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ABSTRACT
We study a dynamic version of the Multiple-Message Broad-
cast problem, where packets are continuously injected in
network nodes for dissemination throughout the network.
Our performance metric is the ratio of the throughput of
such protocol against the optimal one, for any sufficiently
long period of time since startup. We present and ana-
lyze a dynamic Multiple-Message Broadcast protocol that
works under an affectance model, which parameterizes the
interference that other nodes introduce in the communica-
tion between a given pair of nodes. As an algorithmic tool,
we develop an efficient algorithm to schedule a broadcast
along a BFS tree under the affectance model. To provide
a rigorous and accurate analysis, we define two novel net-
work characteristics based on the network topology, the af-
fectance function and the chosen BFS tree. The combination
of these characteristics influence the performance of broad-
casting with affectance (modulo a polylogarithmic function).
We also carry out simulations of our protocol instantiat-
ing affectance in the Radio Network model. To the best of
our knowledge, this is the first dynamic Multiple-Message
Broadcast protocol that provides throughput guarantees for
continuous injection of messages and works under the af-
fectance model.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—sequencing
and scheduling

Keywords
Multiple-Message Broadcast, Radio Network, Affectance

1. INTRODUCTION
We study the dynamic Multiple-Message Broadcast prob-

lem in wireless networks under the affectance model. This
model subsumes many communication-interference models
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studied in the literature, such as Radio Network (cf., [6])
and models based on the Signal to Interference and Noise
Ratio (SINR) (cf. [19, 30]). The notion of affectance was
first introduced in [19] in the context of link scheduling in
the more restricted SINR model of wireless networks, in an
attempt to formalize the combination of interferences from
a subset of links to a selected link under the SINR model.
Later on, other realizations of affectance were defined and
abstracted as an independent model of interference in wire-
less networks [23,24]. The conceptual idea of this model is to
parameterize the interference that transmitting nodes intro-
duce in the communication between a given pair of nodes.
Our results. In the dynamic Multiple-Message Broadcast
problem considered in this work, packets arrive at nodes in
an online fashion and need to be delivered to all nodes in
the network. We are interested in the throughput, i.e., the
number of packets delivered in a given period of time. In
particular, we measure competitive throughput of determinis-
tic distributed algorithms for the dynamic Multiple-Message
Broadcast problem. We analyse our algorithms in the (gen-
eral) affectance model, in which there is a given undirected
communication graph G of n nodes and diameter D, to-
gether with the affectance function a(·) of nodes of distance
at least 2 on each of the communication links. The affectance
function has a degradation parameter α, being a distance af-
ter which the affectance is negligible. Our contribution is
two fold.

First, we introduce new model characteristics — based
on the underlying communication network, the affectance
function, and a chosen BFS tree — called maximum av-
erage tree-layer affectance (denoted by K) and maximum
fast-paths affectance (denoted by M), see Section 2 for the
definitions, and show how they influence the time complex-
ity of broadcast. More precisely, if one uses a specific BFS
tree, called GBST (cf., [16]), that minimizes the product
M · (K + M) of the two above characteristics, then a single
broadcast can be done in time D + O(M(K + M) log3 n),1

cf., Corollary 3 in Section 3.
Second, we extend this method of analysis to a dynamic

packet arrival model and the Multiple-Message Broadcast
problem, and design a new algorithm reaching competitive
throughput of Ω(1/(αK log n)). In particular, in the Ra-
dio Network model it implies a competitive throughput of
Ω(1/(log2 n)). For details, see Section 4. Our determin-
istic results are existential, that is, we show the existence
of a deterministic schedule by applying a probabilistic ar-

1Throughout, we denote log2 simply as log, unless otherwise
stated.
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gument to a protocol that includes a randomized subrou-
tine for layer to layer dissemination. Given that we measure
competitive throughput in the limit, preprocessing (commu-
nication infrastructure setup, topology information dissemi-
nation, etc.) can be carried out initially without asymptotic
impact. Thus, the protocol presented is distributed, and
it works for every network after learning its topology. The
protocol can also be applied to mobile networks, if the move-
ment is slow enough to recompute the structure. Our rigor-
ous asymptotic analysis is further complemented by simula-
tions done for the Radio Network model, c.f., Section 5.

To the best of our knowledge, ours is the first work on
the dynamic Multiple-Message Broadcast problem in wire-
less networks under the general affectance model.
Previous and related work. There is a rich history of
research on broadcasting dynamically arriving packets on a
single-hop radio network, also called a multiple access chan-
nel. Most of the research focused on stochastic arrivals, cf., a
survey by Chlebus [8]. In the remainder of this paragraph,
we focus on the on-line adversarial packet arrival setting.
Bender et al. [5] studied stability, understood as throughput
being not smaller than the packet arrival rate, of randomized
backoff protocols on multiple access channels in the queue-
free model, in which every packet is handled independently
as if it has been a standalone station (thus avoiding queuing
problems). Kowalski [26] considered a dynamic broadcast on
the channel in the setting where packets could be combined
in a single message, which again avoids various important
issues related with queuing. Anantharamu et al. [3] studied
packet latency of deterministic dynamic broadcast proto-
cols for arrival rates smaller than 1. Stability, understood
as bounded queues, of dynamic deterministic broadcast on
multiple access channels against adversaries bounded by ar-
rival rate 1 was studied by Chlebus et al. [10], and for arrival
rates smaller than 1 by Chlebus et al. [11]. In particular,
in [10] a protocol Move-big-to-front (MBTF) was designed,
achieving stability but not fairness (as both these proper-
ties are impossible to achieve simultaneously); we use this
algorithm as a subroutine in our dynamic Multiple-Message
Broadcast protocol.

In multi-hop Radio Networks, the previous research con-
centrated on time complexity of single instances (i.e., from
a single source) of broadcast and multi-message broadcast.
For directed networks, the best deterministic solution is a
combination of the O(n log n log log n)-time algorithm by De
Marco [15] and the O(n log2 D)-time algorithm by Czumaj
and Rytter [13]. In undirected networks, the best up to
date deterministic broadcast in O(n log(n/D)) rounds was
given by Kowalski [26]. The lower bounds for determin-
istic broadcast in directed and undirected radio networks
are Ω(n log(n/D)) [12] and Ω(n logD n) [27], respectively.
Deterministic multi-message broadcast, group communica-
tion and gossip were also considered (again, in a single in-
stance). Chlebus et al. [9] showed a O(k log3 n + n log4 n)
time deterministic multi-broadcast algorithm for k packets
in undirected radio networks. Single broadcast can be done
optimally in Θ(D log(n/D) + log2 n), as proved in [2, 29]
(lower bounds) and in [13,27] (matching upper bound). Bar-
Yehuda et al. [4], and recently Khabbazian and Kowalski [25]
and Ghaffari et al. [18], studied randomized multi-broadcast
protocols; the best results obtained for k-sources single-
instance multi-broadcast is the amortized O(log ∆) rounds
per packet w.h.p. in [25], where ∆ is the maximum node

degree, and O(D + k log n + log2 n) w.h.p. to broadcast the
k packets, for settings with known topology in [18]. For
the same problem, Ghaffari et al. showed a throughput
upper bound of O(1/ log n) for any algorithm in [17]. Al-
though this bound is worst-case, it can be compared with
our 1/O(αK log n) that applies even under affectance.

Chlebus et al. [10] gave various deterministic and random-
ized algorithms for group communication, all of them being
only a small polylogarithm away of the corresponding lower
bounds on time complexity.

In the SINR model, single-hop instances of broadcast in
the ad-hoc setting were studied by Jurdzinski et al. [21, 22]
and Daum et al. [14], who gave several deterministic and ran-
domized algorithms working in time proportional to the di-
ameter multiplied by a polylogarithmic factor of some model
parameters. In the SINR model with restricted sensitiv-
ity, so called weak-sensitivity device model, Jurdzinski and
Kowalski [20] designed an algorithm spanning an efficient
backbone sub-network, that might be used for efficient im-
plementation of multi-broadcast.

The generalized affectance model was introduced and used
only in the context of one-hop communication, more specifi-
cally, to link scheduling by Kesselheim [23]. He also showed
how to use it for dynamic link scheduling in batches. This
model was inspired by the affectance parameter introduced
in the more restricted SINR setting [19]. They give a char-
acteristic of a set of links, based on affectance, that influence
the time of successful scheduling these links under the SINR
model. In our paper, we generalize this characteristic, called
the maximum average tree-layer affectance, to be applica-
ble to multi-hop communication tasks such as broadcast,
together with another characteristic, called the maximum
fast-paths affectance. For details see Section 2.

2. PRELIMINARIES
Model. We study a model of network consisting of n nodes,
where communication is carried out through radio trans-
missions in a shared channel. Time is discretized in a
sequence of time slots 1, 2, . . . , which we call the global
time. The network is modeled by the underlying connec-
tivity graph G = {V, E}, where V is the set of nodes and E
the set of links among nodes. Let a link ` ∈ E between two
nodes u, v ∈ V be the set {u, v}. The network is assumed to
be connected but multihop. That is, not all possible links
are present in E, but any pair of nodes may communicate,
possibly through multiple hops.

Messages to be broadcast to the network through radio
transmissions are called packets. Packets are injected at
nodes at the beginning of time slots, and each time slot is
long enough to transmit a packet to a neighboring node.
Any given node can either transmit or listen (in order to
receive, if possible) in a time slot. Two or more transmis-
sions received at a third node simultaneously are garbled.
This event is called a collision . Nodes cannot distinguish
between a collision and the background noise in the channel,
that is, collisions cannot be detected.

Additional interference on a link due to transmissions at
more than one hop is modeled as affectance. We use a
model of affectance that subsumes other communication-
interference models, such as the Radio Network model (c.f.,
[6]) and the SINR model (c.f., [19]). Specifically, we re-
alize affectance as a value ai(j) ≤ 1 that quantifies the
interference that a transmitting node i introduces to the
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communication through link j. We do not restrict ourselves
to any particular affectance function, as long as its effect
is additive. That is, denoting aV ′(j) as the affectance of
a set of nodes on a link, for any V ′ ⊆ V and j ∈ E, it
is aV ′(j) =

P
i∈V ′ ai(j). For a link (u, v), where u is the

transmitter, we define au((u, v)) = 0 and av((u, v)) = 1, to
model the positive (resp. negative) impact of a transmission
from the transmitter (resp. receiver). Also, for N(v) being
the set of neighbors of v, we define aw((u, v)) = 1 for each
w 6= u such that w ∈ N(v).

Under the affectance model, we define a successful trans-
mission as follows. For any pair of nodes u, v ∈ V such that
{u, v} ∈ E, a transmission from u is received at v in a time
slot t if and only if: u transmits and v listens in time slot
t, and aT (u, v) < 1, where T is the set of nodes transmit-
ting in time slot t. We also denote the affectance of a set
of nodes V ′ on a set of links E′ as aV ′(E

′), for any V ′ ⊆ V
and E′ ⊆ E.
Communication task. Under the above model, we study
the following Multiple-Message Broadcast problem. Start-
ing at time slot 1, packets are being dynamically injected
into source nodes for dissemination throughout the net-
work. The set of all source nodes is denoted as S ⊆ V .
After a packet has been received by all the nodes in the net-
work, we say that the packet was delivered . The injections
are adversarial, that is, packets can be injected at any time
slot at any source node, but the injections are limited to be
feasible. We say that an injection is feasible if there ex-
ists an optimal algorithm OPT such that the latency (i.e.,
the time elapsed from injection to delivery) of each packet
is bounded for OPT. Given that at most one packet may
be received by a node in each time slot, and that all nodes
must receive the packet in order the packet to be delivered,
this assumption limits the adversarial injection rate to at
most 1 packet per time slot for all nodes. The goal is to find
a broadcasting schedule , that is, a temporal sequence of
transmit/not-transmit states for each node, so that packets
are delivered. We denote the period of time since a packet is
transmitted from the source until it is delivered the length
of the schedule.
Performance metric. We evaluate the ratio of the perfor-
mance of a distributed online algorithm ALG against an op-
timal algorithm OPT. For one hop networks it is known [10]
that no protocol is both stable (i.e., bounded number of
packets in the system at any time) and fair (i.e., every
packet is eventually delivered). For multihop networks the
same result holds as a natural extension of the single hop
model. Thus, instead of further limiting the adversary (be-
yond feasibility) to achieve stability or bounded latency, our
goal is to prove a lower bound on the competitive through-
put , for any sufficiently long prefix of time slots since global
time 1. Specifically, we want to prove that there exists a
function f , possibly depending on network parameters, such
that limt→∞ dALG(t)/dOPT (t) ∈ Ω(f), where dX(t) is the
number of packets delivered to all nodes by algorithm X
until time slot t.
Network characterization. We characterize a network by
its affectance degradation distance , which is the number
of hops α such that the affectance of nodes of distance big-
ger that α in the network G to a given link is “negligible”,
that is, zero. Additionally, we characterize the network with
two measures of affectance based on broadcast trees, as fol-
lows. Given a network with a set of nodes V including a

source node s, consider a gathering-broadcast spanning tree
(GBST) [16] rooted at s. A GBST is a breadth-first-search
tree with a specific node ranking, satisfying the property
that no two links of senders and receivers with the same rank
create collisions (i.e., the receivers are different and there is
no“cross link”between the sender in one link and receiver in
the other). We define a node-set partition (slightly different
than the partition in [16] for convergecast) based on that
ranking and the distance to the source. Specifically, for a
GBST tree T , the set of nodes V is partitioned in sets F r

d (T )
and sets Sd(T ). A node of rank r at (shortest) distance d
from the source is in set F r

d (T ) if it has a child of the same
rank (so called fast nodes), or it is in set Sd(T ) otherwise
(so called slow nodes). Let Vd(T ) = Fd(T ) ∪ Sd(T ), where
Fd(T ) =

S
r F r

d (T ). That is, Vd(T ) is the set of all nodes at
distance d from the root. Based on this partition, we define
the maximum average tree-layer affectance

K(T, s) = max
d

max
V ′⊆Vd(T )

1

|L(V ′)|aV ′(L(V ′)) ,

where L(V ′) is the set of GBST links between V ′ and nodes
at distance d + 1 of the source. Additionally, we define the
maximum fast-paths affectance

M(T, s) = max
d,r

max
`∈F r

d
(T )

aF r
d

(T )\`(`) .

Given a GBST tree, the former characteristic says what is
the maximum average affectance of a subset of nodes in the
same layer on the links to their children in the tree, while the
latter characteristic says what is the maximum affectance
of fast links of the same rank and originated in the same
layer to one of them. Intuitively, the former characteristic
indicates what might be the worst affectance to overcome
when trying to broadcast from one layer to another, while
the latter one indicates what is the worst affectance when
trying to pipeline a packet via fast links. In the rest of the
paper, the specific tree and source node s will be omitted
when clear from the context.

3. A BROADCAST TREE
In this section, we show a broadcasting schedule that, un-

der the affectance model, disseminates a packet held at a
source node to all other nodes. The schedule is defined con-
structively with a protocol that uses randomization, thus
providing only stochastic guarantees. Given that the proto-
col is Las Vegas, the construction also proves the existence
of a deterministic broadcasting schedule.

First, we detail the construction of a ranked tree spanning
the network rooted at the source node that will be used to
define the broadcasting schedule that we detail afterwards.
The following notation will be used.

Given a tree T (s) ⊆ E rooted at s ∈ V , spanning a set
of network nodes V with set of links E, let d(v) be the
distance in hops from a node v ∈ V to the root of T (s), let
p(`) and c(`) be the parent and child nodes of link ` ∈ T (s)
respectively, and let D(T (s)) be the maximum distance in
T (s) from any node to the root s. Additionally, a rank (a
number in N) will be assigned to each node. Let r(u) be the
rank of node u ∈ V , let R(T (s)) be the maximum rank in
the tree, and let F r

d = {u|u ∈ V ∧ d(u) = d ∧ ∃v ∈ V : v =
c(u) ∧ r(v) = r(u) = r}, that is, the set of nodes of rank r
at distance d from the root that have a child with the same
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rank. In the above notation, the specific tree parameter
and/or source node will be omitted when clear from the
context.

Then, given a graph G and a source node s ∈ S, consider
the following construction of a Low-Affectance Broadcast
Spanning Tree (LABST). Let Tmin be the GBST that
minimizes the following polynomial on the affectance mea-
sures. Letting T be the class of all GBSTs that can be de-
fined with source s, it is ∀T ∈ T : M(Tmin, s)(M(Tmin, s) +
K(Tmin, s)) ≤M(T, s)(M(T, s) + K(T, s)). Then, using Al-
gorithm 1, transform Tmin into a LABST T that avoids links
between nodes of the same rank with big affectance.

Algorithm 1: LABST construction.

T ← Tmin1

foreach rank r = R(T ), R(T )− 1, . . . , 2, 1 do2

r ← rdM(T )e3

//now it is R(T ) = R(Tmin)dM(T )e
update all sets F r

d .4

foreach distance d = D(T ), . . . , 2, 1 do5

foreach rank r = 1, 2, . . . , R(T ) do6

foreach link ` such that p(`) ∈ F r
d do7

if aF r
d
\`(`) ≥ 1 then r(p(`))← r + 18

update all sets F r
d .9

The broadcasting schedule is defined using the LABST T
obtained. Being a radio-broadcast network, transmissions
might be received using other links or time slots, but the
LABST and broadcasting schedule defined provide the com-
munication guarantees. Each node follows certain broad-
casting schedule, but using only time slots reserved for it-
self. Specifically, let a node v ∈ V be called fast if it

belongs to the set F
r(v)

d(v) (T ), and slow otherwise. Then,

for each node v ∈ V , if v is fast, it uses each time slot t
such that t ≡ d(v)+ 2h(R(T )− r(v)) (mod 2hR(T )), where
h = max{3, α} and α is the affectance degradation distance.
Otherwise, if v is slow, it uses each time slot t such that
t ≡ d(v)+h (mod 2h). (The reason for this particular choice
of reserved slots will become clear in Theorem 2.)

The broadcasting schedule for fast nodes is simple: upon
receiving a packet for dissemination, transmit in the next
time slot reserved. For slow nodes, the schedule is deter-
mined by a randomized contention resolution protocol that
can be run in the reserved time slots. The protocol is simple:
upon receiving a packet for dissemination, each slow node
transmits repeatedly with probability 1/(4K(Tmin, s)), until
the packet is delivered. In the rest of this section, we bound
the length of the broadcasting schedule. The following upper
bound will be used.

Lemma 1. The maximum rank of a LABST on a network
of n nodes with source node s is

R(T ) ≤ dlog nedM(Tmin, s)e.
Proof. Consider the construction of a LABST T . The

initial GBST Tmin guarantees that the maximum rank is
R(Tmin) ≤ dlog ne(cf. [16]). Consider Algorithm 1, after
Line 3, it is R(T ) ≤ dlog nedM(Tmin)e. We show here that
such overhead is enough for all the updates in Line 8.

Consider any path p from root to leaf in Tmin defined by its
set of links in the path (the order is implicit). Let p′ ⊆ p be

the set of all links in a maximal subpath of p where all nodes
have the same rank. The maximum number of ranks needed

for the updates Line 8 is

‰P
`∈p′ aF

r(p(`))
d(p(`)) \`

(`)/|p′|
ı
. The

bound holds because each time that a link is removed from
such path, a value ≥ 1 is reduced from the total affectance
of the path, and fast nodes continue being fast (possibly in
a different set) even after updating the rank. Also, because
fast nodes are still fast after the update, no new collisions
appear and the links do not need to be updated. Given that

a
F

r(p(`))
d(p(`)) \`

(`) ≤ M(Tmin), it is

‰P
`∈p′ aF

r(p(`))
d(p(`)) \`

(`)/|p′|
ı
≤

lP
`∈p′ M(Tmin)/|p′|

m
= dM(Tmin)e. Thus, the rank over-

head with respect to Tmin is enough.

Theorem 2. For any given network of n nodes with a
source node, diameter D, and affectance degradation dis-
tance α, there exists a broadcasting schedule of length

D + 2hdlog ne2 `dM(Tmin)e2 + 16dM(Tmin)eK(Tmin)
´
,

where h = max{3, α}.
Proof. First we show that the broadcasting schedule is

correct. Consider any pair of nodes u, v ∈ V transmitting
in the same time slot. If d(u) = d(v) and they are both fast
nodes with the same rank, the affectance on each other’s
links is low by definition of the LABST. If d(u) = d(v) and
they are both slow nodes, the contention resolution protocol
will disseminate the packet to the next layer. Otherwise,
given the slot reservation, |d(u) − d(v)| ≥ h. Given that
h ≥ α, the affectance on each other’s links is negligible,
and given that h ≥ 3, there are no collisions between their
transmissions.

To prove the schedule length, consider any path p from
root to leaf in the LABST T . The path p can be partitioned
into consecutive maximal subpaths according to rank. In
each maximal subpath p′ ∈ p of consecutive nodes of the
same rank, the first node may have to wait up to 2hR(T )
slots for the next reserved time slot, but after that all nodes
except the last one transmit in consecutive time slots. Given
that there are at most R(T ) such maximal subpaths and that
their aggregated length is at most D(T ), the schedule length
in the fast nodes of path p is at most D(T ) + 2hR(T )2 ≤
D + 2hR(T )2, where the latter inequality holds because T
is a BFS tree.

Consider now any link ` ∈ p where the rank changes, that
is r(p(`)) 6= r(c(`)) and p(`) ∈ Sd(p(`)) ⊆ Vd(p(`)). Recall
that the schedule in such link is defined by a randomized
contention resolution protocol where each node transmits
with probability 1/(4K(Tmin)), where

K(Tmin) = max
d

max
V ′⊆Vd(Tmin)

1

|L(V ′)|aV ′(L(V ′)),

where L(V ′) is the set of GBST links between V ′ and nodes
at distance d + 1 of the source, and Vd(Tmin) is the set of
nodes at distance d from the source in Tmin.

For a probability of transmission

q ≤ 1

4maxS⊆Vd(p(`)) aS(L(S))/|L(S)| ,

it was proved in [24] that the probability that there is still
some link in S where no transmission was successful after
4c ln |Vd(p(`))|/q time slots running Algorithm 1 in [24], is at
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most |Vd(p(`))|1−c, c > 1. Given that 1/(4K(Tmin)) verifies
such condition, we know that after

16cK(Tmin) ln |Vd(p(`))| ≤ 16cK(Tmin) ln n

(reserved) time slots, the transmission in link ` has been
successful with positive probability. Given that there are at
most R(T )−1 links where the rank changes, using the union
bound, we know that after (R(T ) − 1)16cK(Tmin) ln n (re-
served) time slots all slow nodes have delivered their packets
with some positive probability, which shows the existence of
a deterministic schedule of such length2. The time slots re-
served for slow nodes appear with a frequency of 2h. Thus,
the schedule length in the slow nodes of path p is at most
2h(R(T ) − 1)16cK(Tmin) ln n ≤ 32hR(T )K(Tmin) ln n, for
c = R(T )/(R(T )− 1).

Adding both schedule lengths we have

D + 2hR(T )2 + 32hR(T )K(Tmin) ln n

Replacing the bound on R(T ) in Lemma 1, the claim fol-
lows.

For networks with affectance degradation distance dlog ne,
Theorem 2 yields the following corollary.

Corollary 3. For any given network of n ≥ 8 nodes, di-
ameter D, and affectance degradation distance dlog ne, there
exists a broadcasting schedule of length

D + O(log3 n(M(Tmin)(M(Tmin) + K(Tmin)))).

For comparison, for less contentious networks where af-
fectance is not present (Radio Network model), using a GBST
a broadcast schedule of length D + O(log3 n) was shown
in [16] and of length O(D + log2 n) was proved in [28].

4. A DYNAMIC Multiple-Message Broadcast
PROTOCOL

In this section, we present our Multiple-Message Broad-
cast protocol and we bound its competitive throughput. The
protocol uses the LABST3 presented in Section 3.4 The in-
tuition of the protocol is the following. Each source node has
a (possibly empty) queue of packets that have been injected
for dissemination. Then, starting with an arbitrary source
node s ∈ S with “large enough” number of packets in its
queue, packets are disseminated through a LABST rooted
at s. If the number of packets in the queue of s becomes
“small”, s stops sending packets and, after some delay to
clear the network, another source node s′ ∈ S starts dissem-
inating packets through a LABST rooted at s′. The proce-
dure is repeated following the order of a list of source nodes,
which is dynamically updated according to queue sizes to
guarantee good throughput. Packets from any given source
are pipelined with some delay to avoid collisions and af-
fectance. Being a radio broadcast network, packets might
be received earlier than expected using links or time slots

2In settings with collision detection and where the affectance
on any given link is O(n), a big enough constant c > 1
yields a randomized protocol that succeeds with probability
1− 1/n.
3We refer to the tree and the broadcast schedule indistinc-
tively.
4Any broadcast schedule that works under the affectance
model could be used.

other than those defined by the LABST. If that is the case,
to guarantee the pipelining, nodes ignore those packets.

The following notation will be also used. The LABST
rooted at s ∈ S is denoted as T (s). We denote the length
of the broadcast schedule (time to deliver to all nodes) from
s as ∆(s), and ∆ = maxs∈S ∆(s). Let the pipeline delay
(the time separation needed between consecutive packets to
avoid collisions and affectance) from s be δ(s), and δ =
maxs∈S δ(s). Given a node i ∈ S and time slot t, the length
of the queue of i is denoted `(i, t). Let the length of all
queues at time t be `(t) =

P
i∈S `(i, t). We say that, at time

t, a node i is empty if `(i, t) < ∆, small if ∆ ≤ `(i, t) < n∆,
and big if `(i, t) ≥ n∆.

Consider the following Multiple-Message Broadcast Pro-
tocol .

1. For each source node s ∈ S define a LABST rooted at
s.

2. Define a Move-big-to-front (MBTF) list [10] of source
nodes, initially in any order. According to this list,
source nodes circulate a token. While being dissemi-
nated, the token has a time-to-live counter of ∆, main-
tained by all nodes relaying the token. A source node s
receiving the token has to wait for the token counter to
reach zero before starting a new transmission. Let the
time slot when the counter reaches zero be t. Then,
node s does the following depending on the length of
its queue.

(a) If s is empty at t, it passes the token to the
next node in the list. We call this event a silent
round .

(b) If s is small at t, it broadcasts ∆ packets pipelin-
ing them in intervals of δ slots. After δ more slots,
it passes the token to the next node in the list.

(c) If s is big at t, it moves itself to the front of the
list. We call this event a discovery . Then, s
broadcasts packets pipelining them in intervals of
δ slots as long as it is big, but a minimum of ∆
packets. With the first of these packets s broad-
casts the changes in the list. δ more slots after
transmitting these packets, it passes the token to
the next node in the list.

The following theorem shows an upper bound on the num-
ber of packets in the system at any time, which allows to
prove the competitive throughput of our protocol. The proof
structure is similar to the proof in [10] for MBTF, but many
details have been redone to adapt it to a multihop network.

Theorem 4. For any given network of n nodes, at any
given time slot t of the execution of the Multiple-Message
Broadcast protocol defined, the overall number of packets in
queues is `(t) < (tδ/(1 + δ)) + 2∆n2.

Proof. For the sake of contradiction, assume that there
exists a time t such that the overall number of packets in
the system is `(t) ≥ (tδ/(1 + δ)) + 2∆n2. The number of
packets in queues at the end of any given period of time is
at most the number of packets in queues at the beginning of
such period, plus the number of time slots when no packet is
delivered, given that at most one packet is injected in each
time slot. We arrive to a contradiction by upper bounding
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the number of time slots when no packet is delivered within
a conveniently defined period before t. Consider the period
of time T such that

`(t− T ) ≤ n2∆ +
(t− T )δ

1 + δ
(1)

∀t′ ∈ [t− T, t] : `(t′) ≥ n2∆ (2)

`(t) ≥ (tδ/(1 + δ)) + 2∆n2 (3)

From now on, the analysis refers to the period of time T .
We omit to specify it for clarity. Let C ⊆ S be the set of
nodes that are big at some point. Due to the pigeonhole
principle and Equation (2), we know that for each time slot
there is at least one big source node. In other words, the
token cannot be passed throughout the whole list without
at least one discovery. As a worst case, assume that only
nodes in C have packets to transmit. For each node i ∈ C,
the token has to be passed through at most |S \C| ≤ n−|C|
nodes that are not in C before i is discovered, because after
i is discovered no node in S \ C will be before i in the list.
Hence, there are at most |C|(n − |C|) silent rounds, each
of length ∆ for token pass. So, due to passing the token
through nodes in S \ C, there are at most |C|(n − |C|)∆
time slots when no packet is delivered.

We bound now the time slots when no packet is delivered
due to passing the token through nodes in C before being
discovered for the first time. Consider any given node i ∈ C.
The argument is similar to the previous case. Any other
node j ∈ C that is discovered before i is moved to the front
of the list. If i is going to be before j in the list later, it
is not going to happen before i is discovered for the first
time. Then, before i is discovered, it may hold the token
at most |C| − 1 times. As a worst case, assume that for
each of these times i is empty. Hence, there are at most
|C|(|C| − 1) silent rounds, each of length ∆ for token pass.
So, due to passing the token through nodes in C before being
discovered, there are at most |C|(|C| − 1)∆ time slots when
no packet is delivered.

It remains to bound the time slots when no packet is deliv-
ered due to pipelining and passing the token through nodes
in C after being discovered. Consider any given node i ∈ C
after being discovered. If i is big during the rest of T , it
broadcasts packets pipelining them in intervals of δ slots.
If instead i becomes small during T , i will have ∆ packets
to transmit for at least n − 1 times that holds the token
afterwards before becoming empty, because right after be-
coming small it has at least (n−1)∆ packets in queue. And
there are at most n − 1 nodes in C that will not be be-
hind i in the list until i becomes big again. Hence, i always
has ∆ packets to transmit after being discovered the first
time. After becoming small, i has to pass the token to the
next node in the list introducing a delay of ∆. As a worst
case scenario, we assume that upon each discovery of each
node i ∈ C, only ∆ packets are broadcast before passing
the token. Then, for each ∆ packets delivered, there are
at most ∆ + ∆(δ − 1) = ∆δ time slots when no packet is
delivered, over a period of ∆ + ∆δ = ∆(1 + δ) time slots.
Because C is the set of nodes that are discovered in T , we
can bound the number of batches of ∆ packets delivered in T
by bT/(∆(1+ δ))c ≤ T/(∆(1+ δ)). Then, there are at most
T∆δ/(∆(1 + δ)) = Tδ/(1 + δ) time slots when no packet is
delivered due to nodes in C after being discovered.

Combining these bounds with Equation (1), we have that
there are at most

n2∆ +
(t− T )δ

1 + δ
+ |C|(n− |C|)∆ + |C|(|C| − 1)∆ +

Tδ

1 + δ

= n2∆ +
tδ

1 + δ
+ ∆|C|(n− 1)

<
tδ

1 + δ
+ 2∆n2

time slots when no packet is delivered. Which is a contra-
diction.

Lemma 5. There exists a Multiple-Message Broadcast pro-
tocol that achieves a competitive throughput of at least

lim
t→∞

1

1 + δ
− 2∆n2

t
.

Proof. A packet is delivered when it has been received
by all nodes. The optimal algorithm delivers at most one
packet per time slot, since any given node can receive at
most one packet per time slot. Additionally, the injection
is limited to be feasible, that is, there must exist an opti-
mal algorithm OPT such that the latency of each packet is
bounded for OPT. Thus, at most one packet may be injected
in each time slot. Then, the competitive throughput is at
least

lim
t→∞

dALG(t)

dOPT (t)
≥ lim

t→∞
t− ndALG(t)

t
,

where ndALG(t) is the max number of packets that could not
be delivered by ALG by time t. Using the bound in Theo-
rem 4 we have that

lim
t→∞

dALG(t)

dOPT (t)
≥ lim

t→∞
t− (tδ/(1 + δ))− 2∆n2

t

≥ lim
t→∞

1

1 + δ
− 2∆n2

t
.

The following theorem shows our main result.

Theorem 6. For any given network of n nodes, diame-
ter D, and affectance degradation distance α, there exists a
Multiple-Message Broadcast protocol that achieves a compet-
itive throughput of at least

lim
t→∞

1

1 + δ
− 2∆n2

t
.

Where

∆ ≤ D + 2max{3, α}dlog ne2
`dM(Tmin)e2 + 16dM(Tmin)eK(Tmin)

´
,

K = max
s∈S

K(Tmin(s), s),

M = max
s∈S

M(Tmin(s), s),

δ = max{3, α}16K ln n.

Proof. The length ∆(s) of the broadcast schedule in a
LABST rooted at s is given in Theorem 2. With respect to
δ(s), as explained in the proof of Theorem 2, slow nodes at
distance d from the root deliver a packet to the next node in
a path of a LABST T (s) within 16cK(Tmin(s)) ln |Vd| with
positive probability for any c > 1. This shows the existence
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of a deterministic schedule of that length. Additionally,
packets must be separated by at least max{3, α} to avoid
collisions and affectance from nodes at different distances
from the source (see the proof of Theorem 2 for further de-
tails). Then, it is δ(s) = max{3, α}16K(Tmin(s)) ln n, for
c = ln n/ ln |Vd|. Replacing, the claim follows.

The above theorem yields the following corollary that pro-
vides intuition.

Corollary 7. For any given network of n nodes, diam-
eter D, and affectance degradation distance α, there exists a
Multiple-Message Broadcast protocol such that the competi-
tive throughput converges to

1

O(αK log n)
,

where K = maxs∈S K(Tmin(s), s).

To evaluate these results, it is important to notice that the
competitive throughput bound was computed against a the-
oretical optimal protocol that delivers one packet per time
slot, which is not possible in practice in a multi-hop network.
For comparison, instantiating our interference model in the
Radio Network model (no affectance), using the WEB pro-
tocol [7] for slow transmissions our Multiple-Message Broad-
cast protocol can be shown to converge to 1/O(log2 n). Fur-
thermore, for single-instance multi-broadcast in Radio Net-
work, Ghaffari et al. showed in [17] a throughput upper
bound of O(1/ log n) for any algorithm. Although this bound
is worst-case, it can be compared with our 1/O(αK log n)
that applies even under affectance. We evaluate the Ra-
dio Network case through simulations of our protocol in the
following section.

5. SIMULATIONS
For simplicity, we carried out simulations of the Multiple-

Message Broadcast protocol assuming the Radio Network
model. That is, interference is due to collisions only. In
absence of affectance, the LABST construction is simply a
GBST. Furthermore, the affectance measures are zero and
the broadcast tree becomes any GBST as defined in [16]. We
simulated the tree broadcast schedule specified in Section 3,
except for the protocol for small nodes transmissions from
layer to layer, which in [16] is the deterministic schedule of
the WEB protocol [7].

Regarding the delay δ and the schedule length ∆, using a
GBST and the WEB protocol they are δ = ln2 n (cf. Lemma
6.2 in [7]) and ∆ = maxs∈SD(s) + 6rmax(s)

2 + rmax(s) ln2 n
(cf. [16]), where rmax is the maximum rank in the GBST
rooted on the source node s. Using such broadcast trees
from each source, we simulated the protocol in Section 4 for
network sizes n = 8, 16, 32, 64, 128, 256, and 512. The in-
put networks were random graphs G(n, p), where p = 1/5,
and each node was chosen to be a source at random with
probability 1/3. The injection at a rate of one packet per
time slot was also random with uniform distribution on the
nodes. The packet queues of the source nodes were initial-
ized to ∆ packets. That is, initially all source nodes were
small introducing overhead due to token passing.

The results of the simulations are illustrated by the plot
in Figure 1. It can be seen that, after an initial phase, for
any of the network sizes studied, the competitive throughput
converges to a constant (with respect to time). Furthermore,

except for the small networks, for bigger values of n it can
be seen that the value of convergence decreases linearly al-
though n grows exponentially, showing that the convergence
value is approximately inverse logarithmic (with respect to
n) as expected from replacing the value of δ in Lemma 5.
It is important to notice that the competitive throughput
was computed against a theoretical optimal protocol that
delivers one packet per time slot, which is not possible in
practice in a multi-hop network.
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