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ABSTRACT

Photos obtained via crowdsourcing can be used in many
critical applications. Due to the limitations of communi-
cation bandwidth, storage and processing capability, it is
a challenge to transfer the huge amount of crowdsourced
photos. To address this problem, we propose a framework,
called SmartPhoto, to quantify the quality (utility) of crowd-
sourced photos based on the accessible geographical and geo-
metrical information (called metadata) including the smart-
phone’s orientation, position and all related parameters of
the built-in camera. From the metadata, we can infer where
and how the photo is taken, and then only transmit the
most useful photos. Three optimization problems regard-
ing the tradeoffs between photo utility and resource con-
straints, namely the Max-Utility problem, the online Max-
Utility problem and the Min-Selection problem, are stud-
ied. Efficient algorithms are proposed and their perfor-
mance bounds are theoretically proved. We have imple-
mented SmartPhoto in a testbed using Android based smart-
phones, and proposed techniques to improve the accuracy
of the collected metadata by reducing sensor reading errors
and solving object occlusion issues. Results based on real
implementations and extensive simulations demonstrate the
effectiveness of the proposed algorithms.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication;
C.4 [Performance of Systems]: Modeling techniques
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Crowdsourcing; Image sensing; Photo sharing; Camera sen-
sor; Smartphone

1. INTRODUCTION
Equipped with GPS, orientation sensors, mega-pixel cam-

eras and advanced mobile operating systems, smartphones
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not only change the way people communicate with each
other, but also the way they interact with the world. The
popularity of online photo sharing services such as Flickr and
Instagram indicates that people are willing to take photos
and share experiences with others. Thanks to the cost effi-
ciency, timeliness and pervasive nature of these data, numer-
ous opportunities have been created for applications based
on photo crowdsourcing, such as grassroots journalism [3],
photo tourism [18], and even disaster recovery and emer-
gency management [12].

Consider an example in post-earthquake recovery. First
responders survey the damage by taking pictures and then
transfer them back to the remote command and control cen-
ter. As events occur, photos need to be collected and up-
loaded as quickly as possible. However, there are strict band-
width constraints, no matter it is based on mobile ad hoc
networks, delay tolerant networks, or partly damaged cellu-
lar networks. Then, how to make use of the limited band-
width to upload the most useful photos becomes a challenge.

Another example can be found in our daily life. A map ser-
vice provider can enhance user experience by showing photos
of interesting objects around the world, for example, land-
marks like famous buildings. Data can be obtained from
visitors taking photos via their smartphones. Once the pho-
tos are uploaded and processed, other map users can have
virtual tours. Due to the existence of many useful applica-
tions, people are sharing billions of photos taken by smart-
phones. Photos are often geographically correlated and this
correlation can be used to enrich traditional map experience.
However, the sheer amount of photos poses big challenges for
image processing and storage at the server end. Fully under-
standing the semantic of each photo by traditional resource
intensive image recognition techniques would be a luxury if
not impossible. Therefore, how to identify the most relevant
data and eliminate redundancy becomes an important issue.

The major challenges faced by these applications are as
follows. The first is how to characterize the quality (useful-
ness) of crowdsourced photos in a way that is both meaning-
ful and resource friendly. Most content-based image process-
ing techniques such as [6, 26, 25] may demand too much com-
putational and communication resources at both the user
and server ends. On the other hand, existing solutions from
description based techniques either categorize photos based
on user defined tags, or prioritize them by the GPS loca-
tion [20]. Obviously, tagging each photo manually is not
convenient and may discourage public participation. GPS
location itself may not be sufficient to reveal the real point
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of interest. Even at the same location, smartphones facing
different directions will have different views.

To address these issues, we propose a framework to quan-
tify the quality of crowdsourced photos based on easily acces-
sible geographical and geometrical information, called meta-
data, including the orientation and position of the phone,
and the field-of-view (FoV) of the camera. Intuitively, a
good photo coverage should have multiple views of the tar-
get and cover as many aspects as possible. Specifically, given
a set of targets and photos, we consider an aspect of a tar-
get to be properly covered if it is within a proper range of
a photo’s viewing direction (defined in Section 2). Then we
measure the quality of a photo by utility, which indicates
how many aspects are covered. The utility is calculated
based on the metadata, which can be practically obtained
via various embedded sensors in most off-the-shelf smart-
phones. They are independent of the image content, and
hence the computation is very fast and resource friendly
compared to traditional content based approaches.

With the above model, we address challenges brought by
the resource constraint, which is referred to as the Max-
Utility problem. Resource constraint of bandwidth, storage
and processing capability limits the number of photos that
can be uploaded to the server. Given the metadata of the
candidate photos, how to find a given number of photos
such that the total utility is maximized? Note that this is
different from traditional maximization problems on sensor
coverage in which a target is covered as long as it is in-
side the sensing range. Here photos taken at different view
points cover different aspects of the target. The total util-
ity depends on how many aspects can be covered and how
they are covered, which makes the problem unique and com-
plicated. We also consider online selection/optimization to
address the requirements of time critical applications.

Another challenge to be addressed is how to remove the
redundancy and find the most representative photos. In
general, the amount of candidate photos is significant and
redundancy occurs if multiple photos are taken at similar
locations and from similar angles. The less number of pho-
tos is selected, the less amount of bandwidth, storage and
processing capability is needed. In the Min-Selection prob-
lem, given the coverage requirements of the targets, we want
to find the minimum set of photos that satisfy the require-
ments.

Our contributions are summarized as follows. We propose
SmartPhoto, a novel framework to evaluate and optimize
the selection of crowdsourced photos, based on the collected
metadata from the smartphones. We formulate the Max-
Utility problem for bandwidth constrained networks, and
then extend it into an online optimization problem. We also
study the Min-Selection problem for redundancy reduction.
Moreover, we propose efficient solutions, and find the per-
formance bounds in terms of approximation or competitive
ratios for the proposed algorithms.

We have implemented SmartPhoto in a testbed using An-
droid based smartphones. We make use of multiple em-
bedded sensors in off-the-shelf smartphones, and propose
a series of methods to fuse data, correct errors, and filter
out false information, to improve the accuracy of the col-
lected metadata. Finally, the performance of the proposed
algorithms are evaluated through real implementations and
extensive simulations.

The rest of the paper is organized as follows. Section
2 introduces the basic concepts and the model. Section 3
studies the Max-Utility problem and Section 4 studies the
Min-Selection problem. Section 5 presents the implementa-
tion of the testbed. Performance evaluations are presented
in Section 6. Section 7 reviews related work and Section 8
concludes the paper.

2. PRELIMINARIES
Consider a scenario in which a set of predefined targets are

to be monitored by a group of people or reporters. They use
smartphones to take photos and transfer them back to the
processing center. However, due to the limited bandwidth
available, only a small number of photos can be transferred.
For this reason, reporters first transmit the metadata of the
photos, which is extremely light weight compared to the
original image. After that, the server runs optimization algo-
rithms to determine what photos to be actually transferred
and notifies the reporters to transmit the photos.

We first describe the models used in SmartPhoto to char-
acterize targets and photos. Then the concept of utility is
introduced. The idea is based on the observation that a
good photo should cover as many aspects of the targets as
possible. For an aspect to be properly covered, the target
should be in a photo whose viewing direction is not too far
away from the direction to which the aspect points. This is
similar to the face recognition problem in computer vision:
as the angle between the object’s facing direction (the as-
pect) and the camera’s viewing direction (the vector from
the camera to the object) becomes wider, the detection rate
of the recognition algorithm will drop dramatically [4, 14].
The utility defined in this section precisely indicates how
many aspects of the target are properly covered.

2.1 Targets and Photos
At the beginning of each event, the application server dis-

tributes the information of the interested targets to the pub-
lic users. The set of targets are denoted by T = {T1, . . . , Tm}.
Ti also represents the location of the i-th target if there is no
ambiguity. An aspect of the target, denoted by ~v, is a vector
that can be represented by an angle in [0, 2π) with 0 degree
indicating the one pointing to the right (east on the map).
For ease of presentation, this angle is denoted by arg(~v) and
is calculated by using arithmetic modulo 2π. For any angle
α ∈ [0, 2π), vec(α) represents the corresponding vector.

Given a set of photos: P = {P1, . . . , Pn}, each photo Pj

is stored locally and it can be registered to the server with a

tuple (lj , rj , ϕj , ~dj), called the metadata of the photo. Here
lj is the location where the photo is taken. To simplify
notations, we also use Pj to represent the location if there
is no ambiguity. rj and ϕj are two internal parameters of
the camera used to take the photo. rj is the effective range
of the camera, and ϕj is the field-of-view (FOV, represented

in angle) of the camera lens. ~dj is the orientation of the

camera when the photo is taken. Note that ~dj is the normal
vector derived from the camera lens and vertical to the image
plane. It can be acquired by using various sensors embedded
in the smartphone. Details of obtaining these geographical
information on the smartphone will be given in Section 5.
As shown in Figure 1(a), the metadata defines the effective
coverage range of the photo.
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Figure 1: Photo, target and utility.

2.2 Photo Utility
For a target Ti and a photo Pj , Ti is said to be covered

by Pj if Pj ’s range includes Ti. An aspect ~v of Ti is covered

if the angle between ~v and
−−→
TiPj is smaller or equal to a

predefined angle θ called effective angle. Here
−−→
TiPj is the

viewing direction of the camera towards the target when
the photo is taken1. Further, the utility of a photo Pj can
be defined based on how many aspects of Ti are covered by
this photo.

Definition 1. [Utility] Given a target Ti and a photo
Pj covering the target, the utility of Pj on Ti, denoted by
UPj

(Ti), is the portion of aspect that is covered by Pj , i.e.,

UPj
(Ti) =

∫
2π

0
1Pj

(v)dv, where 1Pj
(v) = 1 if ~v is covered by

Pj , or 0 otherwise.
Accordingly, the utility of a set of photos P ′ = {Pj : 1 ≤

j ≤ k} regarding target Ti is the total portion of aspect that

is covered by the photos of P ′, i.e., UP ′(Ti) =
∫

2π

0
1P ′(v)dv,

where 1P ′(v) = 1 if ~v is covered by any Pj from P ′, or 0
otherwise.

Finally, the total utility of the photos regarding all tar-
gets T = {T1, . . . , Tm} is the sum of the utility regarding
each target. It is normalized by dividing the total number of
targets, i.e., UP ′(T ) = 1

m

∑m

i=1
UP ′(Ti).

For example in Figure 1(b), for target Ti, its aspect ~v1
is covered by photo Pj but aspect ~v2 is not. As a result,
if there is only one photo covering the object, the utility is
two times the effective angle θ (indicated by the gray area in
Figure 1(b)). If there are multiple photos covering the same
target, possible overlap (darker area in Figure 1(c)) among
photos’ coverage needs to be identified and removed. In that
case, the overlap can only be counted once towards the total
utility, which is reflected by gray area in Figure 1(c).

3. MAX-UTILITY WITH BANDWIDTH CON-

STRAINT
In this section, we study the Max-Utility problem and its

extension to an online optimization problem.

3.1 Max-Utility Problem
In the scenario described in Section 2, the bandwidth con-

straint determines the number of photos that can be se-
lected. The problem is defined as follows.

1Intuitively, it should be from Pj to Ti, but
−−→
TiPj is used for

ease of calculation.

Definition 2. [Max-Utility Problem] Given a set of m
targets with known locations T = {T1, . . . , Tm} and n pho-
tos P = {P1, . . . , Pn} with known metadata, also given a
predefined positive integer B(≤ n), the problem asks for a
selection of B photos P ′ out of the n candidates, such that
the total utility of the selected photos UP ′(T ) is maximized.

3.1.1 Conversion to Maximum Coverage

Without loss of generalization, we first consider a single
target Ti and use the coverage interval Ii = [0, 2π) to in-
dicate its aspect to be covered. Let P = {P1, . . . , Pn} be
the set of all photos covering Ti. Then for each Pj , if Ti

is covered by Pj , the coverage of Pj on Ti (gray sector in
Figure 1(b)) can be represented by a sub-interval of [0, 2π),
i.e.,

Sj , [xj , yj ] = [arg(
−−→
TiPj)− θ, arg(

−−→
TiPj) + θ] (1)

Note that the angles are always calculated by using arith-
metic modulo 2π. Here the two end points xj and yj are
called dividing points, which divides Ii into two parts: one
is Sj and the other is Ii − Sj . If there are more photos by
which Ti is covered, there would be more dividing points.

If there are multiple targets, every target corresponds to
a coverage interval Ii = [0, 2π) and each Ii is divided into
sub-intervals by the corresponding dividing points. Let U =
{e1, . . . , ew} be a universe set with each element representing
a sub-interval and w being the total number of them. The
weight of the element is the length of the sub-interval. For
each photo Pj , a subset of U can be generated based on what
sub-intervals are covered by it. Let Sj denote this subset.
Then we have proved the following lemma:

Lemma 1. A solution to the Max-Utility problem can be
obtained by solving the following problem: given a universe
set U of (non-negative) weighted elements, an integer B and
a collection of subsets S = {S1, . . . , Sn}, find B subsets such
that the total weight of the elements covered by the selected
subsets is maximized.

3.1.2 Greedy Selection Algorithm

The general maximum coverage problem is proved to be
NP-hard [8]. A greedy algorithm can be used to find a
solution. It works as a multi-round selection process. In
each round, the weighted contribution (utility) of every un-
selected photos is calculated. The photo with the most con-
tribution to the total utility is selected. If there are more
than one photos with the most contribution, the one with
the lowest index is selected. Once a photo is selected, it will
be removed from the selection. The elements (sub-intervals)
covered by the selected photo will be removed from future
consideration. The selection process runs until B photos
have been selected or every aspect of all targets has been
covered, whichever comes first.

Theorem 1. Let Uopt be the optimal value of the total
utility that can be achieved by any B photos from P . Let
Ugreedy be the total utility achieved by the greedy selection
algorithm. Then

Ugreedy ≥ [1− (1− 1

B
)B ] · Uopt > (1− 1

e
)Uopt

Proof. From Lemma 1, a selection of B subsets implies
a valid selection of B photos. Moreover, the total utility
of the photos is maximized if and only if the corresponding
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Figure 2: The conversion into a set system.

subsets has the maximum total weight. On the other hand,
the subsets selected by the greedy selection can yield a total
weight that is at least (1− 1/e) times the optimal value [8].
Therefore, the total utility of the selected photos is also lower
bounded by (1− 1/e) times the maximum total utility.

An Example: Figure 2 shows an example of one target and
10 photos. Suppose θ = 45, B = 3. Each photo’s position
is shown in Figure 2(a). The arrows in Figure 2(b) indicate
photos’ viewing directions, and the number beside the arrow

(e.g., 10 beside
−−−→
T1P10) indicates the angle of the viewing

direction of the photo (e.g., P10), which has been defined in
Section 2. Based on this, each photo’s coverage interval is
calculated and shown in Figure 2(c) according to Equation
(1). Then target T1’s coverage interval I1 = [0, 2π) is divided
into sub-intervals by the endpoints of all photos’ coverage
intervals (Figure 2(d)). This is the universe set U which
is composed of weighted elements from e1 to e19, and the
weight of each element is reflected by its length. Finally,
each photo’s coverage interval is converted into a subset Si

of elements (Figure 2(e)).
We select 3 photos to maximize the total utility. Initially,

each Si has a weight of 2θ = 90, and hence S1 is selected due
to the smallest index. Elements e11, e12, e13, e14 are removed
from U . Second, the weight of each of S3, S4, S5, S9 and S10

is still 90, but for the others the weights become: S2 is 80; S6

is 50; S7 is 20 and S8 is 40. Obviously, S3 is selected. Then
elements e3, e4, e5, e6, e7 are removed from U . Finally, we
consider the remaining subsets. The weights of S5, S6, S7, S8

are unchanged, but S2 drops to 45, S9 drops to 15 and S10

drops to 80. Therefore, the last selected photo is S5. The
final selection is S1, S3, S5, corresponding to P1, P3, P5, and
the total achieved utility is 270.

3.2 Online Max-Utility Problem
For applications like crisis management, due to the ur-

gency, the server should not wait for the metadata of all
photos to come in before it begins the selection. Instead, it
should start selecting photos from the beginning based on
available metadata, and then gradually improve the photo
coverage by continuously and periodically selecting photos
when new ones become available.

3.2.1 Problem Statement

Let time be divided into transmission periods. At the
beginning of each period, based on the available metadata
and the available bandwidth in this period, the server makes
decision on what photos to be uploaded in this period, and
then notify the users to transfer the photos. Let ti be the i-th
period and Bi be the number of photos that can be uploaded

in the i-th period. Then let Ai be the set of available photos
(but not being uploaded yet) at the beginning of ti. Finally,
the selected photos to be uploaded in ti is denoted by Ci.
The problem is defined as follows.

Definition 3. [Online Max-Utility Problem] Given a set
of m targets with known locations T = {T1, . . . , Tm}, and
the set of available photos Ai at the beginning of each period
ti, and suppose the event happens at period t0, how does one
select the set of photo Ci for each period in an online man-
ner, such that Ci ⊆ Ai and |Ci| ≤ Bi, and at the end of each
period ti, the total utility of all the selected photos up to ti,
i.e., UC0∪...∪Ci

(T ) (defined in Definition 1), is maximized?

Note that the length of the period is a parameter deter-
mined by the application, e.g., how urgent the event is and
how often new photos should be collected, etc. The band-
width constraint Bi can vary from one period to another
and not necessary to be constant.

3.2.2 Online Selection Algorithm

In each period, all the photos available up to present are
considered. Finding the ones that can maximize the increase
of total utility is easy when the number of photos is small,
and an enumeration of all possible combinations can always
deliver the optimal solution. However, as the process con-
tinues and more and more photos are available, computation
cost would become prohibitively high.

Our solution is to use the approximation algorithm pro-
posed for the original Max-Utility problem. At the begin-
ning of each period, the server selects photos one by one
greedily such that each one maximizes the increase of total
utility, until it reaches the number imposed by Bi. Note
that the conversion into a weighted set system is the same
as before except that the aspects covered by photos selected
in previous periods should be excluded. After that, the se-
lected photos will be transferred immediately during the pe-
riod. The performance of the online selection algorithm is
evaluated later in Section 6.2.

4. ACHIEVING BEST UTILITY WITH MIN-

SELECTION
In this section, we consider another important scenario:

the number of photos is minimized while the total utility
is to be above a required level. In many practical applica-
tions, the major obstacle is to deal with the sheer amount
of raw data (photos) obtained via crowdsourcing. Thus, it
is desirable to remove the redundancy and only keep the
minimum selections of photos that can satisfy the coverage
requirement.
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4.1 Problem Statement
Each target Ti is associated with a coverage requirement,

represented by a coverage interval Ii = [ai, bi], 0 ≤ ai, bi <
2π. The requirement is met if any aspect ~v chosen from Ii
is covered. The problem is defined as follows.

Definition 4. [Min-Selection Problem] Given a set of m
targets with known locations T = {T1, . . . , Tm} and n pho-
tos P = {P1, . . . , Pn} with known metadata, also given the
coverage requirements for the targets: I = {I1, . . . , Im}, the
problem asks for a minimum selection of photos out of the
n candidates, such that the coverage requirement for each
target is met.

Note that in this problem if the requirement can not be
met due to the insufficiency of the original set of photos, the
best achievable utility will be used as the criteria. Here the
best achievable utility on a target is the utility of all photos
on it, and the best achievable total utility on all targets is the
sum on each targets normalized by the number of targets.

4.2 Min-Selection Algorithm
In the following description, it is assumed that the cover-

age requirement of each target can be satisfied by the whole
set of photos. Then the following theorem shows the main
result of our findings.

Theorem 2. Suppose the target’s coverage requirement
can be satisfied by all photos in the pool and let Nopt be
the minimum number of photos to satisfy the requirement.
There exists Napprox photos that can be found in polynomial
time such that each target’s requirement can be met by these
photos and moreover, Napprox ≤ O(log n)Nopt.

Proof. We prove this by constructing the selection using
a greedy algorithm.

First, we use a conversion process that is similar to Sec-
tion 3.1.1. Here each target Ti’s coverage requirement Ii
is partitioned into sub-intervals by the dividing points, and
the dividing points are the end points of the coverage in-
tervals (sub-intervals) of the photos like before. After this
preparation, all the sub-intervals are numbered, and can be
represented by elements that altogether form an universe
set U = {e1, . . . , ew}, where w is the total number of sub-
intervals. Then for each Pj , there is a subset Sj ⊂ U which is
comprised of the elements corresponding to the sub-intervals
covered by Pj . Based on this, the problem of finding the
minimum photo selection can be converted to the following
problem:

Given a universe set U and a collection of subsets of U :
S = {S1, . . . , Sn}, and assume ∪n

j Sj = U , how to find a
subset S′ of S such that ∪Sj∈S′Sj = U and |S′| is minimum?

This is an instance of the Set Cover problem, which has
been proved NP-hard [8]. Thus for the Min-Selection prob-
lem, we can solve it by an approximation algorithm based
on the greedy selection.

Specifically, the algorithm begins by selecting the photo
(some Sj) that covers the most number of sub-intervals (el-
ements). Once a photo is selected, it will not be removed.
The sub-intervals covered will not be considered in the fu-
ture. Photos are selected one by one based on how many
new sub-intervals can be covered. Each time, the photo
covering the most number of new sub-intervals is selected.
Ties can be broken arbitrarily, e.g., by giving priority to the

one with smaller index. The process stops if all sub-intervals
(elements of U) is covered or no more photos can be selected
(i.e., either photos are all selected or no more benefit can be
achieved).

Once the photos are found, it is obvious all the elements
in U is covered which implies the requirement of all targets
are satisfied. By using similar argument from Theorem 3.1
in [8], it is easy to see the number of selected photos is upper
bounded as shown in the theorem.

An Example: Again, we use Figure 2 to illustrate the
above idea. Consider the problem settings in Figure 2(a) and
suppose the required coverage for T1 is [0, 360). The con-
struction of the universe set and all the subsets are shown in
Figure 2(b)-(e). The universe set U consists of 19 elements.
The selection works on the subsets Si.
First, photo S2 is selected as it covers 5 new elements {e7, e8,
e9, e10, e11}. It has the most elements covered and the small-
est index. Then S5 can be selected as it covers 5, the
most number of new elements {e1, e16, e17, e18, e19}. In the
third round, S3 can be selected, as it covers 4 new elements
{e3, e4, e5, e6}. After that, S1, which covers 3 new elements
{e12, e13, e14}, is selected. Up to now, 17 out of the total 19
elements have been covered. The remaining two are e2 and
e15. To cover e2, S4 is selected. Then S6 is selected to cover
e15. The final selection is S1, . . . , S6, which correspond to
the following 6 photos: P1, P2, P3, P4, P5, P6.

The above discussion can be easily applied to the scenario
of multiple targets. In that case, each target corresponds to
a set Ui of elements (sub-intervals). Elements of all Ui will
be considered to determine if a particular Sj can yield the
most coverage. The algorithm stops if elements of all Ui are
covered or no more progress can be made.

5. TESTBED IMPLEMENTATION
A prototype of SmartPhoto has been implemented in a

testbed using Samsung Nexus S running Android 2.3.6, Sam-
sung Galaxy S III running Android 4.0.4, and Google (LG)
Nexus 4 running Android 4.2.

In the testbed, the smartphones take photos with the
metadata automatically recorded. The metadata is a tu-
ple comprised of a GPS location, a range indicating how far
the photo can cover, a field-of-view (FoV) angle of the cam-
era taking the photo and an orientation vector indicating
the facing direction of the camera lens. After the photo has
been taken, the smartphone uploads the metadata of the
photo to a centralized server, which is a PC in our lab run-
ning the photo selection algorithm. Then the server notifies
the smartphones to upload the selected photos. In this sec-
tion, we present the technical details on how to obtain the
metadata, how to improve the accuracy of orientation mea-
surement, and how to deal with occlusion and out-of-focus
issues.

5.1 Metadata Acquisition
One critical issue is how to get the metadata from off-the-

shelf smartphones. The location can be directly acquired
via the built-in GPS receiver. The camera’s field-of-view is
accessible via the Android camera API [1]. The range is a
little trickier as it depends on the resolution of the lens (and
the image sensor), the zooming level (or focal length) and
the requirement of the application. Applications requiring
a survey of large scale buildings may find the photos useful
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even if they are taken a hundred meters away by a lower
resolution camera, while others may require closer look at
the object and hence may exclude photos taken more than
a few meters away. In our experiment, as the subjects are
buildings on campus, 50 meter is used as a reference range.
We find that for our purpose, objects in photos taken within
this range are generally recognizable.

Orientation is a key factor that has not yet been fully
taken advantage of in previous works. The way used to
characterize the orientation in the Android system is to first
define a local and a world coordinate system2, and represent
the orientation as a rotation matrix. The rotation matrix is
used to transform a local coordinate tuple into a global one.
Another way to represent the rotation is to use a three tuple
called azimuth, pitch, and roll, which respectively indicate
the phone’s rotation around the Z, X and Y axes [13]. The
two representations are equivalent and the orientation tuple
(i.e., the angles) can be derived from the rotation matrix.
In the following description, we use R to denote the rotation
matrix.

In Android system, the rotation matrix can be directly
obtained based on accelerometer and magnetic field sensor
readings. The accelerometer measures the phone’s proper
acceleration along the three axes in the phone’s local coor-
dinate system, including the influence of the gravity. The
magnetic field sensor provides the readings measuring the
ambient magnetic field along the three axes in the local co-
ordinate system. The coordinates of both the gravity and
the ambient magnetic field are known in the world coordi-
nate system. Thus, by combining the above readings and
facts, the orientation of the phone can be obtained. Let us
call this the “basic” method, and let the result be denoted
by Rbasic.

5.2 Techniques to Improve Accuracy
The rotation matrix Rbasic is susceptible to noise and er-

rors. It fluctuates quickly due to the vibration of accelerom-
eter’s reading. Also, the magnet field sensor’s reading is eas-
ily affected by nearby magnet objects. Even worse, Rbasic

responses slowly to quick rotation of the phone. Thus, we
propose several techniques to improve the accuracy of the
orientation.

5.2.1 Hybrid Method

Apart from the accelerometer and the magnetic field sen-
sor, gyroscope is now available in most smartphones, and it
can also be used to measure the rotation matrix.

Gyroscope measures the angular rotation speeds along all
three axes in the phone’s local coordinate system. By inte-
grating (multiplying) the angular speed with the time inter-
val between two consecutive sensor readings, we can obtain
the rotation vector, which indicates the change of orientation
in terms of rotation angles around the three axes. It can also
be used to obtain the rotation matrix (denoted by ∆Rgy).
Given an initial rotation matrix, which can be obtained from

2In a world coordinate system, Z axis is perpendicular to
ground and points to the sky; Y is tangential to the ground
and points towards the magnetic north pole; X is the vector
product of Y and Z. In the phone’s local coordinate system,
Z is perpendicular to the phone screen and points outward;
the X axis is along the width of the phone and the Y axis
is along the length [1, 13].

Gyroscope sensor  Rgy

Rgy

Accelerometer, 

Magnetic field sensor Rbasic

Rhybrid
+

low pass

X

Figure 3: Hybrid method.

Rbasic, we can get the new rotation matrix, denoted as Rgy,
by Rgy = Rgy ×∆Rgy .

However, the cumulative error caused by the integration in
Rgy can become greater and the result would drift as time
goes by. In fact, the orientation derived from Rgy alone
usually drifts over 10 degrees in about 20 seconds in our lab
test.

Thus, we propose a hybrid method which combines the
readings from the above sensors to improve the accuracy of
orientation, as shown in Figure 3 and explained as below.

First, a simple Infinite Impulse Response (IIR) low pass
filter is used on Rbasic to remove the short term vibration,
i.e.,

R′

basic = Rbasic + µ · (Rprev

basic −Rbasic)

where Rbasic is the current reading and Rprev

basic is the previ-
ous reading from the basic method, and µ ∈ [0, 1] is an ad-
justable parameter balancing the current and previous val-
ues. In practice, we find µ = 0.3 is good for our purpose.

Second, we combine R′

basic and Rgy to take advantage of
both values; that is,

Rhybrid = ν ×Rgy + (1− ν)×R′

basic

We find ν = 0.9 works well.
Third, Rhybrid is the output, and it will also be used as

the initial matrix input for the computation of a new Rgy .

5.2.2 Enhancement by Orthonormalization

We exploit the orthonormal property of the rotation ma-
trix to further improve the accuracy of orientation. In a
valid rotation matrix, any pair of columns (or rows) of the
rotation matrix are orthogonal, i.e., with unit length and
vertical to each other. However, this property may be vi-
olated as errors occur. Thus, the rotation matrix Rhybrid

obtained from the above method can be further calibrated
by an orthonormalization process (e.g., the Gram-Schmidt
process [24]) to get an enhanced rotation matrix Renhanced.

Specifically, consider a 3 × 3 rotation matrix: Rhybrid =
[α1, α2, α3], with αi being a column vector. Let the inner
product of the two vectors α and β be< α, β >=

∑n

i=1
αiβj ,

where n = 3 is the dimension.
First, Rhybrid is orthogonalized by

ξ1 = α1

ξ2 = α2 − < α2, ξ1 >

< ξ1, ξ1 >
ξ1

ξ3 = α3 − < α3, ξ1 >

< ξ1, ξ1 >
ξ1 − < α3, ξ2 >

< ξ2, ξ2 >
ξ2

Second, the above ξi’s are normalized by

βi =
ξi√

< ξi, ξi >
, i = 1, 2, 3

118



Nexus S Nexus 4 Galaxy S3

0

5

10

15

A
z
im

u
th

 e
rr

o
r 

(d
e
g
re

e
)

HybridBasic Enhanced

(a)

0 0.6 1.2 1.8 2.4 3
90

95

100

105

Time (s)

A
z
im

u
th

 (
d
e
g
re

e
)

Basic

Basic with low pass filter

Hybrid

Enhanced

(b)

Figure 4: Orientation errors.

Then, the final rotation matrix is

Renhanced = [β1, β2, β3]

Comparisons: To verify the effectiveness of the optimiza-
tion techniques, we measure the orientation using three dif-
ferent methods: the “basic” method, the “hybrid” method,
and the “enhanced” method, and compare their results. We
place the phone in a horizontal plane, so the orientation is
reflected by the azimuth value. Then we rotate the phone
30 degrees and measure its azimuth reading against a com-
mercial compass. Each measurement is repeated 50 times
and the statistics are calculated. Figure 4(a) compares the
measurement errors (in degree) by these three methods. The
short bar in the middle of each box is the median value of
the azimuth reading error, and the lower and upper side of
the box are the first (25%) and third (75%) quartile, which is
denoted by Q1 and Q3. Then the lower limit is calculated by
Q1−1.5∗(Q3−Q1) and the upper limit isQ3+1.5∗(Q3−Q1).
More details about the average error and standard variance
of each method are listed in Table 1.

We find that the hybrid method can reduce the average
measurement error by 37% compared to the basic method,
and the enhanced method can further reduce the measure-
ment error by more than 40% compared to the hybrid method.
Also, new phones (e.g., Nexus 4), with more advanced hard-
ware and OS, are more accurate with less variance. For all
these phones, with our enhanced method, the average az-
imuth reading error is under 3.5 degrees, and the error can
be reduced to 1.3 degree with the Nexus 4 phone.

Table 1: Average error in azimuth (degree)
Nexus S Nexus 4 Galaxy S III

Basic 9.1(±2.0) 8.2(±1.5) 9.6(±2.4)
Hybrid 5.7(±1.9) 5.1(±1.3) 7.3(±1.7)

Enhanced 3.4(±1.4) 1.3(±0.7) 3.4(±1.3)

To understand the effectiveness of these techniques clearly,
we show the measurement results of these methods when the
phone is turned to 90 degree, and the results are illustrated
in Figure 4(b). As can be seen, the basic method oscil-
lates frequently. The hybrid method improves the accuracy
compared to the basic method but still carries the reading
errors. With orthonormalization, the enhanced method can
significantly improve the accuracy of orientation.

5.3 Occlusion and Out-of-focus
After a photo is taken, we assume that the user will visu-

ally check if the object appears in the photo, as most people
do. However, if the user does not check the photo, and the
object is blocked by unexpected obstacles such as a moving
vehicle, the photo will not be useful to the server. Even if
the user checks the photo and the object is clear, it may be

DOFNear limit Far limit

occlusion
object

Out of

focus

(a)

Dnear Dfar

(b)

good blocked

Figure 5: The use of DOF.

different from what the server is expecting. For example,
the server may expect the photo to be about a building, but
the user may be looking at a tree in front of the building.
Although in the two scenarios, the smartphone may pro-
duce the same metadata (e.g., the same facing direction),
the content could be very different, and the one focusing on
(blocked by) the tree is useless for the server’s task. Besides
this problem, there are many other occasions that the inter-
ested targets are out-of-focus. Uploading these photos will
waste lots of bandwidths and storage spaces.

We use a feature called focus distance, which is provided
by many new smartphones with focusing capability, to solve
the problem. The focus distance is the distance between the
camera and the object perfectly focused in the photo. Note
that the real distance between the camera and our interested
target can be calculated by GPS locations. Thus in an ideal
case, if the two distances do not match, the target is out-of-
focus and the photo should be excluded from consideration.

The measurement of the focus distance is sensible to er-
rors. A slight offset does not necessarily mean the target
is out-of-focus. In fact, in photography the distance be-
tween the nearest and farthest objects that appear accept-
able sharp in a photo is called the Depth-Of-Field (DOF).
DOF is determined by four parameters: focal length (f), fo-
cus distance (vo), lens aperture (A), and circle of confusion
(CoC). Among these parameters, focal length and lens aper-
ture are built-in and readable from the Android API. CoC
(denoted by c) is a predefined number which determines the
resolution limit for our application. Focus distance changes
from case to case but obtainable from Android API. There-
fore, we can calculate the near/far limit of DOF (Figure
5(a)) by the following formulas:

Dnear =
vo(H − f)

H + vo − 2f

Dfar =
vo(H − f)

H − vo

where H = f2

Ac
+ f is the hyperfocal distance [15].

After a photo is taken, the distance between the target and
the camera (phone) is compared with the above two values.
If the target falls into the DOF, the photo is considered valid;
otherwise, it will be dropped. For example, consider the
two photos in Figure 5(b). The dictionary is the interested
target. In the left photo, the near and far limit of DOF is
85cm and 105cm respectively. In the right photo, the near
and far limit of DOF is 5cm and 10cm respectively. The
distance between the camera and the dictionary is 100cm.
Based on these parameters, it is clear that the target falls
into the DOF in the left photo. From the figure we can
see, the dictionary is clear in the left photo but blocked by
another object in the right photo. Note that this filtering is
done at the user side and the metadata of unqualified photos
will not be sent to the server.
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Figure 6: Demo results.

Discussions: Photos can be of low quality due to various
reasons. Over-exposure or under-exposure causes images to
be too bright or too dark; camera movement and shutter
speed affect how severe the image is blurred; the quality
of lens and digital sensors is also important. These fac-
tors are neither included in our coverage model, nor consid-
ered by the DOF method. They can be analyzed only by
image processing. Thus, before photo selection, some effi-
cient image processing techniques [7] may be applied at the
user end to achieve basic quality control, such as detecting
photos that are too dark or severely blurred, and thus low
quality photos will not be considered in the photo selection.
However, existing image processing techniques are compu-
tationally expensive, and thus should be carefully adapted
considering the resource limitations of mobile devices. Note
that our approach is not meant to replace the role played by
image recognition algorithms, but to serve as an important
complement to improve the utility of the collected photos,
especially when there are resource constraints.

6. PERFORMANCE EVALUATIONS
In this section, we first show a real world demo using the

smartphone testbed, and then evaluate the performance of
the photo selection algorithms by extensive simulations.

6.1 Demo in a Real-World Example
The above testbed is used in a real-world example to

demonstrate the effectiveness of the proposed photo selec-
tion algorithm. In this demonstration, a landmark (a bell
tower) is the target. Photos are taken by using the repro-
grammed smartphones around the target with the metadata
automatically recorded. The metadata of all photos are later
uploaded into a centralized desktop server. There are 30
photos in total. Although most of them are taken around
the target, some are not facing the target, and some are
blocked by trees or other objects. Also, the distribution is
not uniform, due to the reality that people are likely to take
pictures of the front (more attractive) side of the building.

After the metadata is retrieved, the Max-Utility problem
is solved by choosing 4 photos. The results are shown in Fig-
ure 6(a), with the image shown at the top and the positions
and orientations of the photos are shown at the bottom.

Here the positions and orientations of the original 30 photos
are marked as dotted “V” shape, and the selected photos
are marked by bold lines. As a comparison, the 4 photos
chosen by a random selection algorithm are shown in Fig-
ure 6(b). It can be seen obviously that the 4 photos chosen
by our algorithm cover the target from 4 different locations
well separated from each other, with each one from a totally
different angle. The bell towers are viewable from all 4 pho-
tos. On the other side, only 2 photos chosen by the random
algorithm cover the target. The third photo is facing away
from the target, which is because the random selection does
not consider the orientation. In the fourth photo (at bot-
tom right), the target is blocked by a flagpole, which is bad
for random selection. Note that this photo’s orientation (in
bottom map) does not reveal the real situation. However,
based on the DOF information, the target is out of focus.
Hence, it is filtered out at the user end and is not considered
by our selection.

6.2 Simulation Results
In this section, we evaluate the photo selection algorithms

through simulations. The target is randomly distributed in
a 100m by 100m square area. Photos are assumed to be
taken at random positions, with random orientations from 0
to 2π, in a larger area that is a 200m by 200m square, with
the target area in the center.

During the simulation, the random selection algorithm is
used for comparison. For a fair comparison, the random
selection excludes any photos that have no target covered,
but only consider photos that cover at least one target, i.e.,
relevant photos. Note that a more naive selection could be
blindly selecting photos without considering this.

6.2.1 Results on Max-Utility

In the first part, we evaluate the performance of our al-
gorithm on addressing the Max-Utility problem. Intuitively,
with more bandwidths (larger B), better coverage of the
targets (total utility) can be achieved. As shown in Figure
7(a), both our algorithm (denoted by “ours”) and the ran-
dom selection (denoted by“random”) achieve more utility (y
coordinate) as B (x coordinate) increases. The total utility
achieved by all photos (denoted by “best achievable”) is also
shown to provide an upper bound. The difference between
our selection and the random selection is significant and the
advantage of our algorithm is obvious especially when B
is smaller, i.e., bandwidth is more constrained. Although
the performance of both algorithms converges to the best-
achievable utility as B becomes larger, the convergence of
ours is much faster.

Figure 7(b) shows how the total utility changes as the
number of candidate photos increases while other factors
including bandwidth (B = 20) remain unchanged. The
advantage of our algorithm is significant across the range.
Considering the bandwidth limitation (only 20 photos can
be selected to cover 30 targets), the difference between the
utility achieved by ours and the best achievable level is small.
Moreover, our algorithm can take advantage of the increas-
ing density of photos, and improve its performance as the
number of photos increases.

6.2.2 Results on Online Max-Utility

In this part, the algorithm for the online Max-Utility prob-
lem is evaluated. We first observe how the total utility
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Figure 7: Simulation results: (a)-(b) Max-Utility; (c)-(d) Online Max-Utility; (e)-(f) Min-Selection.

changes as the number of periods increases in Figure 7(c).
Here, we use the same target distribution as above, and
there are 100 new photos available in every period. Photo
parameters are shown in the figure. The normalized total
utility at the end of each period is recorded. As can be seen,
for both our algorithm and the random algorithm, the total
utility increases as the number of periods increases. How-
ever, for our algorithm, it quickly approaches to 360. It is
actually above 350 after t7, which means by that time, al-
most all aspects of the targets are covered by the selected
photos. The random algorithm takes much longer (after t25)
to reach that level of coverage. Thus, our algorithm is more
responsive and effective.

Next, we vary the number of new photos from 50 to 100,
with other parameters the same as above except the number
of periods which is now fixed to be 5. The total utility of
the selected photos after t5 is shown in Figure 7(d). As the
number of available photos increases, the selection algorithm
has more choices. As a result, the total utility improves and
approaches 360 in our algorithm. In comparison, the per-
formance of the random algorithm is flat (a little fluctuated
due to randomness) and very low. Given the same time pe-
riod, the total utility of our algorithm is much higher than
the random algorithm across the range.

6.2.3 Results on Min-Selection Problem

In this part the Min-Selection problem is studied. In real-
ity, the given pool of photos can be very large and the num-
ber of relevant photos (i.e., photos covering at least one tar-
get) can increase very fast as the total number of randomly
taken photos increases. Then, a careful selection of photos
can greatly reduce the redundancy. Figure 7(c) shows the
effectiveness of our selection algorithm on reducing the re-
dundancy. There are 20 targets on the field, and the camera
parameters are shown in the figure. As the total number
of photos varies from 500 to 2000, the number of related
photos (denoted by “related”) increases linearly. However,
the number of photos selected by our algorithm (denoted by
“selected by ours”) to achieve the same coverage does not

increase. It actually decreases slightly since our algorithm
takes advantage of the increased density of the photos and
improves its efficiency.

The algorithms are also evaluated under the situation that
the number of targets (m) varies from 5 to 50, while the to-
tal number of photos is fixed to be 1000 and all other factors
remain the same. As shown in Figure 7(d), the algorithms
have to select more photos to cover the increased number of
targets. However, the number of photos selected by our al-
gorithm remains very low, and the increasing speed is much
slower as the number of targets increases, which is much
better than the random algorithm.

7. RELATED WORK
The mass adoption of camera sensors and other position

sensors on smartphones makes photo taking and sharing via
online social networks much easier and more enjoyable. It
creates opportunities for many applications based on cam-
era sensor networks, which have received much attention
recently in research [2, 16, 19, 11, 17]. One basic problem
is how to characterize the usefulness of the image data and
how to optimize the network to achieve better quality of
information. However, very little effort has been devoted
to this field. One problem studied is called pan and scan
[10], which is proposed to maximize the total coverage in a
camera sensor networks. For camera sensor placement, var-
ious optimization models and heuristics are studied in [9].
However, the coverage model is relatively simple, depend-
ing only on the distance between the target and the object,
which does not consider the uniqueness of photo coverage.

Our work is inspired by the full-view coverage model which
was originally proposed in [22] and later extended in [21, 23].
An object is considered to be full-view covered if no mat-
ter which direction the object faces, there is always a sensor
whose sensing range includes the object and that sensor’s
viewing direction is sufficiently close to the object’s facing
direction. Although our work is based on the full-view cov-
erage model, our model is more general and we study vari-
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ous optimization problems on the tradeoffs between resource
constraints and photo coverage.

Another interesting work is PhotoNet [20], which is a pic-
ture delivery service that prioritizes the transmission of pho-
tos by considering the location, time stamp, and color dif-
ference, with the goal of maximizing the “diversity” of the
photos. Compared to their model, we consider direction and
angle information, and develop techniques to obtain them
through off-the-shelf smartphones. These are very impor-
tant and unique features for photos and enable us to develop
much finer optimization models. Moreover, the solutions to
our optimization problems are rigorously analyzed.

It is also worth mentioning that there has been much
progress in content-based image retrieval techniques (see [6]
for a good survey). These techniques have also been used
for images obtained from mobile users. One example is to
build photo annotated world maps and create 3D models
of the objects from 2D photos via online social networks
[5]. Some other interesting works have been done for image
retrieval/search on smartphones, e.g., [25]. However, most
of these works involve power-intensive computation at both
user and server end, and some demands human validation to
be included into the cycle [25]. These techniques are chal-
lenged by the content diversity and the resource constraints.

8. CONCLUSIONS
We proposed a resource-aware framework, called Smart-

Photo, to optimize the selection of crowdsourced photos
based on the accessible metadata of the smartphone includ-
ing GPS location, phone orientation, etc. With this model,
a remote server can efficiently evaluate and select photos
from mobile users under severely constrained resources such
as bandwidth, storage, computational power and device en-
ergy. Three optimization problems regarding the tradeoffs
between photo coverage and resource constraints have been
studied. One proposed algorithm is to maximize the total
utility subject to the bandwidth constraint. It has been fur-
ther extended into an online selection algorithm that can
periodically select and collect photos to satisfy the require-
ment of time critical applications. We also provided solu-
tions to minimize the bandwidth usage while satisfying the
coverage requirement. The approximation bounds of the al-
gorithms are theoretically proved. We have implemented
SmartPhoto in a testbed using Android based smartphones
and a desktop as the remote server, and proposed techniques
to improve the accuracy of the collected metadata and mit-
igate the occlusion and out-of-focus issues. Results based
on real implementations and extensive simulations validated
the effectiveness of the proposed algorithms.
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