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ABSTRACT
Compressive Sensing (CS) has been recognized as a promis-
ing technique to reduce and balance the transmission cost
in wireless sensor networks (WSNs). Existing efforts mainly
focus on applying CS to reliable WSNs, namely, each wire-
less link is 100% reliable. However, our experimental results
show that traditional compressive data gathering (CDG)
could result in arbitrarily bad recovery performance, when
the wireless links are lossy. In this paper, we study the im-
pact of packet loss on compressive data gathering and ways
to improve its robustness using sparsest random scheduling
(SRS). The key idea of our scheme is to treat each sampling
value as one CS measurement, which helps us to reduce the
impact of packet loss on the recovery accuracy. Our scheme
also outperforms the tradition CDG in reliable WSNs in
that our scheme has significantly lowered transmission cost.
To achieve this, we present a sparsest measurement matrix
where each row has only one nonzero element. More im-
portantly, we propose a representation basis to sparsify the
gathering data, and prove that our measurement matrix sat-
isfies the restricted isometric property (RIP) with high prob-
ability. Extensive experimental results show our scheme can
recover the data accurately with packet loss ratio up to 15%,
while traditional CDG can hardly recover the data under
similar or even better conditions.
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1. INTRODUCTION
Wireless sensor networks (WSNs) have been widely used

for collectively monitoring and disseminating information
about various phenomena of interest [7, 31]. For example,
ExScal [1] is an intrusion detection network with more than
1000 sensor nodes. And typically, GreenOrbs [11] and City-
See [15] systems have been built for continuously collecting
environmental data including temperature, humidity, illu-
mination, and carbon dioxide etc. Leveraging the spatial-
temporal properties in sensory data from real deployments,
many Compressive Sensing (CS) based data gathering tech-
niques have been proposed to reduce and balance the in-
network data transmission cost (e.g. [13, 16, 17, 25, 26, 29]).
As far as we are concerned, all existing works on compres-
sive data gathering (CDG) focus on reliable WSNs, without
considering the impact of packet loss on the recovery perfor-
mance. Unfortunately, our experimental results show that
the recovery performance of traditional CDG could be se-
riously degraded by packet loss, e.g., the recovery accuracy
could be arbitrarily bad even with 2% packet loss rate. This
problem is especially pronounced in many large scale sensor
networks whose packet loss ratio could reach 20% [14]. The
prevalence of unreliable links in real-world WSNs [11] has
posed a fundamental challenge for maintaining the recovery
accuracy under unsatisfactory and lossy conditions.

In general, there are two reasons preventing the traditional
CDG from working well in lossy network. (1) There are
too many sensors involved for gathering single measurement,
when adopting tree-based routing, one packet loss may cause
severe decrease on the quality of that measurement; (2) CS
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theory is originally developed for minimizing the number of
measurements, rather than the cost of each measurement,
unfortunately, so far we can not find any representation ba-
sis for making the measurement matrix sufficiently sparse.
To address such deficiencies, we develop a novel CDG scheme
that achieves good resilience to packet loss. In our scheme,
unlike the traditional CDG, each row of the measurement
matrix contains only one nonzero element and each sampling
value is considered as one CS measurement. In spite of some
existing research in this direction [26][27], our work differs
from theirs in that: (1) in sparse random projections [26],
each row of measurement matrix requires O(logN) nonzero
elements where N is the network size; (2) single sensor tem-
poral random scheduling data gathering [27] suffers from a
lack of a decent theoretical analysis, and this scheme can
not work in distributed WSNs. In contrast, we find a suit-
able representation basis based on Gaussian joint distribu-
tion model. More importantly, we are the first to prove
that the proposed measurement matrix and representation
basis satisfy restricted isometric property (RIP) with high
probability, this guarantees that the gathered data can be
accurately recovered at the sink. The contributions of this
paper are three folds.
(1) We are the first to investigate the impact of packet loss

on the performance of traditional CDG in terms of recovery
accuracy. We show that the recovery accuracy could be
very bad even with 2% packet loss ratio. This motivates
us to revisit and enhance existing CDG for achieving better
resilience to packet loss.
(2) We propose a novel sparsest random scheduling based

CDG scheme (SRS-DG). We present a detailed characteri-
zation of its performance through both analytical and nu-
merical results. Our scheme can reduce the impact of packet
loss on the recovery accuracy. We also prove that the pro-
posed measurement matrix and representation basis satisfy
RIP with high probability.
(3) We empirically demonstrate the effectiveness of our

scheme on real data set from CitySee [15]. In particular, we
show that the recovery error of our scheme is only 0.1 with
packet loss ratio up to 15%. In contrast, traditional CDG
can hardly recover the data under similar or even better
conditions.
The rest of this paper is organized as follows. In sec-

tion 2 presents the preliminaries of CS. The motivation and
challenges are given in section 3. The detailed design of
SRS-DG is presented in Section 4. In section 5, we provide
the transmission cost analysis of SRS-DG and its algorithm
implementation. Section 6 reports our experimental results.
We present a literature review of existing work in section 7
and make a conclusion in Section 8.

2. PRELIMINARIES
CS is a new compression and sampling paradigm com-

pared with traditional Shannon’s sampling theorem [2, 4,
10]. CS theory asserts that a relatively small number linear
combination of a compressible or sparse signal can contain
most of its salient information. Assuming that s ∈ RN is
a k-sparse signal, which is only k nonzero components or
(N − k) smallest components can be ignored. Thus, the in-
formation can be extracted from s by y = Φs, where Φ is an
M×N measurement matrix, y ∈ RM is measurement vector
and M ≪ N . To recover the signal s, two problems need
to be answered: (1) How to design Φ such that the salient

information can be extracted from any k-sparse signal? (2)
How to design recovery algorithm to reconstruct s from y?
To answer the first problem, Φ should satisfy the restricted
isometric property (RIP) [6]:

Definition 1 ([6]). A matrix Φ satisfies the restricted
isometry property (RIP) of order k if there exists a δk ∈
(0, 1) such that

(1− δk)∥s∥22 ≤ ∥Φs∥22 ≤ (1 + δk)∥s∥22 (1)

for all k-sparse vectors s ∈ RN .

Candès, Romberg, and Tao [5] and Donoho [10] have shown
many random matrices that satisfy the RIP such as Gaus-
sian identity distribution matrix, ±1 Bernoulli matrix and
so on.

To answer the second problem, the signal s can be recov-
ered via ℓ1 optimization as

ŝ = argmin
s

∥ s ∥1 s.t. y = Φs (2)

If Φ satisfies RIP and M ≥ O(k · log(N/k)) , then s can be
recovered successfully with high probability. If the mea-
surement vector y contains noise, then the signal s can be
recovered via

ŝ = argmin
s

∥ s ∥1 s.t. ∥Φs− y∥22 ≤ ϵ (3)

where ϵ bounds the noise. There already exist many effi-
cient algorithms to solve the above problems such as basis
pursuit [6], orthogonal matching pursuit (OMP) algorithm
[24], CoSaMP [20] and so on.

However, the real sensory signals are almost compressible
signals instead of sparse signal. Compressible signal can
usually be transformed into sparse signal via representation
basis transformation. For example, a smooth signal x ∈ RN

can usually be transformed into a sparse signal s under dis-
crete cosine transformation (DCT) basis or discrete wavelet
transformation (DWT) basis. The measurement vector y
can be expressed as

y = Φx = ΦΨs (4)

where Ψ is a N × N representation basis. If ΦΨ satisfies
RIP, the sparse signal s can be recovered accurately with
high probability. Then x can be recovered via x = Ψs.

3. MOTIVATION AND CHALLENGES
In this section, we will analyze the recovery performance

of traditional CDG in lossy WSNs, and demonstrate that the
recovery accuracy is seriously impacted by data packet loss.
Based on the experimental results from real deployments,
we further investigate the reasons why traditional CDG is
not robust to packet loss. Correspondingly, we present the
idea of SRS-DG that guarantees good recovery performance
even under severe packet loss.

Observation: Our experiments were performed on a real-
world data set from CitySee system [19]. CitySee system was
deployed in an urban area of Wuxi City, China, which con-
tained thousands of wireless sensor nodes for environmental
monitoring. In CitySee system, each sensor sampled once ev-
ery 10 minutes and sent its sampling value to the sink. We
evaluate sensory data recovery performance of traditional
CDG under different data packet loss ratios and different
number of CS measurements. In our experiment, Gaussian
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Figure 1: Recovery error comparisons. (a) No data packet loss. (b) Different number of measurements
without retransmission. (c) Different data packet loss ratio without retransmission. (d) Different data packet
loss ratio with retransmission.

random matrix and discrete cosine transformation (DCT)
are considered as measurement matrix and sparse represen-
tation basis, which are denoted by ΦG and Ψdct respectively.
The experimental data set is 256 temperature sampling val-
ues in the same time interval from 256 sensors. First, we sort
the sensory data by Mote ID order. For better justification,
we also evaluate their recovery performance under different
orders. Notice that in practice, it is impossible to reorder
the sensory data according to their value which is unknown
at the beginning. The sparse level under Mote ID order is
around 25, and the sparse level under ascending order is
around 5.
Next, we evaluate the recovery performance of the tra-

ditional CDG under three different network configurations.
(1) Sensor network is reliable without data packet loss. (2)
Sensor network is unreliable without allowing lost packet re-
transmission. (3) Sensor network is unreliable with allowing
lost packet retransmission. We build a routing tree contain-
ing 256 sensor nodes. Each packet is dropped at random
with uniform probability (packet loss ratio) on each link.
To simplify the expression, the packet loss ratio and the
number of measurements are denoted by pl ratio and M
respectively. In our experiment, we use mean square error
(MSE) as the recovery error metric. Fig 1 (a) shows the
recovery error with no data packet loss. Two types orders
sensory data can be recovered accurately, the recovery er-
ror of Mote ID order is decreased within 0.1 (MSE) with
at least 30 measurements. And the recovery error of as-
cending order is even less than 0.01 (MSE) with at least 20
measurements. Fig 1 (b) shows the recovery error under
pl ratio = 5% without lost packet retransmission. The re-
covery error is higher than 60 in the majority of cases. It
demonstrates that the sensory data can hardly be recovered
under both ascending order and Mote ID order. Moreover,
even we increase the number of measurements, the recovery
performance is still poor. Fig 1 (c) displays the recovery
error under different packet loss ratios without retransmis-
sion. The result shows that the recovery performance could
be very bad even with low packet loss ratio (pl ratio < 2%).
We next evaluate the recovery performance with retrans-
missions. Fig 1 (d) depicts the mean recovery error under
different maximum number of retransmissions, which is de-
noted by Max rt num. Unfortunately, limited number of
retransmissions does not help much in improving the re-
covery accuracy. Moreover, retransmission may cause extra
communication overhead which is clearly undesirable. This
issue is especially pronounced in many large scale sensor

(a) Reliable Network (b) Lossy Network

Figure 2: CS based data gathering in tree routing
network.

networks, the average packet loss ratio could still reach 20%
with Max rt num = 30 [14].

Insight: We identify at least two reasons why traditional
CDG can not achieve satisfactory recovery performance un-
der lossy WSNs. The first reason is that there are too many
sensors involved for gathering single measurement, there-
fore one packet loss may cause severe drop on the quality of
that measurement; The second reason is that CS theory is
originally developed for minimizing the number of measure-
ments, rather than the cost of gathering each measurement,
unfortunately, so far we can not find any presentation basis
for making the measurement matrix sufficient sparse. Al-
though CS theory asserts that it has a strong robustness to
noise and data loss [5], distributed sensor networks has many
unique features which make traditional CS theory not capa-
ble of handling the packet loss. For example, Fig 2 displays
the data packet loss under tree based routing. Let sj denote
the jth sensor, the corresponding sampling value and pro-
jection element are xj and ϕij respectively (j = 1, 2, · · · , 8).
Fig 2 (b) shows that the data packet of s8 is lost when it is
sent to s4 during the ith measurement gathering. Because
the ith measurement is calculated as yi =

∑8
i=1 ϕijxi, all

involved sensory data including x5, x6, x7, and x8 would be
lost. In this case, one packet loss could cause severe drop
on the quality of gathered measurements. Because this case
could happen to every measurement, simply increasing the
number of measurements can not improve the recovery per-
formance.

Challenges: We now investigate how to reduce (or possi-
bly avoid) the consequences of data packet loss on the quality
of gathered measurements. Intuitively, if each measurement
is represented by only one sampling value, then the received
measurements only contains sampling noise. This is because
the sink would either gather the entire measurement success-
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fully or lose the entire measurement. Traditional CS theory
focuses on minimizing the number of measurements, rather
than the number of participation nodes for each measure-
ment. It requires the measurement matrix to satisfy any
orthogonal representation basis of compression signal. Al-
though Donoho et al. proposed that the partial fourier co-
efficient can also recover original signal ([5, 10]), it is not
suitable for distributed WSNs.
In this paper, we aim to let each sampling value represent

one CS measurement. If this goal can be realized, we can
reduce both the data transmission cost, and, more impor-
tantly, the consequences of packet loss on the data recovery.
Then it is possible to develop a novel CDG which can be
used even in lossy sensor networks. However, achieving this
goal is not trivial, there are two primary challenges: The
first challenge is to design appropriate measurement matrix
and representation basis, this is critical sparsifying the sen-
sory data and letting each sensory value represent one mea-
surement; The second challenge is to ensure that the sen-
sory data can be accurately recovered under the previous
design. To overcome these challenges, we develop a novel
CDG scheme SRS-DG in the rest of this paper.

4. SRS-DG DESIGN
In this section, we provide the detailed design and analy-

sis of each sampling values as one CS measurement, namely,
the measurement matrix and representation basis design and
analyze in SRS-DG. To let each sampling value represent
one CS measurement, each row of the measurement matrix
should contain only one nonzero element. In order to facili-
tate the expression, we call this type of measurement matrix
as sparsest measurement matrix, and the data gathering pro-
cess as sparsest random scheduling for data gathering (SRS-
DG). In Section 4.1, we present our sparsest measurement
matrix design and its rationale. Accordingly, in Section 4.2,
we design a suitable representation basis. We verify that
our representation basis can sparsify the spatial correlation
sensory data in Section 4.3. We also prove that the sparsest
measurement matrix and representation basis satisfy RIP
with high probability in Section 4.4, this ensures high recov-
ery accuracy.
Assume that there are N sampling values that need to

be gathered, which are denoted by x = [x1, x2, · · · , xN ]T .
During the data gathering, the measurement matrix is de-
noted by Φ = [ϕ1, ϕ2, · · · , ϕN ]T , the ith CS measurement is
calculated as yi =

∑N
j=1 ϕijxj . If ϕij is nonzero, the jth sen-

sor node requires to participate in the ith CS measurement
gathering.

4.1 Measurement matrix design and analysis
In this subsection, we present the design of sparsest mea-

surement matrix, where each sampling value represents one
CS measurement. We also present the design rationale be-
hind our sparsest measurement matrix.
Measurement matrix design: To balance the resource

consumption in WSNs, it is reasonable to define our sparsest
measurement matrix Φe as

Φe(i, j) =

{
1

0

j = ri

otherwise
(5)

where i = 1, 2, · · ·M , j = 1, 2, · · ·N , ri represent the in-
dependent and identically distributed random indices, and

ri < ri+1, ri ∈ [1, N ]. Based on the definition of Φe, each
row of Φe has only one nonzero element. Then, one round
of data gathering can be expressed as

xr =


xr1

xr2

...
xrM

 =


ϕe1

ϕe2

...
ϕeM




x1

x2

...
xN

 (6)

where xr is CS measurement vector, ϕei represents the ith

row of Φe. If xr is reconstructed by x based on CS theory,
then the decoder can be expressed as

ŝ = argmin
s
∥s∥1 s.t. ∥ΦeΨs− xr∥22 ≤ ϵ (7)

where s = Ψ−1x, Ψ is orthogonal basis of x, ϵ bounds the
noise in xr, ŝ is the recovery signals of s.

Feasibility analysis: The design of sparsest measure-
ment matrix ensures that each sampling value represents
one CS measurement, and reduces the impact of packet loss
on the recovery performance. The next challenge is to design
an appropriate representation basis, by taking into account
both the data transmission cost and data recovery quality.
In particular, an appropriate representation basis, Ψ, should
satisfy the following two conditions: (1) Ψ can sparsify the
gathering sensory data; and (2) ΦeΨ satisfies RIP with high
probability.

We next demonstrate, from the information extraction as-
pect, why each row of our measurement matrix contains only
one nonzero element. If sensory data x is sparse under rep-
resentation basis Ψ, it can be recovered from a small number
of CS measurements (i.e., y = Φx = ΦΨs). The decoding
process is to recover the sparse signal s instead of directly
recovering the sensory data x. The sparse signal s can be
recovered because each component of y contains a part of
information of s, namely, each component of y is a linear
combination of s. However, each component of x is also a
linear combination of s. Each component of x and y con-
tains the information of the sparse signal s. So, if we design
or select a suitable representation basis and make it satisfy
RIP with sparsest measurement matrix, the sparse signal s
can be recovered from a part of x.

In what follows, we give the detailed design of our repre-
sentation basis and illustrate why it satisfies the above two
conditions.

4.2 Representation basis design
In [5, 10], Donoho et al. have shown that many random

matrices satisfy the RIP with any orthonormal representa-
tion basis. In addition, they show that if one can find a
sparsity representation basis which is similar to a certain
random matrix, it is possible to satisfy RIP. Our represen-
tation basis is developed based on the correlation of sensory
data.

As real-world environmental data usually exhibit strong
spatial correlation, Gaussian joint distribution is an effec-
tive and reasonable model for further theoretical analysis
[9]. Without loss of generality, we define Gaussian kernel

function, K(xi, xj), as K(xi, xj) = exp{
−d2ij
2σ2 }, where K(xi, xj)

represents the correlation between xi and xj , dij is the
distance between the ith sensor and the jth sensor. How
much effect between xi and xj depends on the parameter
σ, K(xi, xi) = 1. The parameter σ can be estimated from
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Figure 3: The transformed signal and recovery error comparisons. (a) Transformed coefficients with Mote ID
order. (b) Transformed coefficients with ascending order. (c) Recovery error comparison with Mote ID order.
(d) Recovery error comparison with Ascending order.

training sensory data by maximum likelihood or Bayesian
framework [22]. Based on the above assumptions, the cor-
relation matrix G with N sensor points can be expressed
as

G =


e

−d211
2σ2 e

−d212
2σ2 · · · e

−d21N
2σ2

e
−d221
2σ2 e

−d222
2σ2 · · · e

−d22N
2σ2

...
...

...
...

e
−d2N1
2σ2 e

−d2N2
2σ2 · · · e

−d2NN
2σ2


(8)

We map N sensors into 2-dimensional array based on real
locations and the distance between neighboring sensors is
unitary. Then, G is a Toeplitz matrix which can be diago-
nalized, namely, G can be expressed as G = ΨGΛΨ

−1
G , where

ΨG is orthonormal eigenvector basis, Λ is the diagonal ma-
trix whose diagonal entries are the corresponding eigenvalues
of G. We use ΨG as an orthonormal representation basis,
then x can be represented by x = ΨGs, where s is trans-
formed signal (s = Ψ−1

G x). If s is sparse and ΦeΨG satisfy
RIP, ΨG would be considered as a representation basis of
sparsest random projections.

4.3 Does ΨG sparsify sensory data?
In this section, we experimentally show that ΨG indeed

sparsifyies the spatial correlation signal. We also give sta-
tistical analysis of ΨG to explain why it can sparsify the
spatial correlated sensory data. To evaluate the sparse per-
formance of ΨG, we compare it with DCT basis and DWT
basis, which are denoted by Ψdct and Ψdwt respectively.
Experimental verification: We use the same data set

as in Section 3. We still examine two orders: Mote ID or-
der and ascending order. Ascending order exhibits stronger
spatial correlation, and Mote ID order has weaker spatial
correlation.
Fig 3 (a) and (b) show the transformed coefficients un-

der ΨG corresponding to two orders. The transformed co-
efficients under ΨG are mainly concentrated in a few com-
ponents, both orders have a good sparse performance. To
recover a compressible signal based on CS theory, the num-
ber of CS measurement is proportional to the sparsity of the
sensory data. For the same spatial correlated signal, differ-
ent representation basis obtain different sparse level signal.
Fig 3 (c) and (d) show the recovery quality under different
numbers of largest transformed coefficients corresponding
to different orders. The number of largest transformed co-
efficients can be considered as sparse level of transformed
signal. Fig 3 (c) shows that ΨG can sparsify our sensory
data, its performance is very close to the one of Ψdct and
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Figure 4: The mean of every row of Ψ−1
G with σ2 = 1

and different N .

4-layer ‘haar’ Ψdwt. Fig 3 (d) illustrates that the recovery
performance of ΨG is not as good as Ψdct and Ψdwt, this is
because ascending order is a theoretical ideal case.

Statistical analysis: We also illustrate that ΨG can
sparsify the spatial correlation data through analyzing the
mean and variance of its row elements. Fig 4 shows the
mean of every row of Ψ−1

G with σ2 = 1 and N = 64, 256,
there are only a few rows whose mean values are nonzero.
This also explains that why the transformed signal s, s =
Ψ−1

G x, is sparse when the spatial correlation signal x changes
smoothly. For the real sensory data, we can learn the opti-
mal value of σ based on the historic sensory data. Based on
the above analysis, we show that ΨG can efficiently sparsify
the spatial correlated signal.

4.4 Does ΦeΨG Obey RIP?
In this subsection, we prove that ΦeΨG satisfy RIP with

high probability, this ensures high recovery accuracy. We
first present the statistic properties of ΨG. The mean and
variance of each row in ΨG with N = 256 are shown in
Fig 5 (a) and (b) respectively. Both the mean and vari-
ance of each row are very stable. Fig 5 (c) illustrates the
actual percentage of the mean of each row in the range of
(−0.02, 0.02) and N times variance of each row in the range
of (−0.05, 0.05). Fig 5 (c) illustrates that both the mean
and variance of each row exhibit similar trends with the in-
creasing of N . Based on the law of large numbers, each
row of ΨG can be considered as a random sequence gener-
ated by a random variable. ΨG is generated by N random
variables denoted by ξ1, ξ2, · · · ξN . These random variables
have the same numerical characteristics, namely, E(ξi) = 0,
Var(ξi) = E(ξ2i ) = 1/N , (i = 1, 2, · · · , N).
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Figure 5: The mean and variance of every row of ΨG

with σ2 = 1 and different N values.

Let Θ = ΦeΨG, since the nonzero elements of each row
of Φe are independent of each other, we can assume that
each row of Θ is chosen independently at random from ΨG.
Meanwhile, Θ is generated by (i.i.d) random variables ξr1 , ξr2 ,
· · · , ξrM . In the following, we give the definition of sub-
Gaussian and the related corollary.

Definition 2 (sub-Gaussian [3]). A random variable
ξ is called sub-Gaussian if there exists a constant c > 0 such
that ∀λ ∈ R

E
(
eλξ
)
≤ ec

2λ2/2 (9)

We say ξ ∼ Sub(c2) iff ξ satisfies the above inequality.

Corollary 1. If the ith row of Θ is considered as a se-
quence generated by random variables ξri (i = 1, 2, ...,M),
then ξri ∼ Sub(2).

Proof. Because E(ξri ) = 0 and Var(ξri ) = E(ξ2
ri
) = 1/N ,

then for all λ ∈ R

E
(
e
λξri

)
= E

(
∞∑

n=0

λnξn
ri

n!

)
= 1 +

∞∑
n=2

λnE
(
ξn
ri

)
n!

≤ 1 +

∞∑
n=2

λn

n!
≤ e|λ| − |λ| ≤ e2λ

2/2 (10)

The proof of e|λ| − |λ| ≤ e2λ
2/2 is given in Appendix. So,

ξri ∼ Sub(2), (i = 1, 2, · · · , N).

Theorem 1 ([8]). Suppose ξr = [ξr1 , ξr2 , · · · , ξrM ]T ,
where each ξri is i.i.d. ξri ∼ Sub(c2) and E

(
ξ2ri
)
= σ2.

Then

E
(
||ξri ||

2
2

)
= Mσ2 (11)

Moreover,∀α ∈ (0, 1), ∀β ∈ [c2/σ2, βmax], there exists a con-

stant c∗ such that P
(
||ξr||22 ≤ αMσ2

)
≤ e(−M(1−α)2/c∗) and

P
(
||ξr||22 ≥ βMσ2

)
≤ e(−M(β−1)2/c∗).

In the following theorem, we prove that Θ satisfies RIP
with probability tending to 1.

Theorem 2. Fix δ ∈ (0, 1) and each row of Θ satisfies
Sub(2), if M = O(k log(N/k)), then with high probability,

Θ satisfies (1− δ) ≤ ||Θv||22
||v||22

≤ (1 + δ) for all N-dimensional

k-sparse signal v.

Proof. Suppose that the ith row of Θ is generated by
ξri . Because each row of Θ is randomly selected based
on scheduling sensor, ξr1 , ξr2 , · · · , ξrM is i.i.d. with ξri ∼
Sub(2). To simplify the proof, we normalize Θ and Θ =√

N/M [θ1, θ2, · · · , θM ]T , E(θij) = 0 and Var(θij) = E(θ2ij) =
1/N . We have

E(<
√

N

M
θi,v >) = E(

√
N

M

N∑
j=1

θijvj)

=

√
N

M

N∑
j=1

E(θij)vj = 0 (12)

Var(<

√
N

M
θi,v >) = Var(

√
N

M

N∑
j=1

θijvj)

=
N

M

N∑
j=1

Var(θij)v
2
j =

1

M

N∑
j=1

v2j =
||v||22
M

(13)

E(||Θv||22) = E(
M∑
i=1

(<

√
N

M
θi,v >)2)

=

M∑
i=1

E(<
√

N

M
θi,v >)2 =

M∑
i=1

Var(<

√
N

M
θi,v >)

=

M∑
i=1

||v||22
M

= ||v||22 (14)

Based on Theorem 1, we set α = 1− δ and β = 1+ δ, and

the following inequality can be obtained P
(

||Θv||22
||v||22

≤ 1− δ
)
≤

e−Mδ2/c∗ and P
(

||Θv||22
||v||22

≥ 1 + δ
)
≤ e−Mδ2/c∗ , then we have

P
(∣∣∣∣ ||Θv||22
||v||22

− 1

∣∣∣∣ ≥ δ

)
≤ 2e−Mδ2/c∗ (15)

Since there are (N, k) possible k-dimensional subspaces of
Θ, based on Sterling’s approximation, we have (N, k) ≤
(eN/k)k, and the probability of k-sparse signal v which sat-

isfies
∣∣∣ ||Θv||22

||v||22
− 1
∣∣∣ ≥ δ is

(eN/k)k · 2e−
Mδ2

c∗ = 2e−
Mδ2

c∗ +k log(N
k )+1 (16)

Therefore, when M = O(k log(N/k)) , the probability of Θ

satisfies (1− δ) ≤ ||Θv||22
||v||22

≤ (1 + δ) for all k-sparse signal v,

it trends to 1.

According to the above analysis, we know that ΨG can
sparsify spatial correlation signal, and satisfy the RIP with
Φe as well.
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5. IMPLEMENTATION AND ANALYSIS
In this section, we first give the algorithm implementation

of sparsest random scheduling for data gathering (SRS-DG),
and then analyze the transmission cost of our scheme.

5.1 Algorithm Implementation
To implement SRS-DG scheme, we first investigate how

to select M random scheduling sensors from N sensors to
meet Φe. Then we focus on how to adaptively adjust the
number of CS measurements based on the recovery error
from the previous rounds. For the first task, we develop a
probabilistic scheduling strategy which can satisfy the pro-
posed measurement matrix and ensure balanced sensor par-
ticipation. For the second task, we utilize the recovery error
of currently received sampling values to adjust our proba-
bilistic scheduling. We next detailize the implementation of
SRS-DG, which contains two components of algorithm im-
plementation. (1) The sink component is responsible for the
sensory data recovery and random scheduling probability
assignment/adjustment as shown in Algorithm 1. (2) Each
sensor component is responsible for sampling and transmit-
ting data to the sink as shown in Algorithm 2.
Sink Component: In Algorithm 1, the inputs are repre-

sentation basis ΨG, upper bound ϵub, lower bound ϵlb on re-
covery error, and the scheduling probability step length △p.
In the initializing stage, the scheduling probability is set to
1. The outputs are the recovery sensory data x̂ and sensor
scheduling probability ps. x̂ and x̂r are denoted as recovery
sparse signal, the whole recovery sensory data, and recovery
received sensory data, respectively. During the data gather-
ing, the indices of received sensory data need to be recorded
in Ωr which has been used for generating Φe. If the recovery
error ϵ is greater than ϵub, which means there is a lack of
CS measurements for recovering the sensory data, we will
increase the number of CS measurements. Otherwise, we
will decrease the number of CS measurements, namely, the
scheduling probability ps needs to be adjusted when the re-
covery error is out of the range of (ϵlb, ϵub). Notice that, the
scheduling probability should not change frequently since
the sparse level of sensory data is relatively stable.
Sensor Component: In Algorithm 2, each sensor ob-

tains a sensing value periodically and decides whether or
not to participate in the data gathering. In particular, each
sensor will generate a random number pr ∈ (0, 1), if the ran-
dom number is greater than its scheduling probability, the
sensor will send its value to the sink along the shortest rout-
ing path. Otherwise, the sensor will not sample and send its
value.

5.2 Transmission Cost Analysis
In this subsection, we analyze transmission cost of SRS-

DG and compare it with traditional CDG. We compare
SRS-DG with three traditional CDG schemes, dense ran-
dom projections for data gathering (DRP-DG) [17], sparse
random projection for data gathering (SRP-DG) [26] and
hybrid CS for data gathering (hybrid CS-DG) [18]. For sim-
plicity of analysis, we assume that sensor network contains
N sensors, the average hop distance from any sensor to the
sink is H. In DRP-DG, each CS measurement gathering
require each sensor participation once. In SRP-DG, each
row of measurement matrix can only contain O(logN) non-
zero elements, namely, each measurement gathering needs to
transmit at least O(logN) data packets. In hybrid CS-DG

Algorithm 1: Sensory data recovery and scheduling
probability assignment.

Input : ΨG, ϵub ϵlb, △p.
Output: x̂, ps
Φe ← 0; /* Initializing measurement matrix */
Ωr ← {i| if xi received }; /* Record received index */
j ← 1;
foreach i ∈ Ωr do

Φe(j, i)← 1; /* Assign measurement matrix */
j ← j + 1;

Θ← Φe ∗ΨG;
x̂ = CS Recovery (x̂r,Θ); /* Recovery sensory data */
x̂r ← x̂Ωr ; /* Extract received recovery sensory data */

ϵ = MSE(xr, x̂r); /* Recovery error */
ps ← |Ωr|/N ; /* Current scheduling probability */
if ϵ > ϵub then

ps ← ps +△p; /* Increase scheduling probability */
broadcast ps to all sensors;

if ϵ < ϵlb then
ps ← ps −△p; /* Decrease scheduling probability */
Broadcast ps to all sensors;

Algorithm 2: Random scheduling data gathering for
the ith sensor
Input : ps
Output: xi

pr ← rand(); /* Generate a random probability */
if pr ≤ ps then

Sampling xi;
Send xi to the sink;

, if the number of transmission data packets is larger than
CS measurements, the sensor carries out CS compression.
Fig 6 shows three types of CS based data gathering schemes
under multi-hop tree topology network. In Fig 6, the black
sensors represent the participation compression sensor nodes
during CS based data gathering and the link labels repre-
sent the number of transmission data packets during a round
data gathering. Fig 6 illustrates that transmission cost of
hybrid CS-DG less than DRP-DG, and transmission cost of
our scheme outperforms than hybrid CS-DG and DRP-DG
schemes. Considering hybrid CS-DG comes from DRP-DG,
we only analyze and compare DRP-DG and SRP-DG with
our scheme.

For DRP-DG, each row has O(N) non-zero elements, and
each CS measurement gathering requires at least O(N) data
packets. Assuming that the sparse level of gathering data
is k, the sink needs to gather O(k logN) measurements to
recovery sensory data, then a round data transmission cost,
TCdrp, is

TCdrp = O(N · k logN) = O(kN logN) (17)

For SRP-DG, the number of nonzero elements is O(logN)
and O(k2 logN) measurements are required to recover sen-
sory data. But each nonzero element is random, each CS
measurement transmission cost is O(H logN). The trans-
mission cost of one round, TCsrp, is

TCsrp = O(H logN · k2 logN) = O(k2H log2 N) (18)
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(a) DSP-DG. (b) Hybrid CS-DG. (c) SRS-DG.

Figure 6: Communication cost comparisons with dif-
ferent CDG schemes in multi-hop tree-type topol-
ogy.

For SRS-DG, each measurement only has one nonzero en-
try, and its transmission cost is O(H). Because our proposed
sparsest measurement matrix and representation basis sat-
isfy RIP, it suffices to obtain O(k logN) measurements for
achieving accurate data recovery. As a result, the transmis-
sion cost of one round SRS-DG, TCsrs, is

TCsrs = O(H · k logN) = O(kH logN) (19)

So, if H = O(N) such as multi-hop chain topology net-
work, TCsrs = TCdrp = O(kN logN) < O(k2N log2 N) =
TCsrp. If H = O(logN) such as multi-hop tree topology
network, TCsrs = O(k log2 N) < TCdrp = O(kN logN) and
TCsrs = O(k log2 N) < TCsrp = O(k2 log3 N). Accord-
ing to the above transmission cost analysis and comparison,
it demonstrates SRS-DC also reduce transmission cost in
lossless sensor networks compared with the state of the art
traditional CDG schemes.

6. EVALUATION
We conduct extensive experiments using CitySee data set

to evaluate the performance of our scheme in both reliable
and lossy sensor network. In reliable WSNs with no packet
loss, we compare our scheme with some traditional CDG
schemes. In lossy WSNs, we evaluate the robustness of our
scheme under different packet loss ratios. In particular, we
choose random projections as a baseline scheme, it requires
fewer measurements and can obtain better recovery perfor-
mance compared with sparse random projections [5, 17]. In
dense random projections, DCT and 4-layer ’haar’ wavelet
basis (DWT) are considered as different representation bases
with recovery algorithm OMP [24].

6.1 Reliable sensor network
As analyzed in Section 5.2, our scheme achieves signifi-

cantly lower transmission cost than using dense random pro-
jections. In our experiment, we evaluate our scheme from
the following two aspects:

1. Evaluate recovery quality of gathering data using Φe

and ΨG as measurement matrix and representation ba-
sis respectively, which compares recovery data with the
original data.

2. Compare the recovery errors using (Φe, ΨG), (ΦG,
Ψdct) and (ΦG, Ψdwt) as the pairs of measurement ma-
trix and representation basis, which displays the recov-
ery performance of our scheme compared with dense
random projections.
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(a) Original and recovery. (b) Recovery errors comparison.

Figure 7: Recovery performance without packet
loss.

The experimental data set contains 256 temperature sam-
pling values of the CitySee system [15], which are collected
from the same monitoring area during the same sampling
time interval. Fig 7 (a) shows the original sampling data
and the recovery data using 100 CS measurements with our
scheme. The mean square error (MSE) of our scheme is
0.1642. Fig 7 (b) depicts recovery error comparisons among
(Φe, ΨG), (ΦG, Ψdct) and (ΦG, Ψdwt). The recovery perfor-
mance of (Φe, ΨG) can be as good as dense random projec-
tions when the number of measurements is greater than 90.
It shows that our scheme can recover the data accurately
without increasing the number of measurements.

6.2 Lossy sensor network
Then we evaluate the robustness of our scheme under dif-

ferent packet loss ratios. In this experiment, we adopt multi-
hop tree routing topology. Each packet is dropped at ran-
dom with uniform probability (packet loss ratio). Firstly, we
carry out the experiment without allowing retransmission.
Fig 8 (a) shows the recovery errors with different number of
measurements under packet loss ratio 10% . We find that
the recovery performance of dense random projection could
be very bad even when the number of measurements is in-
creased. In contrast, our scheme can always achieve satis-
factory recovery accuracy, and the accuracy increases as the
number of measurements increases. The MSE of (ΦG,Ψdct)
and (ΦG,Ψdwt) are greater than 20, while the MSE of our
scheme is always less than 0.1. Fig 8 (b) shows the recovery
errors with different data packet loss ratios and 160 mea-
surements. It demonstrates that the gathering data of dense
random projections cannot be recovered even with 2% data
packet loss ratio. The experiment results validate that our
scheme is robust to packet loss.

Secondly, we carry out the experiment by allowing retrans-
mission. Although the retransmission strategy is usually
used for networks packet loss, it would increase transmis-
sion cost and resource consumption. Moreover, many real
deployed systems shown that the packet loss ratio could still
reach 20% with retransmission strategy [14]. Fig 9 displays
the recovery error of different schemes when the max num-
ber of retransmissions (denoted by Max rt num) for each
packet is 2. Fig 9 (a) demonstrates that the recovery errors
of (ΦG,Ψdct) and (ΦG,Ψdwt) are always large with increas-
ing the number of measurement. Fig 9 (a) also demonstrates
that when the packet loss ratio is 5%, we can hardly recover
the data using dense random projection schemes.
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Figure 8: Recovery performance without retrans-
mission.
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Figure 9: Recovery performance with retransmis-
sion (Max rt num = 2).

7. RELATED WORK
The emergence of CS theory has opened up a new research

avenue for in-network compression and sampling. For exam-
ple, D. Baron et al. [23] proposed distributed CS to compress
multi-signal exploiting both intra- and inter-signal correla-
tion structures. In [12, 21], Haupt, J. et al. applied CS
theory to single-hop data gathering in WSNs to obtain ef-
ficient compression for network data. In [16], Luo et al.
applied CS to reduce data transmission cost in large-scale
WSNs. In [25, 29, 30], J. Wang et al. proposed a dual-
layer compressed aggregation and adaptive the number of
measurements scheme. These techniques exploited dense
measurement matrix to gather CS measurements, the trans-
mission cost of each CS measurement is O(N) because each
row of measurement matrix has O(N) nonzero elements. To
recover k-sparse sensory data, it requires O(k logN) mea-
surements. In [18], J. Luo et al. proposed that applying
CS naively may not bring any improvement for WSN data
gathering and proposed a hybrid-CS data gathering scheme.
In [17], C. Luo et al. discovered that [I,R] measurement
matrix has also good RIP, I is M ×M identity matrix and
R is M × (N −M) dense random matrix. But each CS mea-
surement matrix transmission cost is still O(N). In [26],
W. Wang et al. proposed sparse measurement matrix can
also obtain the salient information of compressible signal,
each row of it has O(logN) nonzero entries, but it requires
O(k2 logN) CS measurements to recovery k-sparse sensory
data. Based on sparse measurement matrix, Lee. S et al.
[13] proposed low coherence projections for efficient routing
data gathering. In [27, 28], X. Wu et al. proposed a tem-
poral random sampling data gathering scheme, which only
considered one sensor in temporal domain. They didn’t con-
sider spatial signal in large-scale WSN data gathering and its
representation basis is inflexible. To the best our knowledge,

most of existing CS base CDG techniques were discussed in
reliable WSNs.

8. CONCLUSION AND FUTURE WORK
In this paper, we discussed a novel sparsest random schedul-

ing scheme for compressive data gathering in lossy sensor
networks. Although traditional compressive sensing based
data gathering can recovery gathering data accurately, these
techniques were not workable in lossy sensor network ac-
cording to our real experimental results. Our scheme can
efficiently avoid recovery performance degraded by link loss,
also can reduce transmission cost in reliable networks. We
carried out experiment in real CitySee data set, experiment
results demonstrated our scheme can recover the sensory
data accurately both in reliable and lossy sensor networks.
In our scheme, we only consider spatial sparsest random
scheduling for compressive data gathering. Future work will
extend to spatial-temporal domain to joint optimal sparsest
random scheduling for compressive data gathering.
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APPENDIX
In Corollary 1, we need to prove e|λ| − |λ| ≤ e2λ

2/2 .

Proof. If e|λ| − |λ| ≤ e2λ
2/2 is corrected, we only need to

proof ln(e|λ|−|λ|) ≤ λ2, which is equivalent to ln(e|λ|−|λ|)
λ2 ≤ 1.

Since

ln(e|λ| − |λ|)
λ2

=
ln(e|λ| − |λ| − 1 + 1)

λ2
≤

e|λ| − |λ| − 1

λ2

=
1

λ2

∞∑
n=2

(|λ|)n

n!
=

∞∑
n=2

(|λ|)n−2

n!

If |λ| < 1 , then

ln(e|λ| − |λ|)
λ2

≤
∞∑

n=2

(|λ|)n−2

n!
<

∞∑
n=2

1

n!
= e− 1− 1 < 1

If |λ| ≥ 1 , then ln(e|λ|−|λ|)
λ2 ≤ |λ|

λ2 ≤ 1

So, e|λ| − |λ| ≤ e2λ
2/2
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