by P (T ,S). Let there be
given a routing protocol P (T ,S) and adversary A, and let D
be an execution of protocol P (T ,S) against A in a net-
work G. For a positive integer t, let QD(t) be the number
of packets simultaneously queued in all the nodes in round t
of D. An executionD of a routing protocol is stable when the
numbers QD(t) are all bounded. Protocol P (T ,S) is stable
against adversary A if each execution of P (T ,S) against A
in any network G is stable. Finally, S with Th is stable
against adversary A if for any T ∈ Th, protocol P (T ,S) is
stable against adversary A.

Universal stability.
Given any transmission providing a link hearing latency h,

the maximum injection rate one could expect to guarantee
stability is 1/h. Otherwise, instability can be created just
by injecting packets passing through a link whose hearing la-
tency is exactly h, at a rate higher than 1/h. We say that S
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with Th is universally stable when it is stable for any adver-
sarial injecting rate that is smaller than 1/h. A scheduling
policy that is not universally stable is called unstable.

3. STABILITY OF SCHEDULING POLICIES
In this section we consider universal stability of schedul-

ing in radio networks when using various scheduling policies.
We say that a packet leaves a node v when it is success-
fully transmitted to the intended neighbor. We also say
that packet p has priority over packet q if the policy used to
assign priorities chooses p over q.

3.1 Shortest-In-System (SIS)
The Shortest-In-System (SIS) scheduling policy gives pri-

ority to the packet that has been in the system the shortest,
with ties broken in an arbitrary manner. The adversarial
injection rate r is always lower than 1/h, because h is an
upper bound on the hearing latencies of all links.

Lemma 1. Consider SIS with a transmission policy in Th.
For a node v and a packet p in its queue, v will transmit at
least one packet with priority higher than that of p during
any h rounds during the time interval form p’s arrival to v
until p is transmitted.

Proof. Let e be the link through which packet p will be
transmitted. Let T be the time interval since packet p arrives
to v until it is transmitted. Recall that the scheduling policy
chooses a packet to be transmitted from the set of links that
are up at a round. So each time link e is up in T , a packet
with priority over p will be transmitted; otherwise, packet p
will be chosen before T , contradicting our assumption. Since
all hearing link latencies are bounded by h, then at least one
packet with priority over p will be transmitted each h rounds
in T .

Lemma 2. Let p be a packet waiting in the queue of a
node v at time instant t0, whose scheduling policy is SIS
and whose transmission policy is in Th. Suppose that at this
time there are k−1 other packets in the queue of v that have
priority over p. Then p will leave v within the next k+b

1−rh
· h

rounds, where 0 ≤ r < 1/h, and h is an upper bound on the
hearing latencies of all links.

Proof. We argue by contradiction. Suppose that p does

not leave v in the next (k+b)
(1−rh)

·h rounds. Then other packets

different from p must have left the queue meanwhile. Be-
cause SIS is the scheduling policy, during that interval the
only packets in the system that have priority over p are ei-
ther those k−1 packets that were present at time t0 or some
other that have been injected meanwhile.

By Lemma 1, we have that v will transmit at least one
packet with priority over p each h rounds until p is trans-
mitted. Let us first consider a transmission scenario where
only one packet is transmitted each h rounds. Since only
one packet is guaranteed to be transmitted in each interval
of h rounds, we have that the following two properties hold:

(1) the k − 1 packets currently in the system will take
(k − 1) · h rounds to leave v, and

(2) the packets injected in the next k+b

1−rh
·h rounds, which

are rh · ( k+b

1−rh
) + b, will take at most (rh · ( k+b

1−rh
) + b) · h

rounds to leave v.

Summing up, we obtain that the number of rounds p waits
is at most

(

k − 1 + rh ·
k + b

1− rh
+ b

)

· h

=
(k − 1− rhk + rh+ rhk + rhb+ b− bhr

1− rh

)

· h ,

which is less than k+b

1−rh
· h. This results in a contradiction.

We estimated the number of rounds assuming that only one
packet is transmitted per interval of h rounds. If more than
one packet is transmitted per a time interval of h rounds,
then this decreases the relative number of rounds, so that
the bound k+b

1−rh
· h remains valid.

Lemma 3. Suppose SIS is the scheduling policy with ties
broken arbitrarily. Define k1 = b and ki+1 = ki+b

1−rh
. When

a packet p arrives at the ith queue vi on its path then there
are at most ki − 1 packets requiring any queue in the path
of p with a priority higher than that of p.

Proof. The proof is by induction on i. Observe that, for
any queue v, the only packets passing through v that initially
could have priority higher than that of p are at most b − 1
packets injected in the same round as p, which provides the
base of induction. To show the inductive step, suppose that
the claim holds for some i. By Lemma 2, p will arrive at the
tail of vi+1 in at most another ki+b

1−rh
·h rounds, during which

at most rh·( ki+b

1−rh
)+b other packets requiring any queue v in

the path of p with priority over p are injected. Thus, when
p arrives at the tail of vi+1 the number of packets requiring
any queue v that have priority higher that that of p is at
most

ki − 1 + rh
ki + b

1− rh
+ b

=
ki − 1− rhki + rh+ rhki + rhb+ b− brh

1− rh

=
ki + b

1− rh
+

rh− 1

1− rh

= ki+1 − 1 ,

so the claim holds.

Theorem 1. SIS with Th is universally stable. No queue
contains more than kd packets, where d denotes the length
of the longest simple directed path in the graph. No packet
spends more than

∑d

i=1(
ki+b

1−rh
) · h rounds in the system.

Proof. We show first that no queue contains more than
kd packets. Let us assume that there are kd + 1 packets
at some point all passing through the same queue. By
Lemma 3, the packet with the lowest priority will contra-
dict the property that no queue contains more than ki − 1
packets with priority above it. Therefore, the overall num-
ber of packets is bounded and therefore the system is stable.
Furthermore, combining Lemma 3 with Lemma 2, we obtain
that no packet spends more than

∑d

i=1(
ki+b

1−rh
) · h rounds in

the system.

3.2 Longest-In-System (LIS)
The Longest-In-System (LIS) scheduling policy gives pri-

ority to a packet that has been longest in the system, with
ties broken in an arbitrary manner. We will assume through-
out that the adversarial injection rate r is smaller than 1/h,
where h is an upper bound on the hearing latencies of all
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links. Let us consider a system whose scheduling policy is
LIS and whose transmission policy is in Th. For a round c,
we denote by class c the set of packets injected at round c.
A class c is said to be active at the end of round t if and
only if at that round there is some packet in the system of
class c′ ≤ c. Consider some packet p, injected at time T0,
and whose path contains queues v1, v2, ..., vd, in this order.
We denote by Ti the round in which p leaves vi, and by t
some round in [T0, Td). Let at denote the number of active
classes at the end of round t, and define a = maxt∈[T0,Td) at.
In such a situation, we will say that p has a active classes
while in the system.

Lemma 4. The inequality Td −T0 ≤ (r·a+b)·h·(d−1)
1+r·h·(d−1)

holds.

Proof. Packet p reaches the tail of queue vi at time Ti.
Since p is still in the system at round Ti, all classes formed
by packets injected in [T0, Ti−1] are active at the end of
that round. From the definition of a, there are at most
a − (Ti−1 − T0) active classes of packets that can block p
in the queue of vi. As LIS is the scheduling policy, packets
injected after p can not block it, because they are in classes
after the class of p.

Observe that all active classes are consecutive. Indeed, if
a class is active then all the subsequent classes are active;
so, take the lowest active and all the subsequent classes will
be also active.

There are at most r · (a − Ti−1 + T0) + b packet in these
classes. And since p is one of these packets, at most

r · (a− Ti−1 + T0) + b− 1

packets can block p. Therefore, since h is a bound on the
queue latency, we have the following estimates:

Ti ≤ Ti−1 + (r · (a− Ti−1 + T0) + b) · h

≤ Ti−1(1− r · h) + (r · (a+ T0) + b) · h

≤ Ti−1 + (r · (a+ T0) + b) · h.

Solving the recurrence results in the following estimate:

Td ≤ (r · (a+ T0) + b) · h) · (d− 1) + T0

= (r · a+ b) · h · (d− 1) + T0 · (1 + r · h · (d− 1)).

We conclude with this inequality: Td−T0 ≤ (r·a+b)·h·(d−1)
1+r·h·(d−1)

.

Theorem 2. LIS with Th is universally stable. No queue
contains more than r · ((b + r) · h · (d− 1) + 1) + b packets.
No packet spends more than (b + r) · h · (d − 1) + 1 rounds
in the system.

Proof. We show that there are always at most

(b+ r) · h · (d− 1) + 1

active classes in the system, where d is the length of the
longest simple directed path. Let a = (b+ r) · h · (d− 1) + 1
and assume that the end of round t is the first where there
are exactly a+1 active classes. We show next how to arrive
at a contradiction. At the end of a round a, there are packets
that have been in the system for a+1 rounds, and during the
first a of these rounds no more than a classes were active.
From Lemma 4, any packet that has at most a active classes
while in the system, with a possible exception of the last
round, reaches its final destination in a number of rounds

that is at most as large as the following estimate:

(r · a+ b) · h · (d− 1)

1 + r · h · (d− 1)
+ 1

=
(r · ((b+ r) · h · (d− 1) + 1) + b) · h · (d− 1)

1 + r · h · (d− 1)
+ 1

= (b+ r) · h · (d− 1) + 1 .

This bound is less than a + 1, which yields a contradic-
tion.

4. INSTABILITY OF SCHEDULING POLI-

CIES
In order to show that a given scheduling policy S is un-

stable with a transmission policy T , we need to prove that
there is an unstable execution of protocol P (T ,S) against
some adversary.

We begin by introducing a model of wireless networks in
which a node can hear messages transmitted by its neigh-
bors while two or more of them transmit concurrently. A
node can still transmit only one message per round. In this
model, we consider a transmission policy which has every
node transmit in each round; this transmission policy is de-
noted T greedy . This transmission policy provides a node
latency of one round. It is the only transmission policy con-
sidered for this model, and the only object of consideration
when we depart from the radio model. In what follows,
whenever we refer to T greedy , we mean this particular model.

Given a wired network G we define its equivalent net-
work G∗ as follows:

(1) For each link e in G, and so for each queue in G, create
a node in G∗ containing a single queue, denoted e∗.

(2) For each pair of links e = (−, u) and f = (u,−) in G,
connect e∗ to f∗ in G∗.

We may observe that any simple path in G, with respect
to queues, can be created in G∗ by replacing each queue e
by e∗. The queues e and e∗ are called equivalent, and the
path followed by p∗ is called the equivalent path of the one
followed by p.

Given an adversary A, we define A∗ as follows: for each
packet p injected by A at some round, A∗ injects another
packet p∗ at the same round following the equivalent path
of the one followed by p. Packet p∗ may be absorbed at any
node pointed by its last traversed queue.

Let D be an arbitrary execution in system (G,A,S), and
let D∗ denote the execution of P (T greedy ,S) against adver-
sary A∗ in network G∗.

Lemma 5. The rounds when p is in e in D are the same
as the rounds when p∗ is in e∗ in D∗.

Proof. For each queue in G there is an equivalent one
in G∗, so that two queues in G∗ are connected provided their
equivalent ones are also connected in G. Packets follow the
original path in G and its equivalent one in G∗. Greedy
transmission policies are used in each case.

Lemma 6. If S is unstable in wired networks then S with
T greedy is also unstable.

Proof. Let D be an arbitrary execution in (G,A,S) in
wired networks. By Lemma 5, there is an execution D∗

of P (T greedy ,S) against adversary A∗ in network G∗, such
that the rounds when each packet p is in e in D are the
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same as the rounds when p∗ is in e∗ in D∗. Therefore, if D
is unstable then D∗ is such as well.

By Lemma 6 and by the instabilities shown in [5, 10],
we can conclude that FIFO, NTG, FFS and LIFO are all
unstable with T greedy .

4.1 Instability with a round-robin transmis-
sion policy

Let us consider a set of transmissions policies T cyclic where
nodes are indicated to transmit using a token traveling along
a logical ring that includes the whole set of nodes. When a
node obtains the token, it is eligible to transmit for a fixed
number of rounds, which may vary from node to node. For
each node, we define its speed as the number of rounds when
such a node is indicated to transmit, once it obtains the to-
ken.

For a node v, let us call turns of v the rounds when v
receives the token but not the subsequent rounds when it
may be eligible to transmit. Given a packet p arriving to
node v at time t, we say that its turn at v is the turn of v
immediately after t; if such a turn has not yet occurred, we
say that it is not p’s turn yet at v.

We define S turn as the scheduling policy that behaves
as S , and with the following additional stipulations:

(1) S turn chooses packets to be transmitted from the set
of packets that already have a turn, and

(2) S turn treats packets as if they arrived at a given node v
exactly at their turns at v.

Let us consider a transmission policy T one ∈ T cyclic where
each node has a speed of one round, which is that same as
a round-robin policy. Such a transmission policy provides a
node hearing latency of n, where n is the number of nodes.

Theorem 3. If S with T greedy is unstable then S turn

with T one is unstable as well.

Proof. If we normalize the length of rounds to n, that
is, the time interval between two turns, then the behavior
of S turn with T one is the same as the behavior of S with
T greedy . Now it is sufficient to resort to Lemma 6.

From Theorem 3 and by the instabilities shown in [5, 10],
we conclude the following fact.

Corollary 1. Scheduling policies FIFOturn, NTGturn,
FFSturn and LIFOturn are all unstable with T one.

4.2 Instability depending on the speed of nodes
Algorithmic queuing was extended by Blesa et al. [9] to

a situation when links may have different bandwidths. We
refer to this model as continuous adversarial queuing. In
this model, the reasoning in the proof of Lemma 6 remains
valid, assuming that queues in T greedy may have different
bandwidth. This implies the following fact.

Corollary 2. If S is unstable under continuous adver-
sarial queuing then S with T greedy is unstable.

We define Slowest-Previous-Node (SPN) as the scheduling
policy which gives priority to the packets whose last visited
node had the lowest bandwidth, with ties broken according
to the Nearest-To-Source (NTS) policy.

Theorem 4. SPNturn with T cyclic is unstable.

Proof. In the continuous adversarial queuing, the schedul-
ing policy SPL gives priority to a packet whose last link
through which it has been transmitted had the lowest band-
width, with ties broken according to NTS. It was shown in [9]
that SPL was not stable in continuous adversarial queuing.
Therefore, from Corollary 2, we obtain that SPL is unsta-
ble with T greedy . When we consider SPL with T greedy , we
must take into account that queues are located at links. We
can transform queues located at links into queues located at
nodes to obtain that SPN is unstable with T greedy . Given a
transmission policy T ∈ T cyclic, if we normalize the length
of the rounds to the smallest speed of any node, then we
have that the behavior of the SPNturn with T is the same
as the behavior of SPN with T greedy , assuming that queues
in T greedy could have different bandwidths.

A similar reasoning can be applied, starting from SPN
with T greedy to SPNturn with T ∈ T cyclic. We obtain that
SPNturn with some T ∈ T cyclic is unstable, where an ad-
versarial transmission policy T makes T greedy unstable.

Andrews et al. [5] showed that NTS is universally sta-
ble in wired networks. SPNturn is unstable with T cyclic,
while it is universally stable in wired networks. This is be-
cause scheduling policy SPNturn behaves as NTS in wired
networks, as links have the same bandwidth.

5. AN ALTERNATIVE HEARING CONTROL
Hearing control introduced in Section 2 is such that when

a node wants to transmit in a round, it first obtains a list of
neighbors that will hear the message in the round. In such an
arrangement, a scheduler selects a packet from those parked
in the queue that have one of these neighbors on their paths
to traverse. This hearing control allows to avoid unexpected
collisions, but its implementation requires a handshaking
which adds a significant overhead (see for instance [24]).

An alternative approach is to have a hearing control such
that immediately after a transmission a mechanism is in-
voked to detect if the intended recipient node has heard
the message. This means that a scheduler learns about the
effectiveness of selection after a transmission. The packet
is retransmitted until it is eventually heard by the corre-
sponding neighbor. Whereas now transmissions may suffer
from collisions, it has the advantage of requiring an overhead
much smaller than in the previous case.

To distinguish between these scenarios, we will denote
by Spre the scheduling policy S working in a setting when,
prior to transmitting, a list of neighbors that will hear the
message in the round is obtained by a node. We will also
denote by Spost the scheduling policy S working in a setting
where it is only detected if the intended recipient node has
heard the message.

Many scheduling policies assign priorities based on pa-
rameters that can produce two packets with the same pri-
ority. Examples of such policies are these who assign pri-
orities based on the injection times into the system (e.g.,
Shorter-In-System and Longest-In-System), on the traveling
path of the packet (e.g., Farthest-To-Go, Nearest-To-Source,
Nearest-To-Go and Farthest-From-Source). In order to re-
solve ties between packets in such a situation, we allow an
arbitrary assignment of priorities to packets, which includes
the worst-case solution of the tie in terms of system’s stabil-
ity; this results in breaking ties arbitrarily. The next Theo-
rem 5 applies to such scheduling policies.
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Theorem 5. If S breaks ties arbitrarily then Spre with Th

is unstable, regardless of injection rate.

Proof. Consider a scenario involving three nodes: u, v1
and v2, where u is connected to both v1 and v2. Let us
inject two packets p1 and p2 at the same time into node u
so that p1 is addressed to node v1 and p2 is addressed to
node v2. Assume that the link (u, v1) and the link (u, v2)
are up alternately, so that the two links are never both up
in the same round. Since both packets are injected at the
same time into the same node and have one hop to travel,
and since ties are arbitrarily broken, the scheduling policy
can choose any one packet at any round, as far as they are
both in node u. If the scheduling policy chooses p2 when
link (u, v1) is up, and p1 when link (u, v2) is up, then no
packet will be successfully transmitted in any round.

The next fact demonstrates that, regardless of how ties
are broken, the fact that Spost with Th is universally stable
does not imply that Spre with Th is universally stable.

Theorem 6. SISpre with Th is unstable against adver-
sary A(b, 1/(2h−4)), regardless of how ties are broken, where
h ≥ 4.

Proof. We consider a network topology in which there
is a node with two outgoing links to nodes u and v. Packets
are injected directly into queues by an adversary A(b, r). We
consider an execution that consists of two phases. This ex-
ecution is represented in Figure 1. The phases are specified
as follows.

In Phase 1, link u is up each k rounds, and link v is up
each k − 1 and k + 1 rounds alternately. We inject one
packet at rounds k − 1, 2k, 3k − 1, 4k, 5k − 1, . . . , 2b · k to
traverse the links to u and v alternately, starting with the
link to v. Let us assume that packets that need to traverse
the link to v correspond to the injection-rate component
of the adversary’s type, and packets that need to traverse
the link to u correspond to the burstiness component of the
adversary’s type.

The adversary injects one packet corresponding to the
injection-rate component each 2k rounds, until the b pack-
ets representing the burstiness are injected. A packet can be
transmitted starting from the next round after it has been
injected into a queue. Because SIS is the scheduling policy,
during Phase 1 no packet is transmitted, and at the end of
Phase 1 there are 2b queued packets.

Phase 2 phase starts at the same round when Phase 1
ends. In this phase, both links are up at the same time
each k + 2 rounds for b rounds, and no packet is injected.
Therefore, at the end of Phase 2, some b packets have been
transmitted and some b packets remain queued. Moreover,
the adversary can again inject a number of packets corre-
sponding to the burstiness component of its type.

Observe that the latency of the links to u and v is k +
2, which means that h = k + 2. Furthermore, the actual
injection rate is bounded by 1/2k, that is, 1/(2h− 4). This,
for h ≥ 4, is lower or equal than 1/h, and consequently
fulfills the admissibility condition regarding the injection of
packets. At the end of Phase 2 we are in the same situation
as at the begin of Phase 1, except that now b packets remain
queued. Therefore, we can iterate the same injection pattern
to create instability.

Transmission policies with bounded node hearing la-
tencies.

It is a natural question to ask if the fact that Spost with Th

is universally stable implies that Spre with Th is universally
stable as well.

We say that an integer hv > 0 is a hearing latency of a
node v if this node v can transmit successfully, using any
link, at least one packet during each hv consecutive rounds.
When such a number hv > 0 does not exist then v is said
to have unbounded node hearing latency, which is denoted
by hv = ∞. We say that a transmission oracle provides a
node latency h when hearing latencies of all nodes are upper
bounded by h.

We denote by T node
h the class of transmission oracles that

provide h as a node hearing latency. Along the same line,
we denote by T link

h the class of transmission oracles that
provide h as a link hearing latency. In the proof of the next
fact we rely on Theorems 1 and 2.

Lemma 7. If Sφ with T link
h is stable against adversary A

then Sφ with T node
h is stable against A.

Proof. Any T ∈ T node
h fulfills that T ∈ T link

h . So, by
our assumption, Sφ with T node

h will be stable against A.

Lemma 8. If Spost with T node
h is stable against an adver-

sary A then Spre with T node
h is also stable against A.

Proof. First we show that if Sφ with T link
h is stable

against adversary A then Sφ with T node
h is stable against A.

Observe that T ∈ T link
h for any T ∈ T node

h . By the assump-
tion, Sφ with T node

h is stable against A. Next we show that
if Spost with T node

h is stable against adversary A then Spre

with T node
h is stable against A. To this end, let us consider

an arbitrary execution D of protocol P (T ∈ T node
h ,Spre)

against A. Let us also consider an execution D′ of protocol
P (T ′,Spost) against the same adversarial packet injection as
in D, but such that T ′ makes the node v to transmit in each
round when node v is to transmit in D and it succeeds in
the packet being heard by the recipient node; this can also
include the case where there are no queued packets. Ob-
serve that T ′ provides a node hearing latency h, that is,
T ′ ∈ T node

h . We obtain that nodes transmit the same pack-
ets at the same rounds in each D and D′. The execution D
is stable because D′ is such.

Theorem 7. Scheduling policies SISpost, SISpre, LISpost,
and LISpre, all with with T node

h , are universally stable.

Proof. We use Lemmas 7 and 8 combined with Theo-
rems 1 and 2.
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