
Resource-Competitive Error Correction

Varsha Dani
∗

Department of Computer Science
University of New Mexico
Albuquerque, NM, USA
varsha@cs.unm.edu

ABSTRACT

We present a resource-competitive Monte Carlo algorithm
for the problem of error correction for message transmission
along a noisy channel when a limited amount of feedback is
available. To transmit a message of length n in the presence
of T ≤ n/ log n adversarial errors, our algorithm sends n +

2
√

n(T + 1) log n+ cT log n bits.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Data communications; F.2.2 [Analysis of Algorithms and

Problem Complexity]: Nonnumerical Algorithms and Prob-
lems

General Terms

Algorithms, Theory

Keywords

Resource-Competitive Analysis; Noisy Channel; Reliable Com-
munication

1. INTRODUCTION
In classical theoretical computer science we are used to

thinking of an adversary who is all-powerful and can take
actions that maximally disrupt our algorithms, at no cost or
trouble to himself. While this is a useful construct when our
goal is to design algorithms with provable guarantees for ev-
ery possible input, it has been pointed out (see, e.g., [4]) that
there are many situations in distributed computing where
this view of the adversary is overly pessimistic. In particu-
lar, for problems on networks involving many nodes it is rea-
sonable to suppose that bad nodes, which try to disrupt the
computation, are subject to the same resource constraints
as the good nodes which follow the prescribed protocol.

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CCF-1320994.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FOMC’14, August 11, 2014, Philadelphia, PA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2984-2/14/08 ...$15.00.

http://dx.doi.org/10.1145/2634274.2634280.

To model this, Gilbert, King, Saia and Young [4] defined
a notion of resource-competitiveness. Informally, an algo-
rithm is resource competitive if the cost to the algorithm
is bounded by a function of the cost to the adversary. We
raise a minor criticism of their definition, and then present
a resource-competitive algorithm for the problem of error
correction for message transmission along a noisy channel
when a limited amount of feedback is available.

2. RESOURCE-COMPETITIVE ANALYSIS
We now review the definition of resource-competitiveness

from [4]. Let G be the set of good players and F the set
of adversarially controlled (faulty) players in the network;
these sets are not known up front and membership in them
may be determined adversarially and sometimes adaptively.
Let A denote the prescribed algorithm, and let C(α, j) de-
note the cost to player j over an execution α of A. Note that
for good players this is the cost for following A, whereas for
faulty players it is the cost of whatever strategy they have
followed.

Definition 2.1. Let g(.) and a(.) be functions that take
as input the set of costs for the good and faulty players,
respectively. Let T = a({C(α, j)}pj∈F). Then, an algorithm
A is (ρ, g, a, τ)-resource-competitive if

g({C(α, j)}pj∈G) ≤ ρ(T) + τ

for any execution α.

Here, the functions g and a allow us to switch between the
aggregate cost to all players or the average cost to the players
or the maximum cost to any player, or whatever is appro-
priate in the particular problem being tackled. The function
ρ is a function of T and possibly other problem-related pa-
rameters, while τ > 0 may depend on other problem-related
parameters, but not on T , and represents the cost to the
algorithm when there is no attack. Obviously it is desirable
that ρ and τ be as small as possible.

One slight drawback of this definition is that it fails to take
into account the relationship between T and other problem
parameters, if any. On the face of it, it would seem that the
ability to design an algorithm with a ρ that is sublinear in T
is better than one in which ρ is linear in T , but except in the
case where T is asymptotically a completely free parameter,
this is misleading. If T is in any way constrained by the other
parameters, then the dependence of ρ on T alone may not
capture the true cost of the algorithm. See Theorem 4.1 and
Remark 4.2 for or [5] and the remarks about it in Section 3
for concrete examples.

53

Another issue is with τ . Gilbert et al. [4] define τ as the
cost of the algorithm “when there is no attack”. However,
this does not distinguish between the underlying cost of the
problem at hand in an attack-free environment (i.e., the
promise of no attack) and the cost of the algorithm when
there is a possibility of attack, but in fact no attack occurs.
In the latter case, the algorithm must incur some cost for
testing for attacks, or risk terminating incorrectly. For ex-
ample, sending a message over a noise-free channel costs the
length of the message; if there is a possibility of noise on
the channel, then it is not enough to simply transmit the
message. Additional bits must be sent to ensure that the
correct message is received, and this is necessary even if it
turns out afterwards that there was no interference. It seems
preferable to separate this cost from the underlying cost of
the attack-free protocol, as it is interesting to consider what
is the minimum cost to deal with the mere threat of attack.

3. RELATED WORK
Resource-competitive algorithms have been studied in the

domain of wireless sensor networks. Here, the devices run-
ning the protocols have limited battery life and it is impor-
tant that the devices following the protocol do not die before
completing their task, even if some devices are actively try-
ing to disrupt them.

King, Saia and Young [6] studied a model in which Al-
ice wants to send a message to Bob over a communication
channel that may be jammed by an adversary. The entire
message may be transmitted during a single time slot at unit
cost to Alice. However if Bob is not listening (for unit cost)
in that time slot or the adversary jams the time slot (again
for unit cost) then Bob does not receive the message. King,
Saia and Young presented a Las Vegas algorithm for Alice
to transmit and Bob to listen so that if the adversary jams
T time slots Alice and Bob can guarantee receipt of the mes-
sage with an expected total cost of O(Tϕ−1 + 1) where ϕ is
the golden mean.

Gilbert and Young [5] studied communication under a dif-
ferent attack model in which a single authenticated node Al-
ice wants to send a message to n good nodes over a single
channel. The adversary controls Θ(n) Byzantine nodes that
may try to arbitrarily disrupt the communication. In par-
ticular they may jam the channel or attempt to spoof the
correct nodes and request retransmissions from Alice. For
an arbitrarily fixed parameter k ≥ 2, each player has a bud-

get of Õ
(

n1/k
)

. Gilbert and Young present a Monte Carlo

algorithm such that for any ε > 0, with high probability at
least a 1− ε fraction of the good nodes receive the message
while ensuring that if the adversary spends T = Õ(n1+1/k)
to disrupt, then each good node incurs a cost of no more

than Õ
(

T
1

k+1 + 1
)

. Note that T is constrained due to in-

dividual budget constraints on the Byzantine nodes and the
resulting cost guarantee to the good players is the same or-
der of magnitude as their individual budgets.

Gilbert, King, Pettie, Porat, Saia and Young [3] also con-
sider a model in which Alice is trying to send a message to
many nodes, in the presence of a jamming adversary with an
unknown (but finite) budget. Their adversary is less pow-
erful, in that it cannot spoof the recipients. Against this
adversary, Gilbert et al. [3] present a Monte Carlo algorithm

that achieves an expected per node cost of O(
√

T/n log4 T+
log6 n) when the adversary’s cost is T .

The definition of resource-competitiveness does not re-
quire the good players to spend less than the adversary.
Nonetheless, this is the case in all of the aforementioned
resource-competitive algorithms, at least asymptotically. In
contrast, in our work the good players must inherently pay
more than the adversary. This is mitigated by the fact that
our cost model counts the actual number of bits transmit-
ted, whereas in the aforementioned works, only the number
of messages sent was counted, regardless of their size.

Gilbert, Guerraoui, and Newport [2] also study the prob-
lem of Alice and Bob communicating in the presence of a
jamming adversary, and show matching upper and lower
bounds indicating that an adversary who can jam T slots can
delay successful communication by 2T + log |V |/2 rounds,
where V is the message space. Here the adversary appears
to have the advantage. However these results are not di-
rectly comparable to the resource-competitive algorithms
mentioned above, because the metric they are trying to op-
timize is delay, rather than transmission cost, and in in par-
ticular, the players need not be incurring much cost while
they wait out the delay guaranteed by the lower bound.

4. PROBLEM STATEMENT AND RESULT
Honest parties Alice and Bob want to communicate. Alice

has an n-bit message that she wants to send to Bob. How-
ever, her communication channel to Bob is vulnerable to an
adversary who can flip bits on the channel. If it were known
how many bits the adversary would flip, Alice could use an
error-correcting code with appropriately chosen parameters
to ensure receipt of the correct message; see, e.g., [8]. This,
however, costs bandwidth inversely proportional to the rate
of the code, and is therefore a constant factor blowup over
transmitting the message in the clear. Thus, if an adversary
causes Alice to use error correction, he has already caused
damage, even if no bits are actually flipped on the channel!

Now suppose Alice has a limited ability to periodically
receive some feedback from Bob. For instance, suppose Alice
breaks her message up into smaller blocks, and Bob can send
fingerprints of the blocks he has received. The transmission
cost for this feedback is charged to Alice (or alternatively
we can think of charging the cost of both Alice and Bob’s
transmissions to the algorithm.) Thus, it is not efficient
for Bob to do something like echoing the message he heard.
In this situation, is it possible for Alice and Bob to tailor
their transmissions to the amount of interference actually
observed on the channel, ideally sending only about as many
bits as if they had known in advance how many bits would
be flipped? In other words, can we come up with a resource-
competitive algorithm?

If the bit flips on the channel are adversarial, then the an-
swer is no. The reason is that if the adversary can flip bits
in Alice’s as well as Bob’s transmissions, then he can change
Alice’s message and also change Bob’s fingerprint, so that
the fingerprint matches the changed message. Then neither
Alice nor Bob can detect that the message Bob received is
not the same as the message Alice sent. This is sometimes
called a “man in the middle” attack. To avoid this, we will
make the simplifying assumption that the fingerprints that
Bob sends are not corruptible (i.e., the channel from Bob to
Alice is noise-free) and only messages from Alice are subject
to adversarial bit flips. An alternative assumption could be
that both channels are noisy, but that they are private, so
that the adversary can flip bits on the channels, but must

54

do so without actually seeing the traffic on them. We note
that the assumption of private channels does not reduce the
power of the adversary to random noise. The adversary
still knows the algorithm used by Alice and Bob, and can
flip arbitrary patterns of bits in an attempt to thwart it.
In particular, the adversary can do things like flipping ex-
actly one out of every B bits, or flipping very long sequences
of consecutive bits. Such patterns seldom occur with i.i.d.
random noise. In practice, private channels can easily be
implemented using cryptography.

Under either of these assumptions, we present an algo-
rithm for Alice and Bob with the following guarantee:

Theorem 4.1. Let T = O(n) be the number of bits flipped

by the adversary. Then the total number of bits sent by Alice

and Bob is always O(n) and when T ≤ n/ log n it is no more

than

n+ 2
√

2c(T + 1)n log n+ cT log n. (1)

With high probability, Bob recovers the correct n-bit message

from Alice.

To put this in the context of Definition 2.1, here g is
the total number of bits sent by Alice and Bob, ρ(T) =

2
√

2c(T + 1)n log n− 2
√
2cn log n+ cT log n and τ is either

n + 2
√
2cn log n or just 2

√
2cn log n depending on whether

one wants to include the cost n of sending the message on a
clear channel in τ or not. Thus, our algorithm is resource-
competitive.

Section 5 is devoted to describing and analyzing our algo-
rithm, and thereby proving the theorem. Note that we have
assumed adversarial noise. If the noise is actually i.i.d. the
algorithm (and proof) will work without the additional as-
sumption of private channels or noise-free fingerprints, even
without the noise rate being known.

Remark 4.2. The term 2
√

2c(T + 1)n log n in (1) domi-
nates the term cT log n when T = O(n/ log n), which ties in
with our earlier remarks on the dependence of the function
ρ from Definition 2.1 on other problem parameters.

The fingerprints sent by Bob come from the following

Theorem 4.3 (Naor and Naor [9], Alon et al. [1]).
There exists a constant q > 0 and an ensemble of hash fami-

lies {Hk}k∈N such that for every k ∈ N and for every h ∈ Hk,

h : {0, 1}≤2k → {0, 1}qk is poly-time computable, it is effi-

cient to sample h← Hk using only qk random bits, and for

all x 6= y ∈ {0, 1}≤2k it holds that

Prob
h←Hk

[h(x) = h(y)] ≤ 2−k .

This implies that a fingerprint of size c log n using (and in-
cluding) such a random hash function applied to strings of
length less than n has a polynomially small probability to
incorrectly match. The error probability of the algorithm
comes from taking a union bound over the failure probabil-
ities of all the fingerprints sent.

Finally, we note that Theorem 4.1 is asymptotically fairly

close to optimal. A lower bound of Ω
(

√

nT (logn+ 1− log T)
)

is implied by the work of Kol and Raz [7].

5. INTUITION, ALGORITHM AND COST

ANALYSIS
As a preliminary attempt, let us try something very simple-

minded. Suppose Alice splits her message into n/B blocks of
size B. To each block, she prepends log n bits representing
the block number. She sends Bob a block (headed with its
number) and waits for the fingerprint of what Bob received.
If the fingerprint matches the fingerprint applied to the block
she sent, then Alice moves on to the next block. Otherwise
she resends the same block. Of course this approach is not
guaranteed to terminate at all, since the adversary can flip
one bit per transmission and Alice would never get past the
first block. However, as mentioned in the remarks in Sec-
tion 4, this can be fixed by giving up and using an error
correcting code after some threshold of bit flips.

Not surprisingly, this does pretty badly. There is a ten-
sion between wanting to set the block sizes small, so that
Alice is not spending too much on resends when errors are
detected on the one hand, and wanting to set the block sizes
large in order to minimize the cost of the fingerprints on
the other. Since the block size is B, this costs (n/B)c log n
for fingerprints, and B + (c + 1) log n per error thereafter.
This is ruinously expensive if there is a very large number
of errors. But as long as B = ω(logn), if there are no er-
rors, it costs only o(n) overhead. In fact, in this case, the
O(B) cost of the resends also does not start to hurt until
there are Ω(n/B) flips. With this in mind, let us refine the
algorithm, so that the resend cost associated with errors de-
pends non-linearly on the number of errors. We should be
willing to pay aggressively for error correction in the initial
stages, and only back off when our total expense so far is
fairly high. More precisely, for j ≥ 0 let ρ(n, j) denote the
cost we are willing to pay for detecting/correcting the jth
bit flip. Let ρ(n, 0) be the overhead cost of admitting the
possibility of errors (this was previously called τ (n)). Let T
denote the actual number of bits flipped by the adversary.
Then the (maximum) cost of our algorithm is n + C(n, T),
where

C(n, T) =
T
∑

j=0

ρ(n, j)

and the property we hope our algorithm will satisfy is

C(n, T) =

{

o(n) when T = o(n)

O(n) when T = Θ(n)

How do we decide how to set the initial block size? Here
again, a reasonable intuition is that we should be willing to
pay about as much for the first flip as we do for overheads.
We are ready to present a first version of the algorithm.

Algorithm, version 1

Let B0 =
√
n log n denote the initial block size. Alice begins

the algorithm in phase 0, by sending a block of the first B0

bits of her message prefixed with log n 0s representing the
index of the start of the message. She then receives a fin-
gerprint from Bob. If the fingerprint does not match what
she sent, she increments her count of the number of errors
and resends the block with the same prefix. If it matches,
she proceeds to the next block of size B0. Each time she
sends a block, she prefixes it with log n bits representing the
index of the starting bit for the block. For i ≥ 1, if the
number of errors Alice has seen reaches 4i − 1 then Alice

55

moves into phase i of the algorithm. In phase i, the block

size is Bi =
Bi−1

2
. At each step, Alice sends Bob the first Bi

bits of her message that have not previously been success-
fully transmitted together with the index of their starting
location.

We note that the block size in phase i is

Bi =
B0

2i
=

√
n log n

2i

One caveat: since the fingerprints are of size log n, if the
block size ever becomes that small, Alice will be paying at
least a constant blowup from then on. So at that point
she gives up and sends the entire message using an error
correcting code and incurs a constant blowup. Say that for
some fixed ε > 0 she gives up when the block size is log1+ε n.
This means that the last phase before she gives up is i such
that √

n log n

2i
= log1+ε n

In other words,

i =
1

2
log n−

(

1

2
+ ε

)

log log n

The error threshold for this phase is

4i+1 =
4n

log1+2ε n

Let’s analyze the cost of this algorithm. Let c log n be
the overhead per block, i.e., the cost of sending the starting
index of the block, and the cost of receiving the fingerprint.

If there are no bit flips then the algorithm reaches the end
of the simulation in phase 0, and we have only paid c log n
overhead each for n/B0 blocks, so ρ(n, 0) = c

√
n log n. Now

suppose there are some bit flips. What do we pay for the
jth bit flip?

If 4i ≤ j < 4i+1 then we are in phase i and the block size
is Bi, so to resend the block in which the jth error occurred,
we pay Bi + c log n, where the c log n is for the extra start
index and fingerprint. Note that c log n = o(Bi).

However, there is also an indirect cost for errors, once we
are past phase 0. This comes from the fact that once the
block size is reduced, we are sending more start indices and
fingerprints than we originally accounted for as overhead.
Originally, we were sending n/B0 blocks and we assigned
the entire cost of these to ρ(n, 0). However, once we move
into a new phase, the block size halves, so for the remainder
of the protocol we must send twice as many blocks and incur
the corresponding overhead costs. Moreover, note that all
the errors could be occurring in repeated resends of the very
first block, so at any time what remains of the protocol could
be length n, i.e. the whole protocol. Thus, as we move into
phase i+1, we are committing to send up to n/Bi+1 blocks,
which is n/Bi more than the n/Bi we already committed
previously. The cost of these n/Bi additional blocks is

n

Bi
c log n =

2icn log n√
n log n

= 2ic
√

n log n .

Let’s assign these to phase i.
Now recall that the total cost of phase i from resends was

(4i+1 − 4i)(Bi + log n) = 3× 4i
(√

n log n

2i
+ c log n

)

= (3 + o(1))2i
√

n log n

Thus, the additional 2i
√
n log n that we assigned to phase i

for overhead is of the same magnitude as the resend costs
in phase i, and the total cost attributed to phase i, which
we’ll denote φ(n, i), is (3 + c+ o(1)) 2i

√
n log n. Amortizing

this total cost over all the errors in phase i, we have, for
4i ≤ j < 4i+1

ρ(n, j) = (1 + c/3 + o(1))Bi ∼ (1 + c/3 + o(1))

√
n log n

2i

Now what about the total cost when there are T errors?
If T = 0 we pay ρ(n, 0) = c

√
n log n. Otherwise if 4i ≤ T <

4i+1 ≤ 4n
log1+2ε n

then the algorithm ends in phase i. In this
case, we pay

C(n, T) =
T
∑

j=0

ρ(n, t)

≤ c
√

n logn+

i
∑

j=0

φ(n, j)

≤ c
√

n logn+ (3 + c+ o(1))
√

n log n
i
∑

j=0

2j

≤ (3 + c)
√

n log n
(

2i+1
)

≤ (6 + 2c)
√

Tn log n

where the last inequality follows since 4i ≤ T implies 2i <√
T . Thus, we’ve shown that for T ≤ 4n

log1+2ε ,

C(n, T) = (6 + 2c)
√

Tn log n

which is o(n). For larger T , we give up and use an error
correcting code, so in that case C(n, T) = Θ(n).

We note that here we have not optimized the block size
to get the best constant instead of 6 + 2c. We will do that
in the next section, where we present a smoothed version of
the algorithm.

Remark 5.1. The property that C(n, T) = o(n) only
goes up to T = 4n

log1+2ε < 4n
log n

, and does not hold for all

T which are o(n). By choosing ε to be suitably small, we
can make it work arbitrarily close to 4n

logn
but beyond that

we must pay Θ(n). This seems currently unavoidable, be-
cause the fingerprint size is order log n. It may be possible
to get around this by using smaller fingerprints, but this is
not completely straightforward, since then the failure rate
of the fingerprints is too large for our union bound.

Algorithm, version 2 (smoothed)

In this section we present a smoothed version of the same
algorithm.

Let c log n be the overhead cost per block sent, i.e., the
combined cost of the block number and the fingerprint. Let
B0 denote the initial block size. We’ll start with B0 =
γ
√
n log n for some γ to be determined. The block size will

change every time an error is encountered. For 1 ≤ j ≤
n/ log n, let Bj denote the new block size after the jth er-
ror. We’ll set

Bj = B0

(

√

j + 1−
√

j
)

=
B0√

j + 1 +
√
j

Thus, at any given time, Alice and Bob simulate the noise-
free protocol in blocks of size Bj where j is the number

56

of errors encountered so far. Alice initiates each block by
sending Bob the block number. At the end of each block,
Bob sends a fingerprint of the transcript. If the fingerprint
matches then Alice signals starting the next block (by send-
ing its number). If it does not match, she signals repeating
the block (by sending the same block number). If a block
is being repeated, Alice and Bob both update their block
size by incrementing j by 1. If j gets to be n/ log n, Alice
and Bob give up on fingerprints and Alice sends the message
with an error correcting code..

Let’s analyze the cost of this algorithm. If there are no
errors, then the entire protocol is simulated in blocks of size
B0, each accompanied by a block number and fingerprint of
total size c log n. Thus the overhead is

ρ(n, 0) =
cn log n

B0

=
c

γ

√

n log n.

Now suppose j ≥ 1. What do we pay for the jth error?
There are two sources of cost associated with the jth error.
One source is the wasted transmission of the block in which
the error was detected (which has already been paid) and
the other is the increased overhead due to the decrease in
block size.

The block in which the jth error is detected is of size Bj−1,
since there were j − 1 previous errors. Thus the cost of the
wasted transmission is

Bj−1 + c log n = B0

(

√

j −
√

j − 1
)

+ c log n

= γ
√

n log n
(

√

j −
√

j − 1
)

+ c log n

where the c log n term is for the block number and finger-
print.

The block size is now changed to Bj . The overhead due
to numbering and fingerprinting with every block of size Bj

(assuming that the algorithm will end while sending blocks
of this size) is

cn log n

Bj
=

c

γ

√

n log n
(

√

j + 1 +
√

j
)

However, part of this has already been charged to previous
errors. Indeed, cn log n

Bj−1
of overhead was already charged to

errors 1, . . . j − 1. Thus, the overhead charged to the jth
error is

cn log n

Bj
− cn log n

Bj−1

=
c

γ

√

n log n
[(

√

j + 1 +
√

j
)

−
(

√

j +
√

j − 1
)]

=
c

γ

√

n log n
(

√

j + 1−
√

j − 1
)

Putting these together, we have

ρ(n, j)

=
√

n log n

[

c

γ

√

j + 1 + γ
√

j − (c/γ + γ)
√

j − 1

]

+c log n

Finally, the total cost when there are T errors is

C(n, T)

=
T
∑

j=0

ρ(n, j)

=
√

n log n

(

c

γ
+

T
∑

j=1

(

c

γ

√

j + 1 + γ
√

j − (c/γ + γ)
√

j − 1

)

)

+
T
∑

j=1

c log n

=
√

n log n

(

c

γ

√
T + 1 + (c/γ + γ)

√
T

)

+ cT log n

≤
(

2c

γ
+ γ

)

√

(T + 1)n log n+ cT log n

This is optimized by setting γ =
√
2c whereupon we get

C(n, T) ≤ 2
√

2c(T + 1)n log n+ cT log n .

This completes the cost analysis analysis of the presented
algorithm, and proves (1). To complete the proof of Theo-
rem 4.1 we only need to argue that Bob receives the correct
message with high probability. However this follows easily
from Theorem 4 and a union bound, since the only way that
Bob fails to get the correct message is if one or more of the
fingerprints match incorrectly.

6. CONCLUSION
We have presented a resource-competitive Monte Carlo al-

gorithm for the problem of error correction in message trans-
mission when some feedback is available. It is hoped that the
ideas used herein may be applicable to designing resource-
competitive algorithms for multi party computation.

Acknowledgements

We thank Tom Hayes, MahnushMovahedi, Jared Saia, Maxwell
Young and the anonymous reviewers for helpful comments.

7. REFERENCES

[1] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta.
Simple constructions of almost k-wise independent
random variables. Random Structures and Algorithms,

3(3):289-304, 1992.

[2] S. Gilbert, R. Guerraoui, and C. Newport. Of
Malicious Motes and Suspicious Sensors: On the
Efficiency of Malicious Interference in Wireless
Networks. OPODIS 2006.

[3] S. Gilbert, V. King, S. Pettie, E. Porat, J. Saia, and
M. Young (Near) Optimal Resource-Competitive
Broadcast with Jamming. SPAA 2014

[4] S. Gilbert, V. King, J. Saia, and M. Young
Resource-Competitive Analysis: A New Perspective
on Attack-Resistant Distributed Computing. FOMC

2012.

[5] S. Gilbert and M. Young. Making Evildoers Pay:
Resource-Competitive Broadcast in Sensor Networks.
PODC 2012

[6] V. King, J. Saia, and M. Young Conflict on a
Communication Channel. PODC 2011

57

[7] G. Kol and R. Raz. Interactive channel capacity.
STOC 2013.

[8] F.J. MacWilliams and N.J.A. Sloane. The Theory of

Error-Correcting Codes. North-Holland: New York,
NY, 1977.

[9] J. Naor and M. Naor. Small-bias probability spaces:
Efficient constructions and applications. SIAM J.

Comput., 22(4):838-856, 1993.

58

	Introduction
	Resource-Competitive Analysis
	Related Work
	Problem Statement and Result
	Intuition, Algorithm and Cost Analysis
	Conclusion
	References

