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ABSTRACT
A thorough understanding of capacity of wireless networks

can help with effective design and efficient employment of
wireless networks. Much effort has been spent on investi-
gating capacity of multicast which is a popular communi-
cation model and generalization of unicast and broadcast.
However, most previous works assume homogeneous traffic
patterns, which is not meaningful for practical applications.
This paper analyzes the capacity of wireless networks with
multiple types of multicast sessions without the assumption
of homogeneous traffic patterns. A new network model is
proposed accommodating practical traffic patterns and the
capacity is analyzed accordingly. A theoretical upper bound
is derived, and a feasible transmission scheme with capacity
lower bound is presented. Two bounds are asymptotically

tight, that is, in the order of Θ( a2ns∑ns
i=1min{

√
ki·Ri·r,R2

i }
·W ),

where a is the side length of the deployed region, r is the
transmission range, ns is the number of multicast sessions,
and ki and Ri are parameters of multicast session i. Further-
more, the variation of capacity towards different numbers of
and distributions of destinations is illustrated.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless

communication

Keywords
Capacity; multicast; heterogeneous traffic; scalability

1. INTRODUCTION
A thorough understanding of the capacity of wireless net-

works can help with effective design and efficient employ-
ment of wireless networks. Therefore, the investigation of
the capacity of wireless networks is important and is also a
challenging task.

Since the pioneering work [1] appeared, the capacity of
wireless networks has been widely studied. These works as-
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sume various kinds of network models for different kinds
of wireless networks in practice. For example, some of the
works study static or mobile pure ad hoc networks [2, 3]
while the others focus on hybrid networks [4]. From the
view of traffic patterns, all the works can be classified into
studies on unicast capacity [5], multicast capacity [2], broad-
cast capacity [6] and aggregation capacity [7, 8].

Multicast, which is the generalization of unicast and broad-
cast, has attracted more interests. The estimation of the
achievable multicast capacity is required in many applica-
tions, such as the ones of sensor networks. Much more works
focus on the multicast capacity recently [2][3][4][9][10][11].
Most of the previous studies on multicast capacity assume
homogeneous traffic patterns, i.e., the multicast sessions are
identical in the number of destinations, and the destinations
are randomly distributed in the whole region or within equal
sized circles centered at each source node [9]. However, mul-
ticast sessions in real applications are often quite different
in the number of destinations and the distribution of the
destinations. The following are two examples.

Example 1. In a battlefield, military officers often send
orders to their soldiers in defence areas via a wireless net-
work. The numbers of the soldiers commended by officers
are often various, which goes against the assumption that
sessions are identical on the numbers of destinations. Mean-
while, the defence area guarded by each group of soldiers is
often a sub-region of the whole battlefield, and the sizes of
these sub-regions are usually various. Thus, the second as-
sumption that destinations are randomly distributed in the
whole region or equal sized circles is not meaningful.

Example 2. In wireless sensor networks, there may be
non-identical multicast sessions at the same time. Some of
the multicast sessions may be unicast or broadcast sessions
rather than pure multicast sessions. In this case, the homo-
geneous assumption cannot be guaranteed and the previous
results are not applicable.

A theoretical study on wireless networks with multiple
types of multicast sessions can enhance the generality of
the bounds on network capacity. As far as we know, none
of the previous works totally looses the constraints on the
identity of the sessions. These constraints can make the
derived bounds on capacity more explicable and straightfor-
ward, however, it is at the cost of loosing a deeper under-
standing of the heterogeneity among sessions. This paper
focuses on estimating the total traffic load brought by mul-
ticast sessions that are quite different from each other, and
tries to derive the relationship between the capacity and the
variety of sessions. Moreover, this paper aims to point out
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some open questions about network capacity that are worth
considering.

In this paper, we study the multicast capacity of ad hoc
wireless networks without the homogeneous traffic pattern
assumption. There may exist multiple types of multicast
sessions in a wireless network at the same time, and the
sessions have different numbers of destinations and different
distributions of destinations. The main contributions are as
follows.

• We propose a new wireless network model to support
the analysis of the capacity of wireless networks with
multiple types of multicast sessions. In this model,
the traffic pattern has two features: i) each multicast
session in a wireless network can have any number of
destinations without the constraint that the number-
s must be identical, and ii) the destinations of each
source node are uniformly distributed in a circle area
centered at the source node with a radius of arbitrary
length, rather than that the destinations are uniformly
distributed in the whole region covered by the wireless
network or within equal sized circles. Compared with
the previous work [9], which still has some constraints
for the identity of its multicast sessions for simplicity
of analysis, our model is more applicable in real appli-
cations like the aforementioned two examples. More-
over, the model is a generalization of many previously
proposed models.

• The capacity of wireless networks is analyzed towards
the proposed model. A theoretical upper bound is de-

rived which is O( 2a2·ns∑ns
i=1min{

√
ki·Ri·r,Ri2}

·W ). In the

proof, a new measurement metric, competitive inten-
sity, of a wireless network is proposed. Competitive
intensity denotes the number of node pairs or trans-
mission pairs that cannot be scheduled simultaneously.
Its bound can help with deriving the capacity bound
of a wireless network. Competitive intensity is inde-
pendent of network models, thus it can be used for the
capacity analysis of any kind of wireless network. A
feasible transmission scheme for the entire network is
also determined with the lower bound of its capacity.

The bound is Ω( 2a2ns

3
∑ns
i=1min{

√
ki·Ri·r,R2

i }
·W ), which is

asymptotically tight with the theoretical upper bound
of the capacity of wireless networks.

• Some observations about the network model and the
derived capacity bounds are discussed. First, the vari-
ation of the capacity for different numbers of destina-
tions and the distribution area of destinations in mul-
ticast sessions is illustrated. Then, it is stated that
the previous capacity bounds are the specialization of
the capacity bounds derived in this paper when some
constraints are added to our network model.

The rest of the paper is organized as follows. Section 2
reviews the related works. Section 3 introduces the network
model and some basic definitions. The theoretical upper
bound of the capacity of a wireless network is derived in
Section 4. Section 5 presents a reachable lower bound on
the capacity of a wireless network. In Section 6, some ob-
servations about the proposed capacity bounds and network
model are discussed. Section 7 concludes the paper.

2. RELATED WORKS
There have been a lot of researches on capacity of wireless

networks during the last decade. Gupta and Kumar first
proved that the per-flow unicast capacity of random net-
works is in the order of Θ( W√

n logn
) [1]. They also analyzed

the capacity of wireless networks with arbitrary given traffic,
that is, Θ( W√

n
). This result was then proved under a more

general fading channel model in [12]. Later, Franceschet-
ti proposed an optimal scheme to avoid the loss from the
randomness using the percolation theory [5], which could
achieve the capacity of Θ( W√

n
). Broadcast capacity was also

studied in previous works. It is shown in [6] that the to-
tal broadcast capacity is only Θ(W ). Grossglauser and Tse
showed that the unicast capacity could be improved at the
cost of larger delay in mobile wireless networks [13]. These
works concentrate on either unicast or broadcast, which can
be a special case of multicast.

Li studied the multicast capacity of ad hoc networks [2].
In this work, all the multicast sessions have identical num-
ber of destination nodes which are uniformly selected in the
whole region. The achievable per-flow capacity given in this
work is Θ( W√

kn logn
), where k is the number of destination

nodes. Shakkottai et al. studied the capacity of networks in
which there are nε multicast sessions and each has n1−ε des-
tinations [3]. Their per-flow capacity is Θ( W√

nε logn
). Kozart

studied the relationship between delay and capacity for mul-
ticast sessions [14]. Some other works focus on the multi-
cast capacity of hybrid networks, investigating the effect of
the number of base stations on capacity [4] and the traf-
fic balancing between two transmission means [15]. Tang et
al. focused on the capacity of hybrid networks with limited
bandwidth between base stations [10]. All the above works
assume that the sessions randomly choose the same num-
ber of destinations in the whole region. Our work does not
enforce such an assumption.

Peng et al. studied the multicast capacity of networks
with more general multicast sessions [9]. In their work, the
source nodes pick their destinations according to a disper-
sion density function. These sessions share the same disper-
sion density function, and most of the sessions have the same
numbers of destinations. The percolation theory is used in

their work. The achieved capacity is O(max{1,aδo}W√
ns

), where

a is the side length of the whole square region, and δ0 is the
variance of the dispersion density function. Though the net-
work model in [9] allows heterogeneous multicast sessions,
one of its main improvements is for the case where the des-
tinations are not uniformly picked from the whole region.
The identities of the sessions are still required, which limits
the commonality of the network model compared with ours.

Cooperative transmitting was introduced to improve mul-
ticast capacity in [11] and [16]. Rahul et al. developed a sys-
tem [17] that could dynamically increase the capacity with
user demand. These works take advantage of the extra cod-
ing technologies in increasing network capacity, while ours
focuses on the network layer.

3. NETWORK MODEL

3.1 Networks
Assume n static wireless communication nodes, denoted

as M = {m1,m2, . . . ,mn}, are uniformly distributed in a
region Ω. Ω is a square with side length a = nα, α ≤ 1/2.
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These nodes form a random dense network, which means the
node density increases as n grows. All the nodes transmit
via the same channel, at a rate of no more than W bits/s. T-
wo nodes u and v can transmit directly if |u− v| ≤ r, where
|u − v| is the Euclidean distance between u and v, and r
is the transmission range of the sender. For simplicity, all
the nodes have the same transmission range r. r is relatively
large so that the whole network is connected with high prob-
ability, which means any pair of nodes can transmit either
directly or in a multi-hop manner.

The protocol model for interference [1] is applied to define
conflicts in a network: in each time slot, node i can success-
fully send a packet to node j if |i− j| ≤ r and the Euclidean
distance between any other concurrent transmitters and n-
ode j is bigger than (1+∆)r, where ∆ is a positive constant
number independent of nodes i and j, and it is set to ∆ ≥ 2
[18] in this paper. Our model also works for 1 ≤ ∆ < 2,
which is proved in Section 6.3. Every transmission has a
”guard zone” where no nodes can deliver packets simultane-
ously. This zone is a circle area around the destination with
radius (1 + ∆)r. The guard zone of a multicast tree is the
union of the guard zones of all the nodes in the tree. Two
transmissions can occur concurrently if their senders are not
within each other’s guard zone. In a similar way, two mul-
ticast sessions can transmit simultaneously if their involved
nodes fall outside of each other’s guard zone.

Following are some other assumptions on a network: (1)
the wireless channel is multiplexed by TDMA [18] and it
is equally divided in a round robin manner when multiple
transmissions conflict with each other, (2) the relay nodes
only receive, store, and send packets in a multi-hop manner,
and (3) the wireless channel is always in a good condition,
i.e., there is no packet loss if there is no conflict.

3.2 Traffic Pattern
Let msi denote the ith multicast session, i = 1, 2, . . . , ns,

ns = Θ(nε), and 1/2 < ε ≤ 1. The set of the source nodes
is expressed by S = {s1, s2, . . . , sns}. For source node si, it
randomly picks ki destination nodes. The ki destinations are
all within a circle area with radius Ri centered at si. Each
session msi independently and randomly determines its ki
and Ri. si transmits data to all its destinations via single
or multi hops through a multicast tree Ti, which is a Steiner
tree connecting the source node and all its destinations with
the help of some intermediate nodes. A multicast session
must follow the following restrictions: (1) ki is less than the
total number of nodes in its destinations’ distributed area
for msi, and (2) any edge in Ti is not greater than r.

3.3 Capacity
Let Vs = {λ1, λ2, . . . , λns} be an instance of the rate vec-

tor for all the multicast sessions. Here, λi is the transmis-
sion rate of source node si. Rate vector Vs is called feasible
if there is a spatial and temporal scheme for scheduling the
transmissions of these multicast sessions so that every source
node si, i = 1, 2, . . . , ns, can transmit to all of its destina-
tion nodes at a rate of vi = λi. It is assumed that the buffer
at any intermediate node never overflows under this scheme,
and thus no data is discarded. For a sufficiently long time
T , all the destination nodes can separately receive T × λi
bits from their corresponding source si.
λi is called the per-flow throughput capacity of both source

node si and the multicast session msi. The aggregated mul-

ticast throughput capacity (capacity for short) of a feasible
rate vector Vs is defined as Λns(n) =

∑
si∈S λi. The multi-

cast capacity of random networks is defined as follows.

Definition 1. (Capacity of Networks)[1]. The total mul-
ticast capacity of a network is in the order of Θ(f(n)) bits/s
if there is a constant c > 0 and c < c′ < +∞ such that

lim
n→∞

Pr(Λns(n) = cf(n) is feasible) = 1

lim
n→∞

Pr(Λns(n) = c′f(n) is feasible) < 1

The definition of per-flow capacity of a network is similar.

4. UPPER BOUND FOR MULTICAST CA-
PACITY

In this section, part 1 analyzes the fundamental constraints
that the proposed model must satisfy. Part 2 introduces the
competitive intensity in wireless networks and estimates the
intensity of a wireless network under the proposed network
model. Part 3 derives the theoretical upper bound of the
multicast capacity.

4.1 Constraints on Transmission Range and
Destinations

Firstly, it is crucial to decide the minimum transmission
range ensuring there is no isolated node in a network as n
increases to infinity. All multicast sessions finish their trans-
missions via multicast trees under the new network model.
However, when the transmission range r is relatively small,
a node may fail to communicate with any other one and the
multicast sessions choosing this node as a destination are
infeasible. The minimum transmission range is also called
the Critical Transmission Range (CTR). As proved in [1],
when n nodes are uniformly distributed in a square region

with side length a, the CTR is
√

logn+β
πn

a, where β is a con-

stant. Thus, the actual transmission range must be bigger
than CTR. Meanwhile, larger r leads to more conflicts [1],
so the transmission range is:

r

a
= Θ(

√
logn

πn
) (1)

Secondly, ki and Ri of a multicast session are randomly
chosen, and a simple constraint is that ki must be less than
the total number of nodes which fall inside of the circle area
with radius Ri. The number of nodes in this circle area is
denoted by CRi . CRi is independent of ki because the n-
odes are uniformly distributed in the region. The following
theorem helps quantify the constraint.

Theorem 1. When n nodes are uniformly distributed in

a square region with side length a, Pr(CRi = Θ(n · Ri
2

a2
))→

1 when n → ∞, where Pr(T ) → 1 means the occurrence
probability of event T approaches to 1.

Proof. Since nodes are uniformly distributed, for any
node mi,

Pr(mi in circle area with Ri) = πRi
2

a2
,

and Pr(mi in circle area with Ri) is independent of all

the nodes. It is obvious that E(CRi) = πnRi
2

a2
, and accord-

ing to the Chernoff’s inequality [19], Pr(|CRi − E(CRi)| ≥
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Figure 1: (a) Transmissions (i, l), (k, n), (j,m) con-
flict with each other. (b) Two transmissions pairs,
(i, l), (k, n) and (i, l), (j,m), conflict with each other.

E(CRi )

2
) ≤ 2e−

E(CRi
)

12 . When n → ∞, since a2 = n2α ≤

n, 2e−
E(CRi

)

12 = 2e
−πnRi

2

12a2 = 2e−
πRi

2n1−2α

12 → 0. Thus,

Pr(
E(CRi )

2
≤ CRi ≤

3E(CRi )

2
)→ 1 as n→∞.

From Theorem 1, we have kj = O(
nRj

2

a2
) for every multi-

cast session msj , j = 1, 2, . . . , ns.

4.2 Competitive Intensity
In a wireless network, all the source-destination pairs com-

municate via a common wireless channel. Because of the
inherent destructive interference [1], two transmission pairs
cannot transmit simultaneously if they are sufficiently close
to each other. Then we say the two transmissions are com-
peting for the channel with each other. Under the protocol
model, a circle area of radius (1+∆)r around a destination is
called the guard zone. Any other transmitter inside this zone
will cause a destructive interference when it delivers packets
simultaneously, and the wireless channel has to be equally
divided by all these transmitters. This competition, in fact,
may be over-estimated, since some of the transmitters in this
guard zone can be scheduled at the same time, as shown in
Fig.1. In Fig.1(a), transmissions (i, l), (k, n), (j,m) conflict
with each other, so node i can be scheduled once in three
slots. But in Fig,1(b), transmissions (j,m) and (k, n) can
be scheduled at the same time, so node i can actually be
scheduled once in two slots. The competitive intensity is
thus defined as the number of transmitters that a node or a
transmission has to compete with one at a time.

Definition 2. Competitive Intensity of node i, denot-
ed as CIi, is the size of the maximum set of nodes that can-
not successfully transmit simultaneously with node i, and al-
so any pair of nodes in the set fails to transmit at the same
time.

Multiple transmissions may choose same nodes as their
transmitters, and they are obviously competitors for each
other. Then the competitive intensity for a single transmis-
sion can be defined similarly.

The competitive intensity is a lower bound of the time
intervals that a node or a transmission can be scheduled
once. An upper bound of the transmission rate of a node
or a transmission can be directly derived. Meanwhile, a
multicast session is actually carried out by many pairwise
transmissions, so the competitive intensity can help estimate
the throughput of a session and then derive a bound on the
multicast capacity. The competitive intensity of a single

Figure 2: The union of the grey circles is the inter-
ference area. Green nodes stand for the intermedi-
ate nodes.

transmission under the proposed network model is estimated
as follows.

For an arbitrary session msi, source node si transmits to
its destination nodes via a multicast tree Ti. All the nodes
in the tree will receive a copy of the data originated by si.
Meanwhile, all the nodes close to these nodes in the tree
will overhear the data. They cannot participate in other
sessions at the same time. Here, overhearing means a node
is within the range (1 + ∆)r of any interior node in the
tree of the current session. (Obviously, an overhearing at a
node occurs when it is within the transmission range r of an
interior node in the tree). Overhearing increases competitive
intensity of these nodes, and leads to smaller transmission
rate. In fact, the multicast tree forms an interference area
D(Ti), which is the union of the transmission areas of all
the nodes in the tree. The nodes in this interference area
overhear the data from the nodes in the tree. Fig.2 shows an
example of the interference area, which is the union of the
grey circles. Evaluating interference areas of all the sessions
can help compute how many copies of data a single node
will overhear, which is actually a lower bound of competitive
intensity.

Consider an arbitrary multicast session msi. Its multicast
tree Ti is composed of source node si, destinations U =
{d1, d2, . . . , dki} and some intermediate nodes. The whole
tree falls in a circle region with radius Ri, centered at si.
Define the total Euclidean length of a tree T ’s edges as ||T ||.
MST (si) is the minimum spanning tree connecting si and all
its destinations. According to a series of theoretical studies
[20], it is often believed that ||Ti|| ≥ β0 · ||MST (si)||, where
β0 is constant. The following lemma gives a lower bound of
||MST (si)||.

Lemma 1. For ki randomly and uniformly chosen nodes
in a circle region with radius Ri centered at node si,

||MST (si)|| = β1 · c(2) ·
√
ki ·Ri,

where β1 and c(2) are constant.

Proof. Based on the results in [21],

||MST (U)|| = c(2) ·
√
ki ·
√
πRi (2)

MST (U) is the minimum spanning tree connecting all
the ki destinations. When node si is added to MST (U),
it connects itself to some node in this tree, say du. The
additional length is no more than Ri. So we have
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||MST (si)|| ≤ ||MST (U)||+Ri.

The new spanning tree may not be minimal, and the added
node could possibly modify the original edges. But since the
destinations are randomly and uniformly picked, when ki is
sufficiently large, the change only affects a small proportion
of the tree. Thus,

||MST (si)|| ≥ β2||MST (U)||, 0 ≤ β2 ≤ 1.

Combining the above two inequalities, we have

||MST (si)|| = β1||MST (U)||.
β1 is a constant and this can finish the proof when combined
with Equation (2).

For simplicity, let β3 = β0 ·β1 ·c(2), so ||Ti|| ≥ β3 ·
√
ki ·Ri.

The bound of ||Ti|| can help derive a lower bound on the size
of the interference area D(Ti). A similar problem has been
considered in [2], which can be extended to the following
lemma.

Lemma 2. The size of interference area D(Ti), denoted
as |D(Ti)|, is at least β4 ·

√
ki · Ri · r with high probability,

when ki = O(Ri
2

r2
), and β5 · Ri2 when ki = θ(Ri

2

r2
). Here,

β4 and β5 are constant, and r is the common transmission
range.

Proof. This proof can be derived from Lemma 11 and
Lemma 15 in [2]. We only need to change k to ki and a to
Ri.

Firstly, we build a new multicast tree T ′i based on Ti.
Various methods [22, 23, 24] can be applied for tree con-
struction. T ′i is a connected dominating set of the nodes in
Ti, and it includes source node si. It has been proved by
Lemma 11 in [2] that the maximum degree d of the nodes

in T ′i is no more than 13 and |D(T ′i )| ≥
|T ′i |πr

2

6(d+1)
, where |T ′i |

is the number of the nodes in T ′i .
Based on Lemma 1, ||T ′i || + ki · r ≥ β0||MST (si)|| ≥

β3 ·
√
ki ·Ri, and |T ′i | ≥

||T ′i ||
r

.
Since the set of the nodes in T ′i is a subset of the set of

the nodes in Ti, we have

|D(Ti)| ≥ |D(T ′i )| ≥
|T ′i |πr

2

6(d+1)
≥

β3·
√
ki·Ri−ki·r
r

πr2

6(d+1)
.

When ki = O(Ri
2

r2
),

|D(Ti)| ≥
√
ki·πr·(β3Ri−O(Ri))

6(d+1)
≈ β4 ·

√
ki ·Ri · r,

where β4 = π·β3
6(d+1)

, and when ki = θ(Ri
2

r2
), |D(Ti)| = Θ(R2

i ).

A limitation is that ki must be less then CRi , thus the
second assumption of ki in Lemma 2 is feasible only when

CRi = Ω(Ri
2

r2
). CRi = Θ(n · Ri

2

a2
) according to Theorem 1,

and since r
a
≥

√
logn
πn

, we have CRi ≥
Ri

2

r2
.

It can be concluded that

|D(Ti)| =

{
Ω(
√
ki ·Ri · r) ki = O(Ri

2

r2
)

Θ(Ri
2) ki = θ(Ri

2

r2
)

This bound can be used to estimate the probability that an
arbitrary node mj falls in D(Ti):

Pr(mj falls in D(Ti)) =
|D(Ti)|
a2

(3)

Next lemma estimates the number of sessions whose in-
terference area covers an arbitrary node mj , denoted as Ij .

Lemma 3. For the wireless network and multicast ses-
sions defined in Section 2,

Ij ≥
∑ns
i=1min{

√
ki·Ri·r,Ri2}

2a2
, w.h.p..

Proof. Let Xi = 1 when msi covers mj and 0 otherwise,
i = 1, 2, . . . , ns. For a single multicast sessionmsi, according
to Equation (3),

Pr(Xi = 1) = |D(Ti)|
a2

.

Since the multicast sessions are generated independently,
Ij =

∑ns
i=1 Xi. So

E(Ij) = E(
∑ns
i=1 Xi) =

∑ns
i=1 E(Xi) =

∑ns
i=1

|D(Ti)|
a2

.

According to Lemma 2, |D(Ti)| = min{β6

√
ki · Ri · r,Ri2},

where β6 is a constant, so

E(Ij) =
∑ns
i=1min{

√
ki·Ri·r,Ri2}

a2
.

β6 is omitted because it only changes E(Ij) by constant
times. Then

Pr(Ij ≤ E(Ij)

2
) ≤ Pr(|Ij − E(Ij)| ≥ E(Ij)

2
) ≤ 2e−

E(Ij)

12 ,

which is based on the Chernoff’s inequality. Since E(Ij)→
+∞ as the number of nodes goes to infinity, it is clear that

2e−
E(Ij)

12 → 0. So Ij ≥ E(Ij)

2
with high probability.

Lemma 3 sets a lower bound on the number of sessions
that compete with an arbitrary node mj . But this may be
an over-estimation of the competitive intensity, since some
of these sessions can perhaps be scheduled together. Next
lemma indicates that these sessions also conflict with each
other.

Lemma 4. For two multicast sessions msi and msj, if
D(Ti) and D(Tj) both cover a node m, then msi and msj
cannot transmit simultaneously.

Proof. If D(Ti) and D(Tj) both cover a node m, obvi-
ously there must be nodes mi and mj in each session and
their Euclidean distance to m is less than r. So the distance
between mi and mj is less than 2r. If they are both leaf n-
odes or non-leaf nodes, then the distance between one node
and another’s sender or receiver is always less than 3r. mi

and mj compete with each other since ∆ ≥ 2. Otherwise, we
assume mi is a leaf node and mj is an interior node, then
mj is in mi’s guard zone. msi and msj cannot transmit
simultaneously either.

Finally, a lower bound on the competitive intensity CIj
can be derived by combining Lemma 3 and Lemma 4:

CIj ≥
∑ns
i=1min{

√
ki·Ri·r,Ri2}

2a2

4.3 Upper Bound on Capacity
It is crucial to notice that the transmission rate of a multi-

cast tree is no more than that of any node in the tree. Other-
wise, the buffers of some nodes may overflow and packets will
be dropped. Thus, when the lower bound of the scheduling
time interval of a node in the tree is derived, an upper bound
of the transmission rate of this multicast session is also ob-
tained. An interval means the time between two assigned
slots during which a node transmits for the same session.
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A node may be an intermediate node of multiple multicast
trees and be assigned multiple slots. The interval of a n-
ode is no less than its competitive intensity in a round robin
manner. Then the transmission rate is bounded by the re-
ciprocal of its competitive intensity for a single transmission.
So the upper bound of the per-flow throughput capacity of
a multicast session is given by the following theorem.

Theorem 2. For any multicast session msi, its per-flow

throughput capacity vi is less than 2a2∑ns
i=1min{

√
ki·Ri·r,Ri2}

·

W bits/second with high probability.

Proof. For multicast tree Ti, take the source node si
into consideration. Its competitive intensity is at least

∑ns
i=1min{

√
ki·Ri·r,Ri2}

2a2

with high probability according to Lemma 3 and Lemma 4.
Since the channel is equally divided for these sessions, the

transmission rate of si is no more than 2a2∑ns
i=1min{

√
ki·Ri·r,Ri2}

·
W . This is also an upper bound for session msi, then

vi = O( 2a2∑ns
i=1min{

√
ki·Ri·r,Ri2}

·W )

Then the multicast capacity of a random network is bound-
ed by

Λns(n) = O(
2a2 · ns∑ns

i=1 min{
√
ki ·Ri · r,Ri2}

·W ) (4)

5. AN ACHIEVABLE LOWER BOUND
This section provides a feasible transmission scheme for

all the multicast sessions, and derives the lower bound of
the multicast capacity achieved by this scheme. The basic
idea of the scheme has also been used by lots of previous
studies on network capacity [1][2][9].

5.1 A Scheme for Multicast
The proposed scheme is based on the idea of a backbone

graph [25]. It partitions region Ω into equal-sized square
grids G = {g1,1, g1,2, . . . , g1,l, g2,1, . . . , gl,l}, each with side
length r√

5
, l = d a

r/
√

5
e. When two grids share a common

side, any two nodes in these two grids can communicate
directly since their distance is always no bigger than r. In
each grid, one node is randomly picked as the leading node.
All the leading nodes form a connected graph. In each grid,
other nodes can communicate with their leading node in a
single hop. The leading nodes actually form a backbone
graph for the network. All the sessions route on top of this
backbone graph. A transmitter first forwards its packet to
its leading node in the grid, then to the receiver’s grid via the
backbone graph, and finally to its receiver in the last step.
The following two principles are proved before we introduce
the comprehensive scheme:

1) No grid is empty when n tends to be infinite.
2) Each leading node can be scheduled in constant time

intervals by a round robin manner.

Lemma 5. For any grid gi,j, there is at least one node in
the grid with high probability as n approaches to infinity.

Proof. For an arbitrary node mi, Pr(mi in grid gi,j) =
r2

5a2
, so

Pr(gi,j is empty) = (1− r2

5a2
)n ≤ e−

nr2

5a2 .

Since r/a ≥
√

logn
n

, when n→∞,

Pr(gi,j is empty) ≤ e−
nr2

5a2 ≤ e− logn → 0.

Lemma 5 ensures there is almost no empty grid, and the
following lemma can support the second principle.

Lemma 6. On the backbone graph, every node can trans-
mit once in every P time slots, P ≤ 5π(3 + ∆)2 .

Proof. If a transmitter u interferes with another node
v, the Euclidean distance between u and v is less than (1 +
∆)r + r. It means the distance between one receiver and
another source could be less than (1 + ∆)r. Thus the grid
that u falls in is the circle of radius (1 + ∆)r+ r centered at
v. Then, it is obvious that

P ≤ π((1+∆)r+2r)2

r2/5
= 5π(3 + ∆)2.

These P leading nodes can be scheduled by a round robin
method, and each transmits once in every P time slots.

The total number of nodes in each of these P grids is in

the order of Θ(n · r
2

a2
) = Θ(log n), and the proof is similar

to Theorem 1.
The proposed scheme carries out the multicast sessions

via multicast trees. The construction of the multicast tree
for an arbitrary session msi includes three steps:

(1) Repeat steps (2) and (3) for k = 2, 3, . . . , ki.
(2) In the kth step, partition the circle region into no

more than ki + 1− k cells. Firstly, the partition is done by
Ri√

ki+1−k
+ 1 vertical lines. The first and last lines tangent

to the circle, and others are between them with identical
distance Ri√

ki+1−k
. Then the process is performed again

with a group of horizontal lines.
(3) According to the pigeonhole principle, there is at least

a cell containing two or more nodes. Two of the nodes in the
same cell are connected by Manhattan Routing and will be
considered as an integrated node in the next round. Thus,
the number of nodes remained for connection decreases by
one at the end of each round until all nodes are connected.

In step (3), when node u expects to transmit to node v,
u first horizontally transmits its packet to the leading node
of grid gu,v. The leading node then vertically forwards the
packet to v. Grid gu,v is a grid in the same row with u
and same column with v. The routing strategy is called
Manhattan Routing, as shown in Fig.3 where the red nodes
are the transmitter and receiver, and the green nodes are the
leading nodes. A multicast session involves three phases:
Phase 1 The source node in the multicast tree forwards

its packets to the leading node of its own grid.
Phase 2 Packets are sent to the grids that contain their

receivers via the backbone path of leading nodes. The Man-
hattan Routing is used in this phase.
Phase 3 Leading nodes deliver packets to their corre-

sponding receivers, and the transmission is finished.
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Figure 3: Red nodes are source-destination pair,
green nodes are leading nodes, and the side length
of a grid is r√

5
.

It is important to notice that all the destinations con-
nected by a backbone path are actually leaf nodes of the
multicast tree, and they do not act as transmitters. Only
the source node delivers packets in the first phase.

5.2 Achievable Capacity of the Scheme
We build a feasible multicast tree Ti for a multicast ses-

sion. This subsection estimates the transmission rate of
Ti. For phase 1 and phase 3, it is easy to prove that each
node can transmit or receive at the rate of Ω( 1

logn
· W )

bits/second, since there are Θ(log n) nodes in each grid, and
a grid can be scheduled once every constant number of time
slots. The transmission rate of each multicast session in
phase 2 is analyzed below. The proof mainly focuses on es-
timating the number of sessions that a leading node has to
serve. The transmission rate of the leading node is equally
partitioned by these sessions.

Lemma 7. Given a grid g, the probability that a multicast

session msi will use g is no more than β7

√
ki·Ri·r
a2

, where β7

is a constant, saying msi uses g when the leading node of g
is an interior node of Ti.

Proof. First of all, the leading node must fall in the
distributed region of msi, which happens with probability
πR2

i
a2

.
According to the proposed scheme, in the kth step, k =

1, 2, · · · , ki, the probability that grid g is used by Manhattan
Routing can be calculated as follow:

Pr(Xk = 1) = 1
ki+1−k · ps(

Ri/
√
ki+1−k

r/
√

5
)

Here, Xk = 1 means grid g is used in the kth step, and
1

ki+1−k is the probability that the cell in which grid g falls

contains more than two destinations. ps(
Ri/
√
ki+1−k

r/
√

5
) is the

probability that grid g is on the transmitting path of the two
destinations. Li stands for the number of columns (rows) of

grids in a cell in the ith round. Define Li =
Ri/
√
ki+1−k

r/
√

5
,

then ps(Li) = m−1
L2
i
· Li−m+1

Li
+ n−1

L2
i
· Li−n+1

Li
. Let u and v

denote the two nodes to be connected in the ith round. The
first part of the right side means that u is in the same row

with grid g, and node u and v are on different sides of the
column that grid g falls in. The second part means v is in
the same column with grid g, node u and v are on different
sides of grid g’s row. Obviously,

Ps(Li) ≤ 2
Li

p is the probability that grid g is used by the multicast
session msi when g is inside the distributed region of msi.
Then for all the ki steps,

p ≤
∑ki
k=1 Pr(Xk = 1) =

∑ki
k=1

1
ki+1−k ·ps(

Ri/
√
ki+1−k

r/
√

5
) ≤

4
√

10
5
·
√
ki · rRi .

Then

Pr(msi use g) ≤ πR2
i

a2
· 4
√

10

5
·
√
ki ·

r

Ri
= β7

√
ki ·Ri · r
a2

(5)

Since there are in total ns independent multicast session-
s, Lemma 8 can derive the upper bound of the number of
sessions that use a grid g.

Lemma 8. For any grid g, the number of multicast ses-

sions using g is less than
3
∑ns
i=1min{

√
ki·Ri·r,R2

i }
2a2

with high
probability.

Proof. Let Yi = 1 when msi uses g, and Yi = 0 other-
wise, i = 1, 2, . . . , ns. According to Lemma 7, Pr(Yi = 1) ≤

β7

√
ki·Ri·r
a2

. Then

E(Y ) = E(
∑ns
i=1 Yi) =

∑ns
i=1 E(Yi),

also because Pr(msi uses g) ≤ πR2
i

a2
· 1,

E(Y ) ≤
∑ns
i=1min{

√
ki·Ri·r,R2

i }
a2

.

According to the Chernoff’s inequality,

Pr(Y ≥ 3E(Y )
2

) ≤ Pr(|Y − E(Y )| ≥ E(Y )
2

) ≤ 2e−E(Y )/12

and then the lemma is proved since E(Y ) goes to infinity as
n increases.

Lemma 8 gives an upper bound of the number of sessions
that a leading node must serve. According to the previ-
ous subsection, a leading node can transmit at a constant
rate, and its rate is equally divided by these sessions. Then
the per-flow throughput of these multicast sessions can be
bounded.

Theorem 3. For any multicast session msi, its per-flow
throughput capacity is more than

2a2

3
∑ns
i=1min{

√
ki·Ri·r,R2

i }
·W bits/second w.h.p..

Proof. In the proposed scheme, phase 2 is carried out
via the backbone path composed of leading nodes. Accord-
ing to Lemma 8, the transmission rate of phase 2 is bigger

than 2a2

3
∑ns
i=1min{

√
ki·Ri·r,R2

i }
·W . This is because the wire-

less channel is equally divided for the sessions. Denote the

average value of {
√
k1R1,

√
k2R2, · · · ,

√
knsRns} as

√
kiRi.

When
√
kiRi = Ω(a), since ns = Θ(nε), 1/2 < ε ≤ 1, the

following inequality is true when n goes to infinity:
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2a2

3
∑ns
i=1min{

√
ki·Ri·r,R2

i }
·W ≤ 2a2

3·ns·a·r ·W ≤
W

logn
.

Θ( W
logn

) is an achievable transmission rate of phase 1 and
phase 3.

The proof is a little complex when
√
kiRi = O(a), where

√
kiRi =

∑ns
i=1

√
kiRi

ns
. Here is an intuitive description. The

detailed proof is omitted due to space limitation. In phase 1
and phase 3, the leading node only serves the sessions whose
sources or destinations fall inside its grid, while in phase 2,
the leading node also acts as a relay node for other sessions
besides receiving the packets towards its own grid. Then the
number of packets a leading node sends or receives in phase
2 is larger than that of phase 1 and phase 3.

So the lower bound of the transmission rate for phase 2 is
also a lower bound of the per-flow throughput capacity:

vi = Ω( 2a2

3
∑ns
i=1min{

√
ki·Ri·r,R2

i }
·W )

Then a lower bound of multicast capacity is the sum of
the achievable throughputs of all the sessions:

Λns(n) = Ω( 2a2ns

3
∑ns
i=1min{

√
ki·Ri·r,R2

i }
·W )

6. DISCUSSION
In this section, some discussions of the network model and

the derived bounds are presented.

6.1 Capacity Variation While Ri And ki Change
Ri and ki can decide the size of the interference area of

multicast session msi based on Lemma 2. A bigger size caus-
es larger traffic load due to the following reasons. More extra
nodes serve as the relay nodes and more nodes incur colli-
sions because of falling inside the interference area. Larger
traffic load leads to smaller capacity since the channel re-
source for each session decreases. We are curious about how
different Ris and kis affect the total traffic load of a wireless
network in our model, especially the groups of Ris and kis
that make the load sufficiently large or small. The result is
shown by the relationship between the capacity and different
Ris and kis.

It is known that unicast and broadcast are two tails of
multicast: unicast is the case where each session only con-
tains single or few destinations, and broadcast is the case
where the number of destinations of each session is in the
same order of the total number of nodes in the network.
The unicast capacity of a network is in the order Θ(W ∗ a

r
),

and the broadcast capacity is in the order Θ(W ). We say
that the traffic load of a wireless network is “heavy” when
its capacity is in the same order of a broadcast network, and
“light” for the unicast-like traffic load.

When Ris and kis are both non-identical, define the aver-

age value of {
√
k1R1,

√
k2R2, . . . ,

√
knsRns} as

√
kiRi. Then

i) If
√
kiRi = Ω(a

2

r
), the capacity Λns(n) = Θ(W ), which is

derived from Λns(n) = Θ( a2ns∑ns
i=1min{

√
ki·Ri·r,R2

i }
·W ). The

traffic load is heavy in the whole network, because most ses-
sions expect to transmit either to many destinations (i.e.,
large kis) or to some destinations quite far away (i.e., large
Ris). In this case, the traffic load is like that of a broad-

cast network. ii) If
√
kiRi = O(a), the capacity Λns(n) =

Θ(a
r
·W ). The traffic load is light in the wireless network.

Figure 4: Relationship between
√
kiRi and multicast

capacity.

Figure 5: (a) Max
√
ki keeps traffic load light. (b)

Min
√
ki keeps traffic load heavy.

The interference area of each session is only a small region.
There are not many overlaps between these sessions’ inter-
ference areas even when there are quite many multicast ses-
sions (i.e., ns = Θ(nε)). In this case, the traffic load is like
that of an unicast network.

Define the variance of {
√
k1R1,

√
k2R2, . . . ,

√
knsRns} as

δ(
√
k · R). The changing of δ(

√
k · R) will not affect the

capacity, because the multicast capacity is bounded by the

total traffic load, and the traffic load is determined by
√
kiRi

and ns according to our proofs. The relationship between√
kiRi and Λns(n) is shown in Fig.4.
Next, we discuss Ris and kis separately. The primary

question is how kis (Ris) will affect multicast capacity when
Ris (kis) are set to be identical at some levels.

When Ris are set to be identical, the capacity Λns(n) =

Θ( a2ns∑ns
i=1 Ri·min{

√
ki·r,Ri}

·W ), which is a function of
√
ki.

When Ri = O( a

n
1
4

), since ki = O(n · Ri
2

a2
),
√
kiRi =

O(
√
n · Ri

a
· Ri) = O(

√
n · 1

a
· a

2
√
n

) = O(a). Then the traffic

load in the network is always like that of an unicast network.

The largest
√
ki that can ensure that the traffic load is light

equals a
Ri

if Ri keeps growing. The relationship between Ri

and
√
ki is shown in Fig.5(a).

On the other hand, with identicalRis, whenRi = O(
√

a3

r·
√
n

),
√
kiRi = O(

√
n · Ri

a
· Ri) = O(

√
n · 1

a
· a2 · a

r·
√
n

) = O(a
2

r
).

Then no matter how ki changes, the total traffic load is n-
ever as heavy as that of a broadcast network. The number
of overlaps between sessions are relatively small due to the
small distribution region of each session. When Ri keeps
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Figure 6: (a) The max Ri that keeps the traffic load
light. (b) The min Ri that keeps the traffic load
heavy.

growing, the smallest
√
ki that makes the traffic load heavy

in the network equals a2

Ri·r
, as shown in Fig.5(b).

When
√
kis are set to be identical, the analysis is similar.

So the result is directly shown here.

1) When
√
ki = O(n

1
4 ), the biggest Ri that can keep the

network having light traffic load equals a√
ki

. With larger
√
ki, Ri must be large enough to contain these nodes, thus√
kiRi = Ω(a). The total traffic load is always not in the

light tail. The result is shown in Fig.6(a).

2) When
√
ki = O(

√
a
r
·
√
n), the smallest Ri that keeps

the network’s traffic load heavy equals a2

r·
√
ki

. When
√
ki =

Ω(
√

a
r
·
√
n), the traffic load is always like that of a broad-

cast network, as shown in Fig.6(b).
In the proposed network model, a = nα, α ≤ 1/2 and a

r
≤√

n
logn

. Then the following theorem is given to show some

bounds of the multicast capacity presented by n. Other
results are similar, thus omitted.

Theorem 4. For the proposed network model, when Ri =

O(n
1
4 ), Λns(n) = Θ(

√
n

logn
·W ), or when ki = Ω( n√

logn
),

Λns(n) = Θ(W ).

Finally, the multicast capacity of wireless networks under
the proposed network model is concluded in Theorem 5.

Theorem 5. For the proposed network model,
1) When Ri = Θ(a) and ki = k0,∀i = 1, 2, · · · , ns:

Λns(n) =


Θ( a√

k0·r
·W ) when

√
k0 = O(a

r
)

Θ(W ) when
√
k0 = ω(a

r
)

2) When Ris and kis are both independently chosen:

Λns(n) =



Θ(W ) when
√
kiRi = Ω(a

2

r
)

Θ(a
r
·W ) when

√
kiRi = O(a)

Θ( a2√
kiRi·r

·W ) others

3) When Ris are identical, and Ri = R0,∀i = 1, 2, · · · , ns:
Λns(n) =



Θ(a
r
·W ) when R0 = O( a

n
1
4

)

Θ(W ) when R0 = Ω(
√

a3

r·
√
n

),
√
ki = Ω( a2

R0·r
)

Θ( a2√
ki·R0·r

·W ) others

4) When kis are identical, and ki = k0, ∀i = 1, 2, · · · , ns:
Λns(n) =

Θ(a
r
·W ) when k0 = O(n

1
2 ), Ri = O( a√

k0
)

Θ(W ) when k0 = Ω(a
r
·
√
n)

Θ( a2

Ri·
√
k0·r
·W ) others

6.2 Generality of the Network Model
The multicast capacity of wireless networks under the pro-

posed network model is in the order of Θ( a2ns∑ns
i=1min{

√
ki·Ri·r,R2

i }
·

W ). Firstly, when setting Ri = a√
2

and ki = k0 for all

msi, all sessions are identical on the number of destinations
and randomly pick destinations from the whole region. This
is the traffic pattern used by most previous works. The
capacity can be changed to Λns(n) = Θ( a√

k0·r
· W ) when

k0 = O(a
2

r2
) and Λns(n) = Θ(W ) when k0 = Ω(a

2

r2
). It is

the same with the result in [2], so our network model is a
proper generalization of the previous ones both intuitively
and theoretically.

6.3 Applicability of Competitive Intensity
When 1 ≤ ∆ ≤ 2, the competitive intensity is still in the

order of Ω(
∑ns
i=1min{

√
ki·Ri·r,Ri2}

2a2
). Such a ∆ is for some

indoor applications. The sketch of the proof is given below.
Consider the interference area of a multicast tree Ti,

|D(Ti)| =

{
Ω(
√
ki ·Ri · r) ki = O(Ri

2

r2
)

Θ(Ri
2) ki = θ(Ri

2

r2
)

Let D′(Ti) denote the interference area of Ti’s non-leaf n-
odes. Then |D′(Ti)| ≥ |D(Ti)| − ki ∗ r2 since some destina-
tions may also serve as relay nodes.

(1) When ki = O(Ri
2

r2
), |D′(Ti)| = Ω(

√
ki ·Ri ·r−ki∗r2) =

Ω(
√
ki · r(Ri −O(Ri

r
) ∗ r)) = Ω(

√
ki ·Ri · r).

(2) When ki = Ω(Ri
2

r2
), the union of the circle areas with

radium r, centering at each destination, is in the order of
Θ(Ri

2). This is based on the assumption that the destina-
tions are randomly picked. Then there must be a transmitter
within or on the edge of each circle area that delivers packets
to the destination, and a constant proportion of the circle
area is covered by the transmitter. This property holds for
all the destinations, thus |D′(Ti)| = η ·Ri2 = Θ(Ri

2), where
η is a constant.

Lemma 3 is then proved by replacing |D(Ti)| with |D′(Ti)|.
All the non-leaf nodes are both transmitters and receivers,
thus Lemma 4 holds with 1 ≤ ∆ ≤ 2, and the proof is
finished.

The proposed network model needs to be extended when
the traffic load is heterogeneous around the network. But
the competitive intensity is still workable, and the through-
put of a single session is no more than the transmission rate
of the interior node with the largest competitive intensity.
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7. CONCLUSION
This paper studies the capacity of wireless networks with

multiple types of multicast sessions. A new network model
is proposed ignoring the assumption of traffic patterns be-
ing homogeneous. Based on the proposed network model, a
theoretical upper bound and a reachable lower bound of the
multicast capacity are derived, and two bounds are asymp-
totically tight. The proposed network model and derived ca-
pacity bounds generalize the previous network models and
the capacity bounds. Meanwhile, they are more practical
and applicable to practical applications.
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