
Near Linear Time 5/3-Approximation Algorithms for
Two-Level Power Assignment Problems

Benjamin Grimmer
Department of Computer Science,

Illinois Institute of Technology,
Chicago, IL

bgrimmer@hawk.iit.edu

Kan Qiao
Department of Computer Science,

Illinois Institute of Technology,
Chicago, IL

kqiao@iit.edu

ABSTRACT
We investigate the problem of assigning power levels to nodes
of an ad hoc network to minimize total power while preserv-
ing connectivity. We consider a simplified version of this
problem by requiring bidirected input graphs (ie if an arc
uv exists, then the arc vu exists and has the same cost) and
that all arcs have cost 0 or 1. This corresponds to a network
where each transmitter can operate at high and low power.

There are two versions of this problem, a symmetric vari-
ant which seeks a connected spanning subgraph and includes
an edge in the subgraph if both endpoints have power at
least the edge cost, and an asymmetric variant which seeks
a strongly connected spanning subgraph and includes an arc
in the subgraph if the source endpoint has power at least the
arc cost. Both of these have been shown to be NP-Complete.
We present 5/3-approximation algorithms for each of these
that run in O(mα(n)) where α(n) is the inverse Ackermann
function.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.2.2 [Graph
Theory]: Graph Algorithms

Keywords
Approximation Algorithms; Power Assignment; Network De-
sign

1. INTRODUCTION
The problem of assigning power levels to vertices of a

graph to achieve a desired property has important uses in
modeling radio networks and ad hoc wireless networks. It
is common in this type of problem to minimize total power
consumed by the system. This class of problems take as in-
put a directed simple graph G = (V,E) and a cost function
c : E → R+. A solution to this problem assigns every vertex

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FOMC’14, August 11, 2014, Philadelphia, PA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2984-2/14/08 ...$15.00.
http://dx.doi.org/10.1145/2634274.2634276 .

a nonnegative power, p(v). We use H(p) to denote the span-
ning subgraph of G created by this power assignment as de-
scribed in the following paragraph. The minimization prob-
lem then is to find the minimum power assignment,

∑
p(v),

subject to H(p) satisfying a specific property.
Two variants of this problem will be discussed in this pa-

per. One is the symmetric variant. The power assignment
induces a simple undirected graph H(p) on vertex set V
given by {x, y} ∈ E(H(p)) if and only if the arc xy ∈ E
and p(x) ≥ c(xy) and p(y) ≥ c(xy). Then the goal is to
minimize the total power subject to H(p) being connected.
The other one is the asymmetric variant. The power assign-
ment induces a simple directed subgraph H(p) on vertex
set V where xy ∈ E(H(p)) if and only if the arc xy ∈ E
and p(x) ≥ c(xy). The goal is to minimize the total power
subject to H(p) being strongly connected. Both of these
problems have been shown to be NP-Complete in [6, 4].

The first work on Power Assignment was done by Chen
and Huang [5], which assumed that E is bidirected (i.e,
uv ∈ E if and only if vu ∈ E, and if these two edges ex-
ist, they have the same cost). This problem has had many
different approximations proposed, which are compared in
[2]. In this paper, we also make this bidirected assumption.
Further, we assume that c : E → {A,B} where 0 ≤ A ≤ B.
This corresponds to a situation where all wireless nodes op-
erate on one of two power levels. In practice, network nodes
cannot operate at an arbitrary power level, but rather have
fixed operating powers. We consider networks that have
each node able to operate at low or high power, transmit-
ting at short or long range. This problem is equivalent to
minimizing the number of maximum power nodes, which al-
lows us to assume c : E → {0, 1} without loss of generality.

Previous works on the symmetric and asymmetric power
assignment problems have presented 1.5 and 11/7≈1.571-
approximation algorithms respectively [7, 1]. Although these
algorithms are polynomial, their runtimes are high degree
polynomials which prevents them from being used in many
cases. Many previous papers have given faster variations of
their approximation algorithms for these problems. We will
use n = |V | and m = |E|. On the symmetric problem, a 5/3-
approximation algorithm has been published with claimed
O(nmα(n)) runtime [6]. The asymmetric problem has a
7/4-approximation with claimed runtime of O(n2)[4, 3].

We give a fast algorithm for both of these problems. In
Section 2, we present our algorithm and then prove its 5/3-
approximation bound. In Sections 3 and 4, we show that
our algorithm is able to be implemented in O(mα(n)) time
for the symmetric and asymmetric problems respectively.

29

x

y

Figure 1: Left: a set S that is not impeccable. Black nodes have power 1 and make up S. All other nodes
have power 0. Thin arrows are edges (arcs) of H(S) of cost 0, thicker arrows are edges (arcs) of H(S) of cost
1, and dashed segments are edges of E of cost 1 with no corresponding connection in H(S). Ellipses represent
(strong) components of H(S). S is not impeccable as x has power one, y has power zero, and they are in
different components. The arc xy is only included in H(S) for the asymmetric problem. Right: an impeccable
set.

2. GENERAL ALGORITHM
Our general algorithm will iteratively select groups of ver-

tices that if assigned power one, their separate components
will merge into a single component. This approach follows
from the concept of perfect sets defined in [3]. In Section
2.1, we formalize the definitions related to perfect sets and
then in Section 2.2 we present our algorithm and prove its
approximation bound and tightness.

2.1 Definitions
Since we only consider graphs where all arcs have either

cost 0 or 1, we can replace the notation of a power assign-
ment with a set of maximum power vertices. Given a set of
vertices S ⊆ V , we define the function pS : V → {0, 1} as
follows: pS(u) = 1 if u ∈ S and pS(u) = 0 if u ∈ V \ S. We
will then abuse notation and write H(S) instead of H(pS).
For the symmetric problem H(S) is an undirected graph
and for the asymmetric problem H(S) is a directed graph.
The distinction between these two functions will always be
obvious from context.

For any H(S), we will use Comp(v) for v ∈ V to be
the connected (strongly connected) component of v. Ini-
tially the components of H(∅) are defined by the zero cost
arcs. We define the component graph of some H(S) to
be a graph G′ = (V ′, E′) describing the relationship be-
tween all current components as follows. V ′ is the set of
connected (strongly connected) components of H(S). E′

has an edge {Comp(x), Comp(y)} if and only if {x, y} ∈ E
Comp(x) 6= Comp(y). For the purposes of our algorithms,
we also associate all the {x, y} endpoints in V with each
edge added to the component graph. Whenever we refer to
a vertex u′ ∈ V ′ of the component graph, we will use a prime
mark to distinguish it from vertices of the original graph.

For any S ⊆ V , S is impeccable if and only if no uv ∈ E
exists with p(u) = 1, p(v) = 0 and Comp(u) 6= Comp(v)
(See Figure 1 borrowed from [3] for an example). Note that
H(∅) is impeccable.

We say that Q ⊆ V is quasiperfect with respect to impec-
cable S if the following holds: For all u′ ∈ V ′, we have that
|Q∩u′| ≤ 1, and all vertices of Q are in the same connected
(strongly connected) component of H(Q ∪ S). Therefore,
adding a quasiperfect Q to our current impeccable solution
will contract |Q| components into one.

However, adding a quasiperfect set may make our current
solution no longer impeccable. If Q is quasiperfect w.r.t.
impeccable S andQ∪S is impeccable, thenQ is called perfect
w.r.t. S (See Figure 2 borrowed from [3] for an example).

2.2 Algorithm and Analysis
Our approach to both symmetric and asymmetric prob-

lems will maintain an impeccable set, S, that grows until
H(S) is connected (strongly connected). This is accom-
plished by repeatedly adding sets perfect w.r.t. S into S.
Adding such a set, Q, to S will decrease the number of com-
ponents in H(S) by |Q| − 1. The greedy heuristic of adding
larger perfect sets to S first follows from this idea. Ca-
linescu’s ≈1.61-approximation of the asymmetric problem
uses this heuristic by adding perfect sets of size k or more,
then size k−1... then size 4, and finally solving the problem
exactly once only perfect sets of size 2 and 3 remain [3].

Following this heuristic, our algorithm for both problem
variations, shown in Algorithm 1, first adds perfect sets
where |Q| ≥ 4. Once no sets of size four or more exist,
it adds sets of size three, and then sets of size two. For the
symmetric case, this approach is essentially the same as the
algorithm in [6] and our proof of its approximation bound
follows closely from their proofs. We begin with sets of size
four or more because we are unable to maintain O(mα(n))

30

y

z

v

y

z

v

Figure 2: Left: The set Q = {y, z} is quasi-perfect w.r.t. S, as explained next. Right: H(Q ∪ S). All the
vertices of Q are in the same strongly connected component of H(Q ∪ S). However, Q is not perfect since z
has power one and v has power zero, but they are in different (strong) components of H(Q ∪ S). The dashed
arc zv and the dashed arc leaving y are only included in H(S ∪Q) for the asymmetric problem.

Algorithm 1 General Approximation Algorithm

1: Set i = 0; S0 = ∅
2: while ∃Q perfect w.r.t. Si and |Q| ≥ 4 do
3: Si+1 := Si ∪Q; i := i+ 1;
4: end while
5: while ∃Q perfect w.r.t. Si and |Q| = 3 do
6: Si+1 := Si ∪Q; i := i+ 1;
7: end while
8: while ∃Q perfect w.r.t. Si and |Q| = 2 do
9: Si+1 := Si ∪Q; i := i+ 1;

10: end while
11: return Si

runtime while searching exclusively for larger perfect sets.
We denote S at after i sets are added as Si.

Theorem 1. Algorithm 1 has a 5/3 approximation ratio.

Given any graph G, we denote an optimal solution as
OPT (G), Algorithm 1’s solution as A(G), the number of
(strong) components in H(S) before the first loop as K, be-
fore the second loop as M , before the third loop as P . We
will denote each set of size four or more added as ki and
each set of size three as mi. It follows immediately that

|A(G)| =
∑
i

|ki|+
∑
i

|mi|+ 2(P − 1) (1)

≤ 4

3

∑
i

(|ki| − 1) +
3

2

∑
i

(|mi| − 1) + 2(P − 1) (2)

=
4(K −M)

3
+

3(M − P)

2
+ 2(P − 1) (3)

=
4

3
K +

1

6
M +

1

2
P − 2 (4)

where (2)=(3) holds because the first loop contracts K −
M (strong) components by reducing the number of compo-

nents by |ki|−1 for each ki found. Similarly the second loop
contracts M − P (strong) components.

Lemma 1. |OPT (G)| ≥ K
Proof. Any solution has a vertex in each connected (strongly

connected) component of H(∅).

Consider the reduced problem of strongly connectingH(Si)
after the first loop has finished. An optimal solution to the
reduced problem will add some perfect sets of size three and
some sets of size two. We will denote the number of sets
of size two used in the optimal solution as L. Note that
M ≥ L.

Lemma 2. |OPT (G)| ≥ 3
2
M + 1

2
L− 3

2

Proof. Strongly connectingH(∅) requires at least as many
vertices as strongly connecting H(Si) in the reduced prob-
lem, which requires 3

2
(M − L− 1) vertices from sets of size

three and 2L vertices from sets of size two.

Lemma 3. M−P
2
≥ M−L

4
, therefore P ≤ 1

2
M + 1

2
L

Proof. Consider the M−L
2

perfect sets of size three added
by an optimal solution to the reduced problem. We claim
that when Algorithm 1 greedily adds a perfect set, Q, of size
three at most two of the optimal perfect sets are no longer
perfect. This follows because such a perfect set Q1 in the
optimal solution must have at least two vertices in compo-
nents contracted by Q. Therefore in H(S∪Q1) there will be
at most two components with vertices in Q. A second per-
fect set Q2 that contracting Q makes imperfect must have
vertices in the two remaining components of Q. Therefore,
H(S ∪Q1 ∪Q2) will leaving Q in a single component, which
cannot effect the remaining optimal perfect sets. Therefore
the second loop will add at least M−L

4
perfect sets of size

three before the M−L
2

perfect sets of the optimal solution no
longer exist.

31

Figure 3: An example for tightness. Dotted boxes represent the (strong) components of H(∅). All edges
shown have cost 1.

By taking a convex combination of Lemmas 1 and 2, we
find that

|OPT (G)| ≥ 4

5
K +

1

5
(
3

2
M +

1

2
L− 3

2
) (5)

=
4

5
K +

3

10
M +

1

10
L− 3

10
(6)

From equations (4), (6) and Lemma 3, it follows that

|A(G)|
|OPT (G)| ≤

4
3
K + 1

6
M + 1

2
P − 2

4
5
K + 3

10
M + 1

10
L− 3

10

(7)

≤
4
3
K + 1

6
M + 1

2
(1
2
M + 1

2
L)− 2

4
5
K + 3

10
M + 1

10
L− 3

10

(8)

=
4
3
K + 5

12
M + 1

4
L− 2

4
5
K + 3

10
M + 1

10
L− 3

10

(9)

=
4
3
K + 5

12
M + 1

4
L− 2

4
5
K + 5

20
M + 1

20
M − 1

20
L+ 3

20
L− 3

10

(10)

≤
4
3
K + 5

12
M + 1

4
L− 2

4
5
K + 5

20
M + 3

20
L− 3

10

≤ 5

3
(11)

Therefore Algorithm 1 has a 5/3 approximation ratio. 2

Theorem 2. For both the symmetric and asymmetric prob-
lem, the 5/3 approximation ratio of Algorithm 1 is tight.

Proof. We prove this by giving an class of graphs that
Algorithm 1 may assign arbitrarily close to 5/3 times the
number of vertices to maximum power as the optimal solu-
tion. Consider the example given in Figure 3. This example
has 6n+ 2 connected (strongly connected) components that
could be optimally connected with 6n+ 2 maximum power
vertices, namely all vertices sij . Algorithm 1 could choose
the set {ti,1, ti,2, ti,3, ti,4} for each iteration i=1,..,n of the
first loop. After this, the only remaining perfect sets are the
pairs {si,1, si,2}. Therefore, Algorithm 1 would add each
of these pairs in its third loop. This example could have
10n + 2 vertices assigned maximum power. Therefore, we
have an approximation ratio of 10n+2

6n+2
, which asymptotically

approaches 5/3.

The tightness example in [6] could also be used to show
our approximation is tight.

Theorem 3. Algorithm 1 has O(mα(n)) runtime imple-
mentations for both the symmetric and asymmetric prob-
lems, where α(n) is the inverse Ackermann function.

Theorem 3 is our main result. We first show how to imple-
ment Algorithm 1 for the symmetric problem in Section 3,
and then expand on this method to give an implementation
for the asymmetric problem in Section 4.

3. SYMMETRIC IMPLEMENTATION
For this version of the problem, we will consider a simpli-

fied version of perfect sets that we will call symmetric sets.
A set Q is symmetric w.r.t. S if Q is perfect w.r.t. S and
the induced subgraph on the vertices of Q in H(Q ∪ S) is
connected.

Claim 1. Every perfect set in the symmetric problem is
a symmetric set.

Proof. Consider a perfect set Q in the symmetric prob-
lem. Since S is impeccable, each edge added between the
components of Q in H(S) must have both endpoints in Q.
Using this and the fact that H(S ∪ Q) has all components
of Q connected, we can conclude that the induced subgraph
on the vertices of Q in H(Q ∪ S) is also connected.

Since we only need to consider symmetric sets, we can
search for connected subgraphs with each vertex in a differ-
ent component of H(Si) with size four or more, then size
three, and finally size two.

Any such connected subgraph will have a quasiperfect ver-
tex set. We claim that every quasiperfect set is a subset of
some perfect set. Consider the simple construction, called
Augment(Q), which takes a quasiperfect Q and will return
a set Q′ where Q ⊆ Q′ and Q′ is perfect w.r.t. S.

1: while Q is not perfect w.r.t. S do
2: Q = Q ∪ {v} where u ∈ Q, uv ∈ E, and Comp(u) 6=

Comp(v) in H(S ∪Q)
3: end while
4: return Q

For both the symmetric and asymmetric problems, we will
maintain a Union Find data structure grouping each vertex
with all others in the same connected (strongly connected)
component of H(Si). Initializing this data structure only re-
quires computing the connected(strongly connected) compo-
nents of H(∅), which can be done in O(m). This data struc-
ture supports both union and find operations in O(α(n))
where α(n) is the inverse Ackermann function [8].

When a connected subgraph is found, it will be augmented
to make it perfect and then added to our solution. Every
vertex processed by Augment will be added to Si immedi-
ately afterwards. Therefore each vertex is inspected at most

32

once. We can conclude that total time spent augmenting sets
is bounded by O(

∑
d(v)α(n)) = O(mα(n)). For all follow-

ing implementations we will ignore the cost of the augment
function, since this argument can be used to bound its total
cost over the entire algorithm.

3.1 Implementation of Loop 1 (lines 2-4)
For the symmetric problem, the first loop needs to find

symmetric sets of size four or more. We will process this
loop in two phases, first adding sets symmetric w.r.t. Si that
have a vertex with degree three or more in their connected
subgraph. Such sets can be easily found by augmenting the
set {v} for any v with three neighbors in other components
(lines 1-5 below).

When no more such vertices exist, all sets symmetric w.r.t.
Si must either have a connected subgraph that is a cycle or a
path, because all vertices are adjacent to at most two other
components of H(Si). Therefore all remaining symmetric
sets of size four or more contain a path on four vertices in
their connected subgraph. We can then find all of these
structures in linear time by first precomputing the at most
two components adjacent to each vertex, and then checking
if each edge can be the middle edge of such a path (lines
6-13 below).

1: for all u ∈ V do
2: if u adjacent to three or more other components in

H(S) then
3: Si+1 := Si ∪Augment({u}); i := i+ 1; Union com-

ponents of this set
4: end if
5: end for
6: for all u ∈ V do
7: Adjacent[u] := {Comp(v)|uv ∈ E,Comp(v) 6= Comp(u)}
8: end for
9: for all uv ∈ E do

10: if |Adjacent[u] ∪Adjacent[v]| = 4 then
11: Si+1 := Si ∪ Augment({u, v}); i := i + 1; Union

components of this set
12: end if
13: end for

The first two loops will each require iterating through the
adjacency list of every vertex doing a find operation on the
other end of each edge. Therefore these loops can be im-
plemented in O(

∑
d(v)α(n)) = O(mα(n)). The final loop

inspects each edge and checks if its endpoints are adjacent
to two distinct components (four components including the
components of the endpoints), taking O(mα(n)).

3.2 Implementation of Loop 2 (lines 5-7)
All symmetric sets of size three have a connected subgraph

that is either a path or cycle. Both of these can be found in
near linear time by searching for the necessary vertices with
degree two.

1: for all u ∈ V do
2: if u adjacent to two other components in H(Si) then
3: Si+1 := Si ∪Augment({u}); i := i+ 1; Union com-

ponents of this set
4: end if
5: end for

This loop only needs to read the adjacency list of each
vertex, checking the number of neighboring components. So
we can implement it in O(mα(n)).

3.3 Implementation of Loop 3 (lines 8-10)
After the loop 2 of Algorithm 1 completes, all symmetric

sets are either a single vertex or a single edge. So we only
need to find edges with both endpoints in different compo-
nents of H(Si).

1: for all uv ∈ E do
2: if Comp(u) 6= Comp(v) then
3: Si+1 := Si ∪ {u, v}; i := i + 1; Union components

of this set
4: end if
5: end for

This loop’s implementation hasO(mα(n)) runtime. There-
fore Algorithm 1 can be implemented in O(mα(n)) for the
symmetric problem. 2

4. ASYMMETRIC IMPLEMENTATION
For the asymmetric version of this problem, we need to

consider all perfect sets, not only symmetric sets. We will
use the concept of a component cycle as a new structure for
finding perfect sets.

We define C to be a component cycle if the following holds:
C = {c1, c2, . . . , ck} is quasiperfect w.r.t. S, and for all for
1 ≤ i < k there is an arc ciu ∈ E where Comp(u) =
Comp(ci+1) and there is an arc cku ∈ E where Comp(u) =
Comp(c1). We will then use the following lemma to find
perfect sets.

Lemma 4. Given Q perfect w.r.t. S, Q has a subset that
is a component cycle of size at least two.

Proof. Let Q be perfect w.r.t. some S. Let u and v be
different vertices of Q. Since Q is perfect, there must be
paths from u to v and vice versa in H(S ∪Q). Consider the
finite sequence of vertices in Q in each of these paths. If
these sequences have no common vertices other than u and
v, then combined they make a component cycle. Otherwise,
let w be the first vertex of Q in the u,v-path other than u
that is common to both paths. Then combining the sequence
of vertices in Q from u to w with the vertices from w to u
will create a component cycle of size at least two.

Since any set perfect w.r.t. Si has a component cycle, we
can extend the implementation for the symmetric problem
to build perfect sets based on their component cycles. Our
approach to the asymmetric problem is given in Algorithm
2. The first four loops of Algorithm 2 (lines 2-13) add perfect
sets with size at least four. Then loops five and six (lines
14-19) will handle all perfect sets of size three. The final
loop (lines 20-22) will finish connecting H(Si) by adding
the remaining size two sets.

The asymmetric approximation algorithm has consider-
able overlap with simpler algorithm for the symmetric vari-
ant. Fast implementations of loops 1, 5 and 7 of Algorithm
2 have already been shown in Section 3. So we only need
to show that Loops 2, 3, 4 and 6 can be implemented under
our runtime bound.

These four loops are all based on finding component cy-
cles. Each vertex in a component cycle could have arcs going
to a component that is not in the cycle. We will refer to any
arc that goes from a quasiperfect set Q to a vertex in a
different component of H(Q ∪ S) as a branch. After the
first loop of Algorithm 2 finishes, we can conclude multiple
constraints on the structure of all branches, shown in the
following claim.

33

Algorithm 2 5/3-Approximation of Asymmetric Problem

1: Set i = 0; S0 = ∅
2: while ∃Q symmetric w.r.t. Si and |Q| ≥ 4 do
3: Si+1 := Si ∪Q; i := i+ 1; //Loop 1
4: end while
5: while ∃Q perfect w.r.t. Si and ∃C ⊆ Q component cycle and |C| ≥ 4 do
6: Si+1 := Si ∪Q; i := i+ 1; //Loop 2
7: end while
8: while ∃Q perfect w.r.t. Si, |Q| ≥ 4 and ∃C ⊆ Q component cycle and |C| = 3 do
9: Si+1 := Si ∪Q; i := i+ 1; //Loop 3

10: end while
11: while ∃Q perfect w.r.t. Si, |Q| ≥ 4 and ∃C ⊆ Q component cycle and |C| = 2 do
12: Si+1 := Si ∪Q; i := i+ 1; //Loop 4
13: end while
14: while ∃Q symmetric w.r.t. Si and |Q| = 3 do
15: Si+1 := Si ∪Q; i := i+ 1; //Loop 5
16: end while
17: while ∃Q perfect w.r.t. Si and ∃C ⊆ Q component cycle and |C| = 3 do
18: Si+1 := Si ∪Q; i := i+ 1; //Loop 6
19: end while
20: while ∃Q symmetric w.r.t. Si and |Q| = 2 do
21: Si+1 := Si ∪Q; i := i+ 1; //Loop 7
22: end while
23: return Si

Claim 2. After loop 1 of Algorithm 2 finishes, for any
Q quasiperfect w.r.t. Si, q ∈ Q and branch qu: All other
branches qv have Comp(u) = Comp(v), and u has no adja-
cent components other than ones with a vertex in Q.

Proof. If a branch qv existed leading to a different com-
ponent, then augmenting {q} will create a symmetric set
with at least four vertices. If u had another adjacent com-
ponent, then augmenting {q, u} will create a symmetric set
with at least four vertices. Neither of these can occur after
the first loop finishes.

4.1 Implementation of Loop 2 (lines 5-7)
The second loop of Algorithm 2 will contract perfect sets

that contain a component cycle of size four or more until
none exist. To implement this, we will use a modified depth
first search algorithm on the component graph. When our
search finds a cycle of size four or more, the DFS will find a
corresponding component cycle and build a perfect set con-
taining that component cycle. Then it will add this set into
S, contract the components of the perfect set, and continue
processing the DFS.

The DFS will start at an arbitrary vertex of the compo-
nent graph called root ∈ V ′ that is assigned Depth(root)=0.
When a new component u′ is reached from some component
v′, it will have Discovered(u′) change from false to true.
Further, it will have Parent(u′) = v′ and Depth(u′) =
Depth(v′) + 1. This parent relationship defines a path at
any time from the current component being processed to
the root. The set of edges each component still has to pro-
cess will be denoted by Enew(u′), which initially has value
E′(u′), namely all edges incident to u′ in the component
graph.

As the DFS runs, there are three ways it could find a
cycle of size four or more (shown in Figure 4 (a)). A Type
1 cycle is found when a back edge extends more than two
components up the path. A Type 2 cycle is found when two
three cycles are found in the path that share an edge. Note

that the DFS may process either of these two back edges
first. A Type 3 cycle is found when a single component in
the path is in the middle of two three cycles.

As our DFS runs, whenever a three cycle is found, we will
mark that each of its components are in a three cycle. The
component with the greatest depth has Bottom3 set to true.
The middle component has Middle3 set to true. Finally the
component closest to the root has Top3 set to true. These
values are initially false for every component. We will use
Bottom3 and Top3 to find type 2 cycles and Middle3 to
find type 3 cycles. However, for any x′ ∈ V ′, we only want
Top3(Parent(x′)) to indicate that Parent(x′) is the top of
a three cycle containing x′. To maintain this, we will reset
Top3(x′) to false whenever we backtrack to a vertex x′.

By associating the edges that make these three cycles with
each of these boolean flags, we can easily detect and con-
struct type 2 and 3 cycles while the DFS runs. While pro-
cessing a component x′, if we find a three cycle and have
Bottom3(Parent(x′)) or Top3(Parent(x′)) we can construct
the type 2 cycle shown in Figure 4 (a). Similarly if we find a
three cycle and have Middle3(Parent(x′)), we can construct
the type 3 cycle shown in Figure 4 (a).

Whenever a cycle is found, we will expand the correspond-
ing component cycle into a perfect set. As shown in Figure
4 (b) and (c), our component cycle could have two different
types of branches. There could be a branch yz that leads
to a component higher in the path. In which case, we can
expand our component cycle into a larger quasiperfect set
by adding a vertex in each component between Comp(z)
and the highest component with a vertex in our current set.
Iterating this expanding process must eventually terminate
in a quasiperfect set with no branches into the path. This
procedure will be called Expand(Q), which takes a quasiper-
fect Q, and returns a quasiperfect Q′ such that Q ⊆ Q′ and
there are no branches from Q′ to components in the path.
Expand(Q) is defined as follows (An example is shown in
Figure 5):

34

Figure 4: (a) The three types of cycles in the component graph contracted during the DFS. (b) A component
cycle with a branch to a component in the path. (c) A component cycle with a branch to an undiscovered
component (dashed).

Figure 5: When a component cycle is found, any branch to the path can be removed as shown by the Expand
operation. After Expand runs, all remaining tails to undiscovered components are handled by Augment. The
final perfect set can be contracted, combining all Enew

.

1: t′ := component with a vertex in Q of minimum depth
2: while Q has a branch uv and Discovered(v) do
3: while t′ 6= Comp(v) do
4: Add a vertex in Parent(t′) adjacent to t′ into Q
5: t′ := Parent(t′)
6: end while
7: end while
8: return Q

The same type of runtime argument made for Augment(Q)
can be applied to Expand(Q). Every vertex needs to be
inspected for branches, and finding a branch will add more
vertices that need to be inspected. However, since we will
add all vertices found by expand into Si, we will never in-
spect a vertex twice. Therefore, we can amortize the cost of
Expand(Q) to O(mα(n)).

The other possible type of branch goes to an undiscovered
component. Once these are the only type of arcs leaving our
quasiperfect set, we can augment it to get a perfect set.
By Claim 2, know that augmenting a branch will only add

that component to our quasiperfect set. Therefore we can
expand and augment our component cycle to find a perfect
set that only contracts vertices at the end of our path and
undiscovered components.

When we contract a perfect set Q that merges vertices
in the path from the current component x′ to the highest
component with a vertex of Q, t′, we must modify the depth
first search state to stay valid. The new component must
have all of the remaining Enew of components of Q in the
path and every edge incident to an undiscovered component
of Q. This new component is the bottom or middle of a three
cycle that we have already found if and only if t′ was the
bottom or middle of this cycle before contraction. As with
backtracking, we will set the Top3 flag of our new component
to false. Our full implementation of this modified depth
first search follows:

1: Discovered(root) := true
2: x′ := root
3: while Enew(x′) 6= ∅ or x′ 6= root do

35

4: if Enew(x′) = ∅ then
5: x′ := Parent(x′)
6: Top3(x′) := false
7: else
8: Pick {x′, u′} ∈ Enew(x′)
9: Remove {x′, u′} from Enew(x′)

10: if not Discovered(u′) then
11: Parent(u′) := x′

12: Depth(u′) := Depth(x′) + 1
13: Discovered(u′) := true
14: x′ := u′

15: else
16: if Depth(x′)−Depth(u′) = 1 then
17: Continue to Next Iteration
18: end if
19: if Depth(x′)−Depth(u′) = 2 then
20: if Bottom3(Parent(x′)), Middle3(Parent(x′))

or Top3(Parent(x′)) then
21: Construct a type 2 or 3 component cycle C
22: else
23: Bottom3(x′) := true
24: Middle3(Parent(x′)) := true
25: Top3(u′) := true
26: Continue to Next Iteration
27: end if
28: end if
29: if Depth(x′)−Depth(u′) ≥ 3 then
30: Construct a type 1 component cycle C
31: end if
32: Q := Expand(C)
33: Q := Augment(Q)
34: t′ := Minimum depth component of Q
35: Enew(t′) :=

⋃
q∈QEnew(Comp(q))

36: Contract the components of Q into t′

37: Si+1 = Si ∪Q; i = i+ 1
38: x′ := t′

39: Top3(x′) := false
40: end if
41: end if
42: end while

Claim 3. After the modified depth first search for loop 2
terminates, no cycle of size four or more exist in the com-
ponent graph.

Proof. Assume to the contrary that cycles of size four
or more exist in the component graph after the DFS termi-
nates. Then let C be such a cycle in the component graph
of minimum size, and let x′ be the last component in V (C)
discovered by the DFS. Then let u′ and v′ be the predeces-
sor and successor of x′ in C. Since there are no cross edges
in a DFS of an undirected graph, we can conclude u′ and
v′ are both above x′ in the path. If u′ and v′ are not the
Parent(x′) and Parent(Parent(x′)), then when one of the
edges {x′, u′} or {x′, v′} was processed the if-statement on
line 29 was entered and a type 1 cycle was found contracting
multiple components of C. This contracts our assumption.

We can conclude that u′ and v′ must been Parent(x′) and
Parent(Parent(x′)). Since they are adjacent in the path,
the edge {u′, v′} exists. Since we chose C to be a minimum
cycle of size four or more, C must have size exactly four
because a smaller cycle is created by replacing u′, x′, v′ in C
with u′, v′. We denote the fourth component of this cycle by

w′. Then w′ is either in the path when x′ is being processed
or not.

Suppose w′ is in the path when x′ is processed. Then w′

must immediately proceed u′ and v′ in the path, since w′

being any higher would create a type 1 cycle. We consider
the two three cycles v′, w′, u′ and x′, v′, u′ in the path. If
the cycle v′, w′, u′ is found first, we will mark Parent(x′)
with Bottom3 = true. Then when processing x′ we will
enter the if-statement on line 20 and contract C. Alter-
natively, if we find the cycle x′, v′, u′ first, we will mark
Parent(Parent(x′)) with Top3. Top3 is only reset when we
backtrack, which cannot happen before Parent(x′) finishes
processing. Therefore, when we are processing Parent(x)
and find the cycle v′, w′, u′, we will enter the if-statement
on line 20 and contract C. Both of these results contradict
our assumption.

Finally, suppose w′ was not in the path when x′ was pro-
cessed. Then when w′ was processed, u′ and v′ must have
been its two predecessors in the path by the same argument
used for x′. The DFS must have finished processing all of
w′’s edges before discovering x′. So the cycle v′, w′, u′ was
found and Parent(x′) marked with Middle3 before x′ was
discovered. Then when the cycle x′, v′, u′ was found, the
if-statement on line 20 must have been entered and C con-
tracted. This result also contradicts our assumption.

We can conclude that after the depth first search termi-
nates no component cycles of size four or more exist.

Each iteration of our DFS will consider a new edge in the
graph. This bounds the number of iterations at O(m) in
the same way that a regular DFS takes O(m) steps. Ev-
ery operation in the in the loop takes O(1) or O(α(n))
except for lines 32-39. However, we have already shown
that we can amortize the cost of Expand and Augment over
the entire algorithm to get our O(mα(n)) runtime. Each
of lines 34-39 have an straightforward implementation with
runtime O(|Q|α(n)), which is bounded by O(

∑
|Qi|α(n)) =

O(nα(n)) over the entire algorithm. It follows then that our
modified DFS maintains near linear runtime, O(mα(n)).

4.2 Implementation of Loop 3 (lines 8-10)
The third loop of Algorithm 2 iteratively adds perfect sets

of size four or more that have a component cycle of size three.
Thus every cycle added by this loop must have at least one
branch. We will again use a modified depth first search to
find cycles, but our search is made easier since no cycles of
size four or more exist after the second loop has finished.

When our new DFS finds a three cycle, we will check all
of the endpoints in the original graph of edges between the
three components for a branch. If a branch is found, the
DFS will expand and augment a component cycle with this
branch, contract the resulting perfect set, and then resume
the search. We use the same definitions for our DFS as in
the second loop of Algorithm 2.

1: Discovered(root) := true
2: x′ := root
3: while Enew(x′) 6= ∅ or x′ 6= root do
4: if Enew(x′) = ∅ then
5: x′ := Parent(x′)
6: else
7: Pick {x′, u′} ∈ Enew(x′)
8: Remove {x′, u′} from Enew(x′)
9: if not Discovered(u′) then

36

10: Parent(u′) := x′

11: Depth(u′) := Depth(x′) + 1
12: Discovered(u′) := true
13: x′ := u′

14: else
15: if Depth(x′)−Depth(u′) = 2 then
16: Set C to the three cycle using the edge {x, u}
17: if an endpoint in V of the cycle edges is adja-

cent to component not in C then
18: Construct component cycle C′ with at least

one branch
19: Q := Expand(C′)
20: Q := Augment(Q)
21: t′ := Minimum depth component of Q
22: Enew(t′) :=

⋃
q∈QEnew(Comp(q))

23: Contract the components of Q into t′

24: Si+1 = Si ∪Q; i = i+ 1
25: x′ := t′

26: end if
27: end if
28: end if
29: end if
30: end while

Claim 4. After the modified DFS for loop 3 terminates,
no component cycles of size three with at least one branch
exist in H(Si).

Proof. Assume to the contrary that there exists a com-
ponent cycle {u, v, w} with a branch ut after this DFS fin-
ishes. Let u′, v′, w′ and t′ be the components of u, v, w
and t, respectively. Then u′, v′ and w′ must follow each
other immediately in the path when the last of them is pro-
cessed, otherwise a cycle of size four or more exists. Since
u is an endpoint in V of the edges of this cycle, the DFS
will enter the if-statement on line 18 and add some perfect
set contracting u′, v′ and w′. Therefore {u, v, w} is not a
component cycle after the DFS finishes. Contradiction.

The runtime of this DFS follows from the same argument
made for the implementation of the second loop of Algo-
rithm 2. The only addition work is searching for a branch
in the endpoints of our cycle. We can reduce this cost by
precomputing the at most two components that every vertex
in the original graph can be adjacent to. Then checking a
single endpoint for a branch will take O(α(n)). Thus check-
ing for a branch in the endpoints between two components
that are connected by k edges in the underlying graph will
take time O(kα(n)). We will never check for such an end-
point between the same two components again, because two
distinct three cycles sharing an edge implies the existence
of a cycle of size four. Thus we can bound the total time
checking endpoints by O(

∑
kiα(n)) = O(mα(n)).

4.3 Implementation of Loop 4 (lines 11-13)
The fourth loop of Algorithm 2 will find and contract com-

ponent cycles of size two that have two branches. A compo-
nent cycle of size two is just an edge in the component graph.
Our implementation will iterate through all the edges in the
component graph and check if it has a branch on each end
of the edge that go to different components.

As in loop 3 of Algorithm 2, we can reduce the runtime
of this implementation by precomputing the at most two
components that every vertex in the original graph can be
adjacent to. Our implementation follows:

1: for all u′v′ ∈ E′ do
2: if ∃c′1c′2 with c′1 adjacent to an endpoint of uv in

u′, c′2 is adjacent to an endpoint of uv in v′ and
{u′, v′, c′1, c′2} are distinct then

3: Construct a component cycle C with two branches
4: Q := Augment(C)
5: Si+1 := Si ∪Q; i := i+ 1; Union components of Q
6: end if
7: end for

By precomputing the adjacency of each vertex, the time
spent checking the if-condition for one iteration is at most
O(kα(n)) where k is the number of edges between the two
components in the underlying graph. Then the amortizing
argument used for loop 3 also implies this implementation
has most O(mα(n)) runtime.

4.4 Implementation of Loop 6 (lines 17-19)
This loop is simpler than the three previous loop, since no

branches can exist after loop 5 finishes. A simplified version
of the third loop can be used to run in O(mα(n)) time.

We find that all seven loops and therefore Algorithm 2
run in O(mα(n)).2

5. CONCLUSION
We have presented an algorithm for approximating the

minimum-cost power assignment problems for network con-
nectivity. Our algorithm gives a 5/3-approximation ratio
in near linear, O(mα(n)), runtime for both symmetric and
asymmetric versions of this problem. This improves upon
previous fast approximations, namely, 5/3-approximation in
O(nmα(n)) and 7/4-approximation in O(n2), respectively.

6. REFERENCES
[1] A. Karim Abu-Affash, Paz Carmi, and Anat Parush

Tzur. Dual power assignment via second Hamiltonian
cycle. CoRR, abs/1402.5783, 2014.

[2] G. Calinescu and K. Qiao. Asymmetric topology
control: Exact solutions and fast approximations. In
INFOCOM, 2012 Proceedings IEEE, pages 783–791,
March 2012.

[3] Gruia Calinescu. 1.61-approximation for min-power
strong connectivity with two power levels. Journal of
Combinatorial Optimization, pages 1–21, 2014.

[4] Paz Carmi and Matthew J. Katz. Power assignment in
radio networks with two power levels. Algorithmica,
47(2):183–201, 2007.

[5] Wen-Tsuen Chen and Nen-Fu Huang. The strongly
connecting problem on multihop packet radio networks.
Communications, IEEE Transactions on,
37(3):293–295, Mar 1989.

[6] Errol L. Lloyd, Rui Liu, and S. S. Ravi. Approximating
the minimum number of maximum power users in ad
hoc networks. Mob. Netw. Appl., 11(2):129–142, April
2006.

[7] Zeev Nutov and Ariel Yaroshevitch. Wireless network
design via 3-decompositions. Information Processing
Letters, 109(19):1136 – 1140, 2009.

[8] Robert Endre Tarjan. Efficiency of a good but not
linear set union algorithm. J. ACM, 22(2):215–225,
April 1975.

37

