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ABSTRACT
Multiple-input multiple-output (MIMO) technology pro-

vides a means of boosting network capacity without requir-

ing additional spectrum. It has received widespread atten-

tion over the past decade from both industry and academic

researchers, now forming a key component of nearly all

emerging wireless standards. Despite the huge promise and

considerable attention, a rigorous algorithm-theoretic frame-

work for maximizing network capacity in multihop wireless

MIMO networks is missing in the state of the art. The exist-

ing algorithms and protocols for maximizing network capac-

ity in multihop wireless MIMO networks are purely heuristic

without any provable performance guarantees. In this pa-

per we conduct a comprehensive algorithm study for max-

imizing network capacity in multihop wireless MIMO net-

works with receiver-side interference suppression, including

the full characterization of NP-hardness and APX-hardness,

the polynomial time approximation schemes, and the prac-

tical approximation algorithms with provable performance

guarantees.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network

Architecture and Design—wireless communication
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1. INTRODUCTION
In the last decade, there has been rapid technological

progress within the wireless industry, targeted at meet-

ing ever-increasing consumer demands for higher speed

data transmission and for supporting a plethora of mul-

timedia services and applications. Among various innova-

tions, the multiple-input multiple-output (MIMO) technol-

ogy has revolutionized the wireless industry, providing a

means of boosting network capacity without requiring ad-

ditional spectrum. With multiple antennas at the transmit-

ter and/or receiver, a MIMO system is capable of increas-

ing the wireless data rate by spatially multiplexing multiple

data streams over a communication link and allowing links

within interference range to be concurrently active by in-

terference suppression. The phenomenal impact of MIMO

cannot be overstated–it has received widespread attention

over the past decade from both industry and academic re-

searchers, now forming a key component of nearly all emerg-

ing wireless standards.

Despite the huge promise and considerable attention, a

rigorous algorithm-theoretic framework for maximizing net-

work capacity in multihop wireless MIMO networks is still

missing in the state of the art even under the simplest pro-

tocol interference model. Several MAC protocols for inte-

grating MIMO with the networking stack have been devel-

oped in [10, 19, 26] among others. A number of works [3,

4, 16, 15] have studied the selection of a subset of streams

with maximum total capacity which can be scheduled in a

single time-slot. Among them, the integer linear program

formulations of this problems in various setting were given

by Blough et al. [3] and Liu et al. [15]. Chu and Wang

[4] and Mumey el al. [16] developed polynomial time ap-

proximation algorithms for this problem. However, the ap-

proximation bounds of these algorithms grow linearly with

the product of maximum number of antennas at individual

nodes, maximum number of links incident to a node, and

maximum number of links conflicting with individual links.
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It remains open whether there is a constant approximation

algorithm for this problem. Wang et al. [25] and Mumey et

al. [16] have investigated the transmission scheduling of a

set of links and their traffic demands in the smallest number

of time-slots. In both [25] and [16], purely heuristic algo-

rithms were developed but no theoretic performance analy-

ses of these heuristics were provided. The problem of joint

routing and link scheduling for maximizing the throughput

(in terms of multiflow) of a given set of end-to-end commu-

nication requests has been studied in [2, 6, 7, 14, 20]. Again,

only purely heuristic algorithms for this problem have been

developed in [2, 6, 7, 14, 20], and none of them has any

provable performance guarantees. We remark that if the

link scheduling and the stream control are pre-specified, this

problem can be reduced to the classic maximum multiflow

in wired networks and hence is solvable in polynomial time

[5].

In a striking contrast, maximizing network capacity in

multihop wireless networks without MIMO capability under

the protocol interference model has been much better stud-

ied by [8, 13, 22, 23, 24]. On one hand, the MAC layer

optimization problems maximum-weighted independent set

and the minimum-latency link scheduling and the cross-

layer optimization problem maximum (concurrent) multi-

flow are NP-hard even in very simple setting [22]. On the

other hand, all of them admit polynomial-time approxima-

tion scheme (PTAS) even in the more general multi-channel

multi-radio (MC-MR) setting as long as the number of chan-

nels is bounded by a constant [23]. In other words, for any

fixed 𝜀 > 0, there is a polynomial-time (depending on 𝜀)

(1 + 𝜀)-approximation algorithm. In addition, a number of

faster (polynomial-time) constant-approximation algorithms

[24] have been developed in various setting.

The present significant knowledge gap between maximiz-

ing network capacity in multihop wireless MIMO networks

and maximizing network capacity in multihop wireless net-

works without MIMO capability motivates us to address the

following algorithmic issues:

∙ While it is expected that maximizing network capacity

in multihop wireless MIMO networks is NP-hard, what

are the major technical obstacles that have prevented

the progress so far?

∙ Do there exist a PTAS?

∙ Do there exist polynomial time approximation algo-

rithms with constant approximation bound and prac-

tical running time?

In this paper, we address the above three aspects in multihop

wireless MIMO networks with receiver-side interference sup-

pression, which is the most practically viable variant of the

MIMO technology. Due to the space limitation, we mainly

focus on the most fundamental problem of selecting a maxi-

mum weighted set of streams which can transmit successfully

at the same time under the protocol interference model. For

such optimization problem, we fill the present knowledge gap

with the following discoveries presented in this paper:

∙ The problem is NP-hard even when the input streams

with positive weight are node-disjoint. The full uti-

lization of the receiver-side interference suppression is

the major source of such NP-hardness.

∙ When the nodes have arbitrary number of antennas,

the problem is APX-hard [1] and hence does not admit

PTAS unless 𝑃 = 𝑁𝑃 . Such APX-hardness is due to

the half-duplex constraint.

∙ When the maximum number of antennas at all nodes

is bounded by a constant, the problem admits a PTAS.

∙ When all streams have uniform interference radii or

all nodes have the same number of antennas, there ex-

ist constant-approximation algorithms with practical

polynomial running time.

The remainder of this paper is organized as follows. In

Section 2, we give a precise problem description and intro-

duce some basic structural properties. In Section 3, we pro-

vide rigorous proofs of the NP-hardness and APX-hardness

even in simple settings. In Section 4, we present a PTAS

in the setting of constant bounded number of antennas at

all nodes. In Section 5, we develop a divide-and-conquer

approximation algorithm in the setting of uniform interfer-

ence radii. In Section 6, we develop a linear programming

(LP) based approximation algorithm in the setting of uni-

form number of antennas at all nodes. Finally, we conclude

this paper in Section 7.

2. PRELIMINARIES
Consider an instance of multihop wireless MIMO network

on a set 𝑉 of networking nodes. Each node 𝑣 has 𝜏 (𝑣) an-

tennas and operates in the half-duplex mode, i.e. it cannot

transmit and receive at the same time. Along each node-

level directed communication link (𝑢, 𝑣), min {𝜏 (𝑢) , 𝜏 (𝑣)}
streams can be multiplexed. Let 𝐴 denote the set of streams

of all directed node-level communication links. The directed

multigraph (𝑉, 𝐴) is referred to as the stream-level commu-

nication topology. For each node 𝑢 and any set 𝐵 of streams,

we use 𝛿𝑜𝑢𝑡
𝐵 (𝑢) to denote the set of streams in 𝐵 having 𝑢 as

the sender. Under a protocol interference model, each node-

level communication link is associated with an interference

range and all its streams inherit the same interference range

from it. When a set 𝐼 of streams in 𝐴 transmit at the same

time, the transmission by a stream 𝑎 ∈ 𝐼 from a sender 𝑢

to a receiver 𝑣 succeeds with the receiver-side interference

suppression if all the following three constraints are satisfied:

1. Half-Duplex Constraint: 𝑢 is not the receiver of

any other stream in 𝐼, and 𝑣 is not the sender of any

other stream in 𝐼.

2. Sender Constraint: 𝑢 is the sender is at most 𝜏 (𝑢)

streams in 𝐼. In other words,
∣∣𝛿𝑜𝑢𝑡

𝐼 (𝑢)
∣∣ ≤ 𝜏 (𝑢).

3. Receiver Constraint: 𝑣 lies in the interference range

of at most 𝜏 (𝑣) streams in 𝐼.
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A set 𝐼 of streams is said to be independent if all streams

in 𝐼 succeed when they transmit at the same time. Let ℐ
denote the collection of all independent subsets of 𝐴. Sup-

pose that each stream 𝑎 ∈ 𝐴 has a non-negative weight

𝑤 (𝑎). The weight of any subset 𝐵 of 𝐴 is defined to be

𝑤 (𝐵) =
∑

𝑎∈𝐵 𝑤 (𝑎). The problem Maximum Weighted

Independent Set of Streams (MWISS) seeks an inde-

pendent set 𝐼 ∈ ℐ with maximum weight.

A set 𝑆 of streams is said to be weakly independent if

for each stream 𝑎 ∈ 𝑆 from a sender 𝑢 to a receiver 𝑣, the

following two constraints are satisfied:

1. Sender Constraint: 𝑢 is the sender is at most 𝜏 (𝑢)

streams in 𝑆.

2. Receiver Constraint: 𝑣 lies in the interference range

of at most 𝜏 (𝑣) streams in 𝑆.

Clearly, weak independence is the relaxation of indepen-

dence on the Half-Duplex Constraint. We present a

simple algorithm ExtractIS which extracts an indepen-

dent set 𝐼 from a weakly independent set 𝑆 satisfying that

𝑤 (𝐼) ≥ 1
4
𝑤 (𝑆). Let 𝑈 be the set of end nodes of the

streams in 𝑆, and ⟨𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑘⟩ be an arbitrary order-

ing of 𝑈 . Conceptually, the algorithm ExtractIS proceeds

in two steps

∙ Node Partition Step: 𝑈 is greedily parititioned into

𝑈 ′ and 𝑈 ′′ as follows. Initially, 𝑈 ′ = {𝑢1} and 𝑈 ′′ = ∅.
For 𝑗 = 2 to 𝑘, if the set of streams in 𝑆 between 𝑢𝑗

and 𝑈 ′ is heavier than the set of streams in 𝑆 between

𝑢𝑗 and 𝑈 ′′, 𝑢𝑗 is added to 𝑈 ′′; otherwise, 𝑢𝑗 is added

to 𝑈 ′.

∙ Stream Partition Step: The set of streams between

𝑈 ′ and 𝑈 ′′ is partitioned into two subsets: 𝐼1 consists

of the streams from 𝑈 ′ to 𝑈 ′′, and 𝐼2 consists of the

streams from 𝑈 ′′ to 𝑈 ′. The heavier one between 𝐼1
and 𝐼2 is output as 𝐼, with ties broken arbitrarily.

It is obvious that 𝐼 is independent. The theorem below

asserts that 𝑤 (𝐼) ≥ 1
4
𝑤 (𝑆) . Due to the space limitation, its

proof is omitted.

Theorem 2.1. 𝑤 (𝐼) ≥ 1
4
𝑤 (𝑆) .

Throughout this paper, we assume that all nodes in 𝑉

lies in a plane. The Euclidean distance between any pair

of nodes 𝑢 and 𝑣 in a plane is denoted by ∣𝑢𝑣∣. We adopt

the following plane-geometric variant of the protocol inter-

ference model, which is widely assumed in the literature:

The interference range of a stream 𝑎 from a sender 𝑢 to a

receiver 𝑣 is the disk centered at 𝑢 of radius 𝑟 (𝑎), where

𝑟 (𝑎) ≥ ∣𝑢𝑣∣ /𝜂 for some constant 𝜂 ∈ (0, 1). We denote by

𝜇 =

⌈
𝜋/ arcsin

1− 𝜂

2

⌉
− 1.

Let 𝜏 denote the maximum number of antennas at the net-

working nodes.

Lemma 2.2. Suppose that a point 𝑜 lies in the interfer-

ence ranges of a weakly independent set 𝐼 of streams. Then,

∣𝐼∣ ≤ 𝜇𝜏 .

The above lemma is an extension of Lemma 8.2 in [22]

and the proof is omitted due to lack of space.

We conclude this section with the following property of

uniform number of antennas at all nodes.

Lemma 2.3. Suppose that all nodes have the same num-

ber of antennas. Then any subset 𝐵 of 𝐴 satisfying the Re-

ceiver Constraint also satisfies the Sender Constraint.

Proof. Let 𝜏 be the number of antennas at each node.

Consider any node 𝑢 which is a sender of some stream in

𝐵. Let 𝑎 be a shortest stream in 𝐵 with 𝑢 as the sender.

Then the receiver of 𝑎 lies in the interference range of every

stream in 𝐵 with 𝑢 as the sender (including 𝑎 itself). By the

Receiver Constraint, the number of streams in 𝐵 with 𝑢

as the sender is at most 𝜏 . Hence, the Sender Constraint

is also satisifed.

A consequence of the above lemma is that when all nodes

have the same number of antennas, a subset of 𝐴 is weakly

independent if and only if it satisfies the Receiver Con-

straint, and is independent if and only if it satisfies the

Receiver Constraint and the Half-Duplex Constraint.

3. NP-HARDNESS AND APX-HARDNESS
In this section, we establish the NP-hardness and APX-

hardness of MWISS even in very simple settings. For any

subset 𝐵 of 𝐴 , we use ℐ (𝐵) to denote the collection of all

independent subsets of 𝐵. Given a subset 𝐵 of 𝐴, the prob-

lem Maximum Independent Set of Streams (MISS)

seeks an 𝐼 ∈ ℐ (𝐵) with maximum size. Clearly, the prob-

lem MISS is a special case of MWISS in which all stream

weights are {0, 1}-valued. As the result, any hardness result

of MISS extends to MWISS. Throughout this section, the

hardness of MISS are studied in“homogeneous”MIMO net-

works in which all nodes lie in a plane and have the same

number of antennas, and all streams have the same inter-

ference radii. By Lemma 2.3, the Sender Constraint is

redundant for the independence.

In the first and simplest setting of MISS, the input set 𝐵

of streams is node-disjoint, in other words, no two streams

in 𝐵 share an endpoint. As the Half-Duplex Constraint

is trivially satisfied by any subset of 𝐵, a subset of 𝐵 is inde-

pendent if and only if it satisfies the Receiver Constraint.

The theorem below asserts that the problem MISS remains

NP-hard even when restricted to node-disjoint streams, and

thus pinpoints the full utilization of the receiver-side inter-

ference suppression as a major source of NP-hardness.

Theorem 3.1. The problemMISS is NP-hard even when

restricted to node-disjoint streams with uniform interference

radii and when all nodes have uniform and fixed number of

antennas.

Next, we consider a slightly more general setting. A set 𝐵

of streams is said to be simple (respectively, acyclic) if the
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subgraph (𝑉, 𝐵) is simple (respectively, acyclic). A pair of

streams 𝑎 and 𝑏 are said to have conflict if the receiver of at

least one stream lies in the interference range of the other

stream.

Theorem 3.2. With uniform but arbitrarily many anten-

nas at each node, the problem MISS is NP-hard and APX-

hard even when restricted to the sets of simple and acyclic

streams which are pairwise conflicting.

The above theorem implies that unless 𝑃 = 𝑁𝑃 , the prob-

lem MISS does not admit PTAS with arbitrary number of

antennas at each node. The above theorem also reveals that

the Half-Duplex Constraint is a major technical obstacle

of approximating the problem MISS. On the other hand, we

will show in the next section that when the number of an-

tennas at each node is bounded by a constant, the problem

MWISS, and hence MISS as well, admits a PTAS. In con-

trast, in wireless networks without MIMO capability, if all

links have pairwise conflict, then the maximum independent

set of links is trivially solvable.

The proofs of Theorem 3.1 and Theorem 3.2 are given in

the two subsections below respectively.

3.1 Proof of Theorem 3.1
Consider an undirected graph 𝐺 = (𝑉, 𝐸) and a fixed

positive integer 𝑘. A subset of 𝑉 is called a 𝑘-restricted

independent set if it induces a subgraph of 𝐺 with maximum

degree less than 𝑘. Note that a 1-restricted independent set

is simply an independent set of 𝐺. The problem maximum 𝑘-

restricted independent set (MAX 𝑘-RIS) is that of seeking

a largest 𝑘-restricted IS of 𝐺. For a finite planar point set

𝑉 and a number 𝑑 > 0, the 𝑑-disk graph on 𝑉 is a simple

geometric graph on 𝑉 in which there is an edge between two

nodes if and only if their distance is at most 𝑑. In particular,

a 1-disk graph is referred to as unit-disk graph (UDG). For

any fixed positive integer 𝑘, the problem MAX 𝑘-RIS is

NP-hard even restricted to UDGs [9].

The proof of Theorem 3.1 is accomplished by polynomial

reduction from MAX 𝑘-RIS in UDGs to MISS. Given a

connected UDG 𝐺 = (𝑉, 𝐸) a connected UDG (see Figure

1(a)) and a fixed constant 𝜂 ∈ (0, 1), we construct a (con-

nected) multihop MIMO wireless network as follows. Let

𝑙1 be the shortest distance between any pair of non-adjacent

nodes in 𝐺, and set 𝑟 = 𝑙1+2
3

and 𝑟′ = 𝜂𝑟. Then 1 < 𝑟 < 𝑙1.

We first construct a set 𝑊 of at most (∣𝑉 ∣ − 1) /𝜀 points

such that the 𝑟′-disk graph on 𝑉 ∪𝑊 is connected. Com-

pute an Euclidean minimum spanning tree 𝑇 of 𝐺. Since 𝐺

is connected, all edges of 𝑇 have length at most one. Ini-

tially, 𝑊 is empty. We subdivide each edge 𝑢𝑣 in 𝑇 with

∣𝑢𝑣∣ > 𝑟′ into ⌈∣𝑢𝑣∣ /𝑟′⌉ segments of equal length and adding

those ⌈∣𝑢𝑣∣ /𝑟′⌉ − 1 endpoints of these segments other than

𝑢 and 𝑣 to 𝑊 (see Figure 1(b)). Since 𝑟 > 1, we have⌈ ∣𝑢𝑣∣
𝑟′

⌉
− 1 ≤

⌈
1

𝜂𝑟

⌉
− 1 ≤

⌈
1

𝜂

⌉
− 1 <

1

𝜂
.

Thus, ∣𝑊 ∣ ≤ (∣𝑉 ∣ − 1) /𝜂. In addition, the 𝑟′-disk graph on

𝑉 ∪𝑊 is connected.

Now, we construct a duplication 𝑉 ′ of 𝑉 as follows. Let 𝑙2
be the shortest distance between any pair of distinct nodes

in 𝑉 ∪𝑊 and set

𝑙3 = min

{
𝑙1 − 1

3
,
𝑙2
2

}
.

Then,

1 + 𝑙3 ≤ 𝑟 < 𝑙1 − 𝑙3.

For each 𝑣 ∈ 𝑉 , we put a duplication 𝑣′ of 𝑣 straightly below

𝑣 satisfying that ∥𝑣𝑣′∥ = 𝑙3 (see Figure 1(c)). Then, 𝑣′ /∈
𝑉 ∪𝑊 . Let 𝑉 ′ denote the set of duplications 𝑣′ constructed

in this way. Then, ∣𝑉 ′∣ = ∣𝑉 ∣. It is also easy to verify that

that for any two distinct 𝑢 and 𝑣 nodes in 𝑉 , ∣𝑢𝑣∣ ≤ 1 if and

only if

max
{∣𝑢𝑣∣ , ∣∣𝑢′𝑣′∣∣ , ∣∣𝑢𝑣′∣∣ , ∣∣𝑢′𝑣

∣∣} ≤ 𝑟.

(b)

(c)

(a)

Figure 1: Construction for the reduction: (a) a UDG

𝐺 = (𝑉, 𝐸); (b) Subdivision of edges in an EMST of

𝐺; (c) duplication of nodes in 𝑉 .

Next, we construct a multihop MIMO wireless network on

𝑉 ∪𝑊 ∪𝑉 ′. We equip each node with 𝑘 antennas. For each

pair of nodes apart by at most 𝑟′, there is a communication

link of interference radius 𝑟. For each 𝑣 ∈ 𝑉 , we pick an

arbitrary stream from 𝑣′ to 𝑣 and refer it to as a represen-

tative stream of 𝑣. For each subset 𝑈 of 𝑉 , we denote by

𝐴𝑈 to set of representive streams of nodes in 𝑈 . Clearly,

𝐴𝑈 is node-node disjoint. Furthermore, 𝑈 is a 𝑘-restricted

independent set of 𝐺 if and only if 𝐴𝑈 is an independent set
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of streams. Thus, a maximum 𝑘-restricted independent set

of 𝐺 corresponds to a maximum independent subset of 𝐴𝑉 ,

and vice versa. So, Theorem 3.1 holds.

3.2 Proof of Theorem 3.2
Consider a digraph 𝐷 = (𝑉, 𝐸). A directed cut (or dicut

in short) is a set of links in 𝐸 leaving some vertex subset 𝑈

(we denote it by 𝛿𝑜𝑢𝑡 (𝑈)). Given a digraph 𝐷, the maximum

directed cut problem (MAX DICUT) is that of finding a

dicut 𝛿𝑜𝑢𝑡 (𝑈) of maximum size. The NP-hardness of MAX

DICUT follows from the observation that the well-known

undirected version of MAX DICUT – the maximum cut

problem (MAX CUT), which is on Karp’s original list [11]

of 21 NP-complete problems – reduces to MAX DICUT

by substituting each edge for two oppositely oriented arcs.

Even when restricted to directed acyclic graphs (DAGs), the

problem MAX DICUT is NP-hard and APX-hard [12].

The proof of Theorem 3.2 is accomplished by a polynomial

reduction from MAX DICUT in DAGs to MISS. Given a

DAG 𝐷 = (𝑉, 𝐸), we construct a multihop MIMO wireless

network on 𝑉 as follows. We embed 𝑉 in a disk of unit

diameter arbitrarily and equip each node in 𝑉 with 𝜏 = ∣𝐸∣
antennas. For each pair of nodes, there is a communication

link of interference radius 𝑟 for some fixed constant 𝑟 ≥ 1.

For each (𝑢, 𝑣) ∈ 𝐸, we pick an arbitrary stream from 𝑢 to

𝑣 and refer it to as a representative stream of (𝑢, 𝑣). We

denote by 𝐵 the set of representive streams of links in 𝐸.

Clearly, 𝐵 is simple and acyclic, and any pair of streams

conflict with each other. For any 𝐶 ⊆ 𝐸, we denote by 𝐵𝐶

the set of representative streams of links in 𝐶. Then, 𝐶 is a

dicut of 𝐷 if and only if 𝐵𝐶 is an independent subset of 𝐵.

Thus a maximum dicut of 𝐷 corresponds to a maximum in-

dependent subset of 𝐵, and vice versa. Therefore, Theorem

3.2 holds.

4. PTAS
In this section, we present a PTAS for MWISS when

the maximum number of antennas 𝜏 is bounded by a con-

stant. The PTAS utilizes the shifting strategy combined

with dynamic programming in a way similar to the PTAS

for maximum weighted independent set of link in MC-MR

wireless networks [23].

We first introduce some terms and notations. By scaling,

we may assume the interference radii of all streams are at

least 1/2. The level of a stream is the integer part of the

logarithm of its interference diameter. Thus, the interference

radius of a stream at level 𝑙 ∈ ℤ+ is in [2𝑙−1, 2𝑙). Let 𝐿 be

the largest level of the links in 𝐴. All the vertical lines 𝑥 = 𝑖

for 𝑖 ∈ ℤ are called vertical grid lines; all the horizontal lines

𝑦 = 𝑗 for 𝑗 ∈ ℤ are called horizontal grid lines. A vertical

grid line 𝑥 = 𝑖 is of level 𝑙 ∈ ℤ+ if 𝑖 mod 2𝑙 = 0; similarly, a

horizontal grid line 𝑦 = 𝑗 is of level 𝑙 if 𝑗 mod 2𝑙 = 0. Clearly,

if a grid line is of level 𝑙, then it is also of level 𝑙′ for any

0 ≤ 𝑙′ < 𝑙. Let 𝐾 be an odd integer parameter at least 5. A

vertical grid line 𝑥 = 𝑖 is 𝑘-active for some integer 0 ≤ 𝑘 < 𝐾

if
(
𝑖− 𝑘2𝐿

)
mod 𝐾 = 0 (see Figure 2); similarly, a horizontal

grid line 𝑦 = 𝑗 is 𝑘-active if
(
𝑗 − 𝑘2𝐿

)
mod 𝐾 = 0. It was

shown in the proof of Lemma 9 in [21] that each grid line

is 𝑘-active for exactly one 𝑘 with 0 ≤ 𝑘 < 𝐾. In addition,

each 𝑘-active vertical grid line of level 𝑙 is of the format

𝑥 = 𝑖′2𝑙 + 𝑘2𝐿 for some 𝑖′ ∈ ℤ, and each 𝑘-active horizontal

grid line of level 𝑙 is of the format 𝑦 = 𝑗′2𝑙 + 𝑘2𝐿 for some

𝑗′ ∈ ℤ. For each 0 ≤ 𝑘 < 𝐾 and each 0 ≤ 𝑙 ≤ 𝐿, all the

𝑘-active grid lines of level 𝑙 decompose the whole plane into

open squares of side 𝐾2𝑙

𝐾2𝑙 (𝑖, 𝑖 + 1)× (𝑗, 𝑗 + 1) + 𝑘2𝐿 (1, 1)

for all 𝑖, 𝑗 ∈ ℤ (see Figure 2). All these squares are called

𝑘-active level-𝑙 squares.

L L

K2l

K2l−1

(k2 ,  k2  )

Figure 2: An illustration of 𝑘-active grid lines and

𝑘-active squares.

A stream 𝑎 is said to be covered by an open square 𝑆 if

its interference range is contained in 𝑆. Consider an integer

0 ≤ 𝑘 < 𝐾 and a stream 𝑎 at level 𝑙. It is easy to verify

that any 𝑘-active square covering 𝑎 must at level at least

max {𝑙 − ⌊log 𝐾⌋ , 0}. The stream 𝑎 is said to be 𝑘-active if

it is covered by some 𝑘-active level-𝑙 square, and 𝑘-inactive

otherwise. If 𝑎 is 𝑘-inactive, then the interference range of 𝑎

intersects some 𝑘-active grid line of level 𝑙 but at most two

vertical (respectively, horizontal) grid lines of level 𝑙 since

its diameter is less than 2𝑙+1.

For each 0 ≤ 𝑘 < 𝐾, let 𝐴𝑘 (respectively, 𝐴′
𝑘) denote

the set of 𝑘-active (respectively, 𝑘-inactive) streams in 𝐴.

The lemma below is the property underlying the shifting

strategy, and its proof is omitted due to the lack of space.

Lemma 4.1. Suppose that 𝐼𝑘 is a heaviest independent set

of 𝐴𝑘 for each 0 ≤ 𝑘 < 𝐾, and 𝑂 is a heaviest independent

set of 𝐴. Then,

max
0≤𝑘<𝐾

𝑤 (𝐼𝑘) ≥
(

1− 4

𝐾

)
𝑤 (𝑂) .

In the shifting strategy, a heaviest IS 𝐼𝑘 of 𝐴𝑘 is com-

puted for each 0 ≤ 𝑘 < 𝐾, and then the heaviest one among

those 𝐾 IS’s, which is a 1/ (1− 4/𝐾)-approximate solution,
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is returned. Subsequently, we present a polynomial-time dy-

namic programming algorithm which can compute a heavi-

est IS of 𝐴𝑘 for each 0 ≤ 𝑘 < 𝐾. We introduce the notations

adopted in the dynamic programming algorithm.

Fix 0 ≤ 𝑘 < 𝐾. A stream 𝑎 ∈ 𝐴𝑘 is said to be minimally

covered by a 𝑘-active square 𝑆 if it is covered by 𝑆 but not by

any 𝑘-active square of level less than that of 𝑆. Clearly, the

minimal covering 𝑘-active square of a stream 𝑎 ∈ 𝐴𝑘 can be

computed in polynomial time. Let 𝒮 denote the collection

of minimal covering 𝑘-active squares of streams in 𝐴𝑘. We

define a directed forest over 𝒮 as follows. For any pair of

distinct squares 𝑆 and 𝑆′ in 𝒮, 𝑆 is a parent of 𝑆′ (and 𝑆′

is a child of 𝑆) if and only if 𝑆 contains 𝑆′ and there is

no “intermediate” square 𝑆′′ ∈ 𝒮 such that 𝑆 ⊃ 𝑆′′ ⊃ 𝑆′.
Each square in 𝒮 without any child is referred to as a sink

square, and each square in 𝒮 without parent is referred to

as a root square. Let 𝒮0 denote the set of root squares in 𝒮.

In addition, for each square 𝑆 in 𝒮, we use 𝒞 (𝑆) to denote

the set of child squares of 𝑆.

For each 𝑆 ∈ 𝒮, let 𝐴𝑆 (respectively, 𝐴∗
𝑆) denote the set

of streams in 𝐴𝑘 covered (respectively, minimally covered)

by 𝑆, and let 𝑁𝑆 denote the set of streams in 𝐴𝑘 ∖𝐴𝑆 having

conflict with at least one stream in 𝐴𝑆 . It is obvious that

the level of every stream in 𝐴∗
𝑆 is at least the level of 𝑆. We

further claim that every stream in 𝑁𝑆 is minimally covered

by some proper ancestor of 𝑆 and hence its level is greater

than the level of 𝑆. Indeed consider any stream 𝑏 ∈ 𝑁𝑆 and

let 𝑆′ be the square in 𝒮 which minimally covers 𝑎. Then

𝑆 and 𝑆′ have overlap, and hence one of them is contained

in the other. As 𝑎 is not covered by 𝑆, we have 𝑆 ⊂ 𝑆′. So,

the claim holds. The claim also implies that 𝑁𝑆 is empty

if 𝑆 ∈ 𝒮0. Clearly, if 𝑆 is a sink square, then 𝐴𝑆 = 𝐴∗
𝑆 ;

otherwise,

𝐴𝑆 = 𝐴∗
𝑆 ∪

(∪
𝑆′∈𝒞(𝑆) 𝐴𝑆′

)
.

The next lemma presents constant upper bounds on the sizes

of independent sets in ℐ (𝐴∗
𝑆) and ℐ (𝑁𝑆) for any any 𝑆 ∈ 𝒮.

It is a direct consequence of Lemma 2.2, and its proof is

omitted due to the lack of space.

Lemma 4.2. Consider any 𝑆 ∈ 𝒮. For any 𝐼 ∈ ℐ (𝐴∗
𝑆)

and 𝐽 ∈ ℐ (𝑁𝑆),

∣𝐼∣ ≤ 16𝐾2

𝜋
𝜇𝜏,

∣𝐽 ∣ ≤ 16𝐾

𝜋
𝜇𝜏.

For any 𝐵 ⊆ 𝐴 and any 𝐽 ∈ ℐ, we denote

ℐ (𝐵 ∣ 𝐽) = {𝐼 ⊆ 𝐵 : 𝐼 ∪ 𝐽 ∈ ℐ}
For each 𝑆 ∈ 𝒮 and each 𝐽 ∈ ℐ (𝑁𝑆), we define

𝑓𝑆 (𝐽) := max
𝐼∈ℐ(𝐴𝑆 ∣𝐽)

𝑤 (𝐼) .

Clearly, if 𝑆 in a sink square then

𝑓𝑆 (𝐽) = max
𝐼∈ℐ(𝐴∗

𝑆
∣𝐽)

𝑤 (𝐼) ;

otherwise the following recursive relation holds:

𝑓𝑆 (𝐽) = max
𝐼∈ℐ(𝐴∗

𝑆
∣𝐽)

[
𝑤 (𝐼) +

∑
𝑆′∈𝒞(𝑆) 𝑓𝑆′ ((𝐼 ∪ 𝐽) ∩𝑁𝑆′)

]

Furthermore, ∑
𝑆∈𝒮0

𝑓𝑆 (∅) = max
𝐼∈ℐ(𝐴𝑘)

𝑤 (𝐼) .

The dynamic programming algorithm will build a (dy-

namic programming) table 𝐹𝑆 for each 𝑆 ∈ 𝒮 which is in-

dexed by the sets in ℐ (𝑁𝑆). For each 𝐽 ∈ ℐ (𝑁𝑆), 𝐹𝑆 (𝐽)

stores a heaviest set in ℐ (𝐴𝑆 ∣ 𝐽). Then,
∪

𝑆∈𝒮0
𝐹𝑆 (∅) is

a heaviest independent set of 𝐴𝑘 and is returned as 𝐼𝑘. By

Lemma 4.2, for each 𝑆 ∈ 𝒮, we can compute ℐ (𝐴∗
𝑆 ∣ 𝐽) and

ℐ (𝑁𝑆) in polynomial time. Therefore, the tables 𝐹𝑆 for

𝑆 ∈ 𝒮 can be constructed in the bottom-up manner along

the directed forest on 𝒮:

∙ Suppose that 𝑆 is a leaf square in 𝒮. For each 𝐽 ∈
ℐ (𝑁𝑆), we compute

𝑓𝑆 (𝐽)← max
𝐼∈ℐ(𝐴∗

𝑆
∣𝐽)

𝑤 (𝐼) ,

𝐹𝑆 (𝐽)← arg max
𝐼∈ℐ(𝐴∗

𝑆
∣𝐽)

𝑤 (𝐼) .

∙ Suppose that 𝑆 is a non-leaf square in 𝒮. For each

𝐽 ∈ ℐ (𝑁𝑆), we compute

𝑓𝑆 (𝐽)←
max

𝐼∈ℐ(𝐴∗
𝑆
∣𝐽)

[
𝑤 (𝐼) +

∑
𝑆′∈𝒞(𝑆) 𝑓𝑆′ ((𝐼 ∪ 𝐽) ∩𝑁𝑆′)

]
,

𝐼∗ ←
arg max

𝐼∈ℐ(𝐴∗
𝑆
∣𝐽)

[
𝑤 (𝐼) +

∑
𝑆′∈𝒞(𝑆) 𝑓𝑆′ ((𝐼 ∪ 𝐽) ∩𝑁𝑆′)

]
,

𝐹𝑆 (𝐽)← 𝐼∗ ∪
(∪

𝑆′∈𝒞(𝑆) 𝐹𝑆′ ((𝐼∗ ∪ 𝐽) ∩𝑁𝑆′)
)

.

∙ Finally, we output
∪

𝑆∈𝒮0
𝐹𝑆 (∅) as 𝐼𝑘.

In summary, we have the following main result.

Theorem 4.3. When 𝜏 is bounded by a constant, the

problem MWISS admits a PTAS.

5. DIVIDE AND CONQUER
Suppose that all streams have uniform interference radii

but the nodes may have arbitrary number of antennas. In

this setting, a simple spatial divide-and-conquer algorithm

for MWISS to be described in this section achieves constant

approximation bound.

By proper scaling, we assume that all streams have length

at most one and (uniform) interference radii 𝑟 > 1. Let 𝐴+

be the set of streams in 𝐴 with positive weight. The spa-

tial division of 𝐴+ is straightfoward. We tile the plane into

regular hexagons of diameter 𝑟 − 1 (see Figure 3(a)). Each

hexagon, or cell, is considered to be left-closed and right-

open, with only the left-most pair of vertices included (see

Figure 3(b)). A stream is said to be associated with a cell if

its sender lies in this cell. A cell is said to be non-empty if
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at least one stream in 𝐴+ is associated with this cell. Those

non-empty cells induce a partition of 𝐴+. In Section 5.1, we

describe the conquer part of the algorithm, which computes

a heaviest weakly independent subset of streams in 𝐴+ asso-

ciated with each non-empty cell. In Section 5.1, we describe

the combination part of the algorithm, which computes a

constant-approximate independent set out of those weakly

independent sets.
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Figure 3: Tiling of the plane into half-open half

closed hexagons of diameter diameter 𝜌− 1.

5.1 Conquer
The conquer part of the algorithm computes a heaviest

weakly independent subset of the streams in 𝐴+ associated

with each non-empty cell. Consider a particular non-empty

cell and let 𝐵 be the set of streams in 𝐴+ associated with

this cell. We present an algorithm which compute a heaviest

weakly independent subset 𝑆 of 𝐵.

Our algorithm proceeds in three steps. In the first step,

we compute the distinct values of the number of antennas of

receivers of the streams in 𝐵 and sort them in the ascending

order. Let 𝜏1, 𝜏2, ⋅ ⋅ ⋅ , 𝜏𝑘 be resulting sorted sequence. In the

second step, we compute a subset 𝑆𝑗 for each 1 ≤ 𝑗 ≤ 𝑘

as follows. Let 𝐵𝑗 denote the set of streams in 𝐵 whose

receivers have at least 𝜏𝑗 antennas, and 𝑈𝑗 denote the set of

senders of the streams in 𝐵𝑗 . For each node 𝑢 ∈ 𝑈𝑗 , we only

keep the

min
{∣∣∣𝛿𝑜𝑢𝑡

𝐵𝑗
(𝑢)
∣∣∣ , 𝜏 (𝑢) , 𝜏𝑗

}
heaviest streams in 𝛿𝑜𝑢𝑡

𝐵𝑗
(𝑢); and let 𝐵′

𝑗 be the set of

these streams kept from 𝐵𝑗 . Then, 𝑆𝑗 consists of the

min
{∣∣𝐵′

𝑗

∣∣ , 𝜏𝑗} heaviest streams from 𝐵′
𝑗 , with ties bro-

ken arbitrarily. In the third step, the heaviest one among

𝑆1, 𝑆2, ⋅ ⋅ ⋅ , 𝑆𝑘 as 𝑆.

Clearly, for each 1 ≤ 𝑗 ≤ 𝑘, 𝑆𝑗 is a weakly independent

subset of 𝐵𝑗 . Thus, 𝑆 is a weakly independent subset of 𝐵.

The lemma below asserts that 𝑆 is a heaviest one.

Lemma 5.1. 𝑆 is a heaviest weakly independent subset of

𝐵.

Proof. For each 1 ≤ 𝑗 ≤ 𝑘, define 𝒮𝑗 to be collection of

subsets 𝑆 of 𝐵𝑗 satisfying that ∣𝑆∣ ≤ 𝜏𝑗 and
∣∣𝛿𝑜𝑢𝑡

𝑆 (𝑢)
∣∣ ≤ 𝜏 (𝑢)

for each 𝑢 ∈ 𝑈𝑗 . Then, (𝐵𝑗 ,𝒮𝑗) is a matroid (cf. [18]) on

𝐵𝑗 . As 𝑆𝑗 is computed by an alternative implementation of

the matroid greedy algorithm [18], 𝑆𝑗 is a heaviest subset in

𝒮𝑗 .
Now, let 𝑆∗ be a heaviest weakly independent subset of 𝐵.

Let 𝜏𝑗 be the smallest number of antennas of the receivers

in 𝑆∗. Then, 𝑆∗ is a subset of 𝐵𝑗 and 𝑆∗ ∈ 𝒮𝑗 . Thus,

𝑤 (𝑆∗) ≤ 𝑤 (𝑆𝑗) ≤ 𝑤 (𝑆) .

So, the lemma holds.

5.2 Combination
The combination part of the algorithm makes use of a

labelling of the cells satisfying that all cells with the same

label are apart from each other at a distance of greater than

𝑟 + 1. Figure 3(a) gives one such labelling for 𝑟 = 2. The

labelling of the cells can be reduced to the labelling of lattice

points. Specifically, we pick an arbitrary non-empty cell and

use its center as the origin 𝑜. Let 𝑒1 and 𝑒2 be the centers of

the straight right cell and the upper right cell respectively.

Then, the centers of all the cells are integer combinations

of 𝑒1 and 𝑒2. In other words, the centers of all cells form

a lattice with 𝑒1 and 𝑒2 as a base. We adopt an oblique

coordinate system with 𝑒1 and 𝑒2 as the base vectors, and

represent each point 𝑥𝑒1 + 𝑦𝑒2 with the oblique coordinates[
𝑥
𝑦

]
. It’s easy to verify that the squared distance from the

origin to a point
[
𝑎
𝑏

]
is

3

4

(
𝑥2 + 𝑥𝑦 + 𝑦2) (𝑟 − 1)2 .

A number of the format 𝑥2 + 𝑥𝑦 + 𝑦2 with integers 𝑥 and 𝑦

is called rhombic number. Rhombic numbers can be charac-

terized in an elegant way by their prime decomposition (see,

e.g., [17]).

Theorem 5.2. A positive integer greater than one is

rhombic if and only if, after removing all square factors,

its prime decomposition contains no prime other than 3 and

primes of the form 6𝑖 + 1 with 𝑖 ∈ ℤ.

A representation of a rhombic number 𝜆 is a point
[
𝑥
𝑦

]
satisfying that 𝑥2 + 𝑥𝑦 + 𝑦2 = 𝜆. Among all representations

of a rhombic number 𝜆, there is at least one lattice point

𝑥2 + 𝑥𝑦 + 𝑦2 with 𝑥 ≥ 𝑦 ≥ 0, which is called a positive

representation of 𝜆. The rhombic numbers between 7 and

12 are 7, 9, 12, and their positive representations are[
2

1

]
,

[
3

0

]
,

[
2

2

]

respectively.

Now, we describe the labelling of all the centers of the

cells, which also gives rise to a labelling of the cells. Let 𝜆

be the smallest rhombic number at least 16
3

(
𝑟

𝑟−1

)2
, which

decreases with 𝑟. It’s easy to verify that for the practical

applications with 𝑟 ≥ 3, 7 ≤ 𝜆 ≤ 12. We then pick a

positive representation
[
𝑥
𝑦

]
of 𝜆 from the list in the previous
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paragraph. Let

𝑝1 =

[
𝑎

𝑏

]
, 𝑝2 =

[
−𝑏

𝑎 + 𝑏

]
.

Let 𝑃 be the half-open half-closed rhombus extended by 𝑝1

and 𝑝2, i.e.,

𝑃 = {𝑡1𝑝1 + 𝑡2𝑝1 : 0 ≤ 𝑡1, 𝑡2 < 1} .

It’s well-known that 𝑃 contains 𝜆 lattice points. All these

lattice points in 𝑃 receive distinct labels from the set

{0, 1, ⋅ ⋅ ⋅ , 𝜆− 1}. Repeat the same assignment in other

translates of 𝑃 by the lattice points with 𝑝1 and 𝑝2 as the

base. Thus, 𝜆 labels are used.

Note that the distance between any pair of lattice points

with the same label is at least√
𝑥2 + 𝑥𝑦 + 𝑦2 ⋅

√
3

2
(𝑟 − 1) =

√
𝜆 ⋅
√

3

2
(𝑟 − 1) ≥ 2𝑟.

Thus, for any pair of points in two cells with the same label,

their distance is greater than 2𝑟 − (𝑟 − 1) = 𝑟 + 1. So, any

pair of streams with senders in two cells of the same label

have no conflict with each other.

Next, we describe the combination algorithm. For each

label 𝑖 between 0 and 𝜆− 1, let 𝐽𝑖 be the union of the heav-

iest weakly independent subsets of the streams associated

with non-empty cells with label 𝑖. The heaviest one among

them is then chosen as 𝐽 . Finally, we apply the algorithm

ExtractIS to extract an IS 𝐼 from 𝐽 .

Theorem 5.3. The output 𝐼 is a 4𝜆-approximte solution.

Proof. Let 𝑂 be an optimal solution. For each label 𝑖

between 0 and 𝜆 − 1, let 𝑂𝑖 be the subsets of the streams

in 𝑂 associated with the non-empty cells with label 𝑖. By

Lemma 5.1, 𝑤 (𝑂𝑖) ≤ 𝑤 (𝐽𝑖). Hence,

𝑤 (𝑂) =
∑𝜆−1

𝑖=0 𝑤 (𝑂𝑖) ≤∑𝜆−1
𝑖=0 𝑤 (𝐽𝑖) ≤ 𝜆𝑤 (𝐽) ≤ 4𝜆𝑤 (𝐼) ,

where the last inequality follows from Theorem 2.1. So, the

theorem holds.

6. LP RELAXATION AND ROUNDING
Suppose that all nodes have the same number of antennas

but the streams may have arbitrary interference radii. In

this setting, we present a constant-approximation approxi-

mation algorithm for MWISS. based on the linear program-

ming (LP) approach.

Let 𝜏 be the number of antennas at each node, and 𝐴+

be the set of streams in 𝐴 with positive weight. We will

makes use the following fact that for any subset 𝐽 of 𝐴+, if it

satisfies the Receiver Constraint, then it also satisfies the

Sender Constraint. Indeed, consider any node 𝑢 which is

a sender of some stream in 𝐽 . Let 𝑎 be a shortest stream

with 𝑢 as the sender. Then the receiver of 𝑎 lies in the

interference range of every stream in 𝐽 with 𝑢 as the sender

(including 𝑎 itself). Thus, the number of streams in 𝐽 with

𝑢 as the sender is at most 𝜏 . A consequence of this fact is

that a subset 𝐽 of 𝐴+ is weakly independent if and only if

it satisfies the Receiver Constraint.

For any pair of streams 𝑎 and 𝑏 in 𝐴+, define 𝜌 (𝑎, 𝑏) to be

1/𝜏 if the receiver of 𝑏 lies within the interference range of

𝑎, and to be 0 otherwise. Our LP-based algorithm proceeds

in four phases as described below.

Relaxation Phase: Compute an optimal solution 𝑥 to

the following linear program:

(𝐹𝐿𝑃 ) max
∑
𝑎∈𝐵

𝑤 (𝑎) 𝑥 (𝑎)

𝑠.𝑡.
∑

𝑏∈𝐴+∖{𝑎}
𝜌 (𝑎, 𝑏) 𝑥 (𝑎) ≤ 1

2
, ∀𝑏 ∈ 𝐴+

0 ≤ 𝑥 (𝑎) ≤ 1, ∀𝑎 ∈ 𝐴+.

Rounding Phase: Initialize

𝐵 =
{
𝑎 ∈ 𝐴+ : 0 < 𝑥 (𝑎) < 1

}
.

Repeat the following iteration while 𝐵 is non-empty: Pick a

link 𝑎 ∈ 𝐵 and remove it from 𝐵. If

∑
𝑏∈𝐴+∖{𝑎}

(
𝑤 (𝑏)

𝑤 (𝑎)
𝜌 (𝑎, 𝑏) + 𝜌 (𝑏, 𝑎)

)
𝑥 (𝑏) < 1,

set 𝑥 (𝑎) = 1; otherwise set 𝑥 (𝑎) = 0. At the end of this

phase, 𝑥 is {0, 1}-valued.

Weakly IS Phase: Initialize

𝐽 =
{
𝑎 ∈ 𝐴+ : 𝑥 (𝑎) = 1

}
.

While there exists some 𝑎 ∈ 𝐽 satisfying that∑
𝑏∈𝐽∖{𝑎}

𝜌 (𝑏, 𝑎) ≥ 1,

remove any such link 𝑎 from 𝐽 and reset 𝑥 (𝑎) to 0. At the

end of this phase, 𝐽 is weakly independent by Lemma 2.3,.

IS Phase: Apply the algorithm ExtractIS to extract an

independent set 𝐼 from 𝐽 .

The theorem below provides an approximation bound of

the output 𝐼.

Theorem 6.1. The output 𝐼 is a 16𝜇-approximate solu-

tion.

Proof. We define a real-valued function 𝑓 on the set of

𝑥 ∈ [0, 1]𝐴
+

to real numbers by

𝑓 (𝑥) =
∑

𝑎∈𝐴+

𝑤 (𝑎) 𝑥 (𝑎)

(
1− ∑

𝑏∈𝐴+∖{𝑎}
𝜌 (𝑏, 𝑎) 𝑥 (𝑏)

)
.

Then for each 𝑎 ∈ 𝐴+, 𝑓 is a linear function of 𝑥 (𝑎) with

slope

𝑤 (𝑎)− ∑
𝑏∈𝐴+∖{𝑎}

(𝜌 (𝑏, 𝑎) 𝑤 (𝑎) + 𝜌 (𝑎, 𝑏) 𝑤 (𝑏)) 𝑥 (𝑏)

= 𝑤 (𝑎)

(
1− ∑

𝑏∈𝐴+∖{𝑎}

(
𝑤 (𝑏)

𝑤 (𝑎)
𝜌 (𝑎, 𝑏) + 𝜌 (𝑏, 𝑎)

)
𝑥 (𝑏)

)
.

Let 𝑜𝑝𝑡 be the weight of heaviest independent subset of 𝐵.

We shall show that at the end of Relaxation Phase,

𝑓 (𝑥) ≥ 1

4𝜇
𝑜𝑝𝑡,

and after each update on 𝑥 during Rounding Phase and

Weakly IS Phase, 𝑓 (𝑥) is non-decreasing. As the result,
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at the end of Weakly IS Phase, the weakly IS 𝐽 satisfies

that

𝑤 (𝐽) =
∑

𝑎∈𝐴+

𝑤 (𝑎) 𝑥 (𝑎) ≥ 𝑓 (𝑥) ≥ 1

4𝜇
𝑜𝑝𝑡.

By Theorem 2.1, the final output 𝐼 satisfies that

𝑤 (𝐼) ≥ 1

4
𝑤 (𝐽) ≥ 1

16𝜇
𝑜𝑝𝑡.

Hence the theorem holds.

We first show that at the end of Relaxation Phase,

𝑓 (𝑥) ≥ 1

4𝜇
𝑜𝑝𝑡.

Let 𝑂 be an optimal solution and define 𝑦 ∈ [0, 1]𝐴
+

by

𝑦 (𝑎) =

{ 1
2𝜇

, if 𝑎 ∈ 𝑂;

0, otherwise.

By Lemma 2.2, for each 𝑏 ∈ 𝐴+,

∑
𝑎∈𝐴+∖{𝑏}

𝜌 (𝑎, 𝑏) 𝑦 (𝑎) =
1

2𝜇

∑
𝑎∈𝑂∖{𝑏}

𝜌 (𝑎, 𝑏)

=
1

2𝜇
𝜌 (𝑂 ∖ {𝑏} , 𝑏) ≤ 1

2𝜇
𝜇 =

1

2
.

So, 𝑦 is a feasible solution to the linear program defined in

Relaxation Phase and its value is∑
𝑎∈𝐴+

𝑤 (𝑎) 𝑦 (𝑎) =
1

2𝜇

∑
𝑎∈𝑂

𝑤 (𝑎) =
1

2𝜇
𝑜𝑝𝑡.

Since 𝑥 is an optimal solution to the same linear program,

∑
𝑎∈𝐴+

𝑤 (𝑎) 𝑥 (𝑎) ≥ 1

2𝜇
𝑜𝑝𝑡.

Since for each 𝑎 ∈ 𝐴+,

1− ∑
𝑏∈𝐴+∖{𝑎}

𝜌 (𝑏, 𝑎) 𝑥 (𝑏) ≥ 1− 1

2
≥ 1

2
,

we have

𝑓 (𝑥) =
∑

𝑎∈𝐴+

𝑤 (𝑎) 𝑥 (𝑎)

(
1− ∑

𝑏∈𝐴+∖{𝑎}
𝜌 (𝑏, 𝑎) 𝑥 (𝑏)

)

≥ 1

2

∑
𝑎∈𝐴+

𝑤 (𝑎) 𝑥 (𝑎) ≥ 1

4𝜇
𝑜𝑝𝑡.

Next, we show that 𝑓 (𝑥) is non-decreasing with the it-

erations during Rounding Phase. Consider a particular

iteration of Rounding Phase and let 𝑎 be the link picked

and them removed from 𝐵. If

∑
𝑏∈𝐴+∖{𝑎}

(
𝑤 (𝑏)

𝑤 (𝑎)
𝜌 (𝑎, 𝑏) + 𝜌 (𝑏, 𝑎)

)
𝑥 (𝑏) < 1,

then the slope of 𝑓 with respect to 𝑥 (𝑎) is positive and

hence by increasing 𝑥 (𝑎) to 1, 𝑓 (𝑥) increases; otherwise,

the slope of 𝑓 with respect to 𝑥 (𝑎) is non-postive and hence

by decreasing 𝑥 (𝑎) to 0, 𝑓 (𝑥) either increases or remains

unchanged. So, in either case, 𝑓 (𝑥) is non-decreasing after

each iteration during Rounding Phase.

Finally, we show that 𝑓 (𝑥) is non-decreasing with the it-

erations during Weakly IS Phase. Consider a particular

iteration of of Weakly IS Phase and let 𝑎 be the link

picked and then removed from 𝐽 . Since∑
𝑏∈𝐽∖{𝑎}

𝜌 (𝑏, 𝑎) ≥ 1,

we have ∑
𝑏∈𝐴+∖{𝑎}

(
𝑤 (𝑏)

𝑤 (𝑎)
𝜌 (𝑎, 𝑏) + 𝜌 (𝑏, 𝑎)

)
𝑥 (𝑏)

=
∑

𝑏∈𝐽∖{𝑎}

(
𝑤 (𝑏)

𝑤 (𝑎)
𝜌 (𝑎, 𝑏) + 𝜌 (𝑏, 𝑎)

)

≥ ∑
𝑏∈𝐽∖{𝑎}

𝜌 (𝑏, 𝑎) ≥ 1.

So, the slope of 𝑓 with respect to 𝑥 (𝑎) is non-positive; and

hence by resetting 𝑥 (𝑎) from 1 to 0, 𝑓 (𝑥) either increases

or remains unchanged.

7. DISCUSSIONS
In this paper, we have conducted a comprehensive algo-

rithmic study of MWISS in multihop wireless MIMO net-

works with receiver-side interference suppression:

∙ Both the NP-hardness and APX-hardness were fully

characterized.

∙ In the setting of constant bounded number of antennas

at all nodes, a PTAS was developed.

∙ In the setting of uniform interference radii but ar-

bitrary number of antennas, a practical constant-

approximation algorithm based on the divide-and-

conquer approach was developed.

∙ In the setting of uniform number of antennas but

arbitrary interference radii, a practical constant-

approximation algorithm based on the LP approach

was developed.

It remains open whether there exists a practical constant-

approximation algorithm in the most general setting of ar-

bitrary interference radii and arbitrary number of antennas.

Following the approach in [22], we can develop

approximation-preserving reductions from the following

three problems to MWISS:

∙ Minimum Latency Stream Schedule (MLSS):

Given a set of data traffic demands on individual links,

find a shortest stream schedule for this set of traffic de-

mands.

∙ Maximum Multiflow (MMF): Given a set of end-

to-end communication requests specified by source-

destination pairs, find a stream schedule of length one

such that the maximum multiflow subject to the link

capacity function determined by this stream schedule

is maximized.

∙ Maximum Concurrent Multiflow (MCMF):

Given a set of end-to-end communication requests

specified by source-destination pairs together with
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their demands, find a stream schedule of length one

such that the maximum concurrent multiflow subject

to the link capacity function determined by this stream

schedule is maximized.

Therefore, all of the above three problems can be approxi-

mated with the same approximation factor as MWISS. The

detail will be reported in a separate paper.
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