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ABSTRACT
The search for parking space in busy urban districts is one
of those routine human activities that can benefit from the
widespread adoption of pervasive sensing and radio commu-
nication technologies. Proposed parking assistance solutions
combine sensors, either as fixed infrastructure or onboard
vehicles, wireless networking technologies and mobile social
applications running over smartphones to collect, share and
present to drivers real-time information about parking avail-
ability and demand. One question that arises is how does
(and should) the driver actually use such information to
take parking decisions, e.g., whether to search for on-street
parking space or drive to a parking lot and, in the latter
case, which one. The paper is, hence, a performance anal-
ysis study that seeks to capture the highly behavioral and
heuristic dimension of drivers’ decisions and its impact on
the efficiency of the parking search process. To this end we
model drivers as agents of bounded rationality and consider
lexicographic heuristics, an instance of the fast and frugal
heuristics developed in behavioral sciences such as psychol-
ogy and biology, as the mechanisms for their decisions.

We analyze the performance of the search process un-
der these heuristics and compare it against the predictions
of normative game-theoretic models assuming fully ratio-
nal strategically acting agents. We derive conditions under
which the simpler heuristic decision-making rules outper-
form the complex norms and show their satisfaction under a
broad range of scenarios concerning the fees charged for the
parking resources and their distances from drivers’ destina-
tions. The practical implications of these results for parking
assistance solutions are identified and thoroughly discussed.
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1. INTRODUCTION
The increasing integration of advanced sensing and wire-

less technologies with urban infrastructures transforms dra-
matically the way citizens access and interact with them. At
the same time, smartphones and other smart mobile devices
turn their owners to potential mobile sensing platforms and
engage them actively in the generation and distribution of
various kinds of information. The two trends combined fuel
the concept of smart city, whereby fundamental daily activ-
ities and operations are carried out more efficiently in favor
of individual citizens and the society as a whole.

The parking space forms an instance of urban resource
that is daily accessed and shared by multiple drivers. Of-
ten scarce in places such as shopping areas and business
districts, it has to be properly managed to avoid congestion
effects and the unfavorable consequences of cruising for park-
ing, e.g., waste of time and fuel and environmental burden
[1]. Parking assistance systems seek to address the park-
ing problem by expanding the reach of pervasive computing
within the city roads and turning them to smart spaces.
Combining sensors at the parking spots or onboard vehicles
and radio communication technologies, often including the
vehicular network [2], they collect and distribute information
about parking demand and supply to the vehicular nodes.
More recent approaches to the assisted parking search, such
as [3] or [4], add a social media layer over the vehicular net-
work. The drivers can use a mobile social application run-
ning on their smartphones to share their knowledge about
parking space with other application users and even han-
dover parking spots to save the overheads of parking search.

Despite the amount of work on the proposal and design
of parking assistance systems, surprisingly little attention
has attracted their actual performance. Directly relevant to
the performance issue is the amount of information that can
or should be used when selecting parking resource, e.g., on-
street or parking lot(s), or searching for an on-street park-
ing spot. The major assumption is that these decisions
involve, in one way or another, humans. The drivers are
those who actually make decisions when the parking assis-
tance system only provides information about parking re-
sources without making recommendations. But even when
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they are assisted by on-board mounted software agents, the
human factor is present either through some offline profile
description or, again, through direct participation in online
decision-making.

The paper, thus, focuses on the decision-making task and
the management of supplied information by the drivers. It
seeks to answer how efficient is the parking search process
when drivers employ plausible heuristics to choose between
different parking resources. The efficiency of parking search
is assessed by how much drivers end up paying to get a park-
ing spot, including the overhead costs due to needless cruis-
ing. For the decision-making process, we consider two ma-
jor approaches. The first one views drivers as fully rational
entities who process all information at hand and act strate-
gically so as to maximize their return. The second approach
is inspired by the significant body of work in behavioral sci-
ences such as psychology and biology on a family of heuris-
tics called fast and frugal heuristics. These heuristics are
generally simple, seek to describe the actual cognitive tasks
involved in the decision and approach humans as boundedly
rational satisficers rather than optimizers: namely, when
faced with a choice problem, they seek for a good enough
alternative rather than the best one and they do so without
necessarily processing all information available to them.

It has been repeatedly shown that fast and frugal heuris-
tics describe well human choices in various settings [5][6].
Less intuitively, they have been shown to perform compa-
rably and sometimes better than more complex choice se-
lection models such as linear regression or classification and
regression trees. In our work, we essentially propose and
analyze some of the most popular heuristics in the context
of two representative instances of the parking resource selec-
tion problem. In the first one, drivers have to chose between
the scarce but cheap on-street parking spots and the more
expensive yet abundant parking lot(s) space. The second
instance features two distinct parking lots, located at differ-
ent distances from the drivers’ common destination, adding
distance as a second decision criterion beyond cost.

Methodologically, we follow the same steps in both prob-
lem instances: first, we formulate and analyze the games
that emerge under strategic fully rational decision-making,
then we analyze the performance of the parking search ap-
plication under the heuristics and finally we compare them.
For the single-attribute problem instance we derive analyt-
ically the conditions that let heuristics result in higher effi-
ciency. Our results suggest that in most realistic scenarios
the use of decision heuristics results in more efficient park-
ing search process than when the drivers (or the parking
assistance software agents) act strategically in line with the
game-theoretic prescriptions.

To the best of our knowledge, this is the first study im-
porting tools and modeling approaches from the field of cog-
nitive psychology to a problem that has been treated for
years by transportation engineers and, more recently, also
by computer scientists. Section 2 summarizes the problem
setting, results that are known about it and background on
the cognitive heuristics. Sections 3-4 then contain the pa-
per’s main contributions. Section 3 devises and analyzes the
priority heuristic for choosing between the cheap but scarce
on-street parking and the spacious yet more expensive park-
ing lot(s). It also compares its outcomes with those of the
game-theoretic model in [7]. Section 4 considers the prob-
lem version with two types of parking lots. It formulates and

analyzes the game emerging under the assumption of strate-
gic decision-makers, devises the decision heuristic drawing
on data from surveys and compares the two models under
different parameter sets. We discuss the implications of our
work for actual parking assistance systems in Section 5.

2. BACKGROUND
A typical dilemma faced by drivers when approaching

their destinations in busy urban areas is: Should they in-
vest time and effort in searching for cheaper on-street park-
ing space or should they drive straight ahead towards one of
the more expensive parking lots? The first option involves
the risk of failing to find a vacant spot and eventually paying
an excess cost due to cruising in terms of fuel consumption
and time wastage.

2.1 The parking spot selection game
In [7], this dilemma is formulated as a resource selection

problem. On-street parking space and parking lot(s) are
two discrete types of parking resources with per time unit
costs c1 and c2, respectively, with c1 < c2. An additional
excess cost cexc becomes relevant when vehicles end up in a
parking lot after failing to seize an on-street parking spot.
The vehicular nodes are viewed as fully rational agents that
determine their strategies taking full advantage of the avail-
able information to them. The outcome of their actions and
the respective payoffs depend on the decisions of all nodes so
that their interaction is formulated as a game, the parking
spot selection game:

Definition 1. The Parking Spot Selection Game is a tu-
ple Γ1(N) = (N ,R, (Ai)i∈N , (wj), j ∈ {1, 2}), where:

• N = {1, ...,N}, N > 1 is the set of drivers searching for
parking space,

• R = R1 ∪R2 is the set of parking spots; R1 is the set
of on-street spots, with R = |R1| ≥ 1; R2 is the set of
spots in the parking lot(s), with |R2| ≥ N ,

• Ai = {1, 2} is the action set for each driver i ∈ N ,
action “1” denoting search for on-street parking space
and “2” driving directly to a parking lot,

• w1(·) and w2(·) are the cost functions of the two ac-
tions, respectively.

where

w1(n) = min(1, R/n)c1 +max(0, 1−R/n)(c2 + cexc) (1)

and w2(n) = c2, n ∈ [1, N ].
It is shown in [7] that at the Nash Equilibrium (NE) states

of the game, whether pure or mixed, the vehicular nodes
tend to over-compete for the scarce on-street parking space.
Namely, the vehicles, NNE

cmp, that choose to compete for on-
street parking outnumber its supply, R, so that some of them
end up in a parking lot only after incurring the excess cruis-
ing cost, cexc. More formally, the game Γ1(N) has:

• a single pure strategy NE, NNE
cmp = N , or equivalently a

single symmetric mixed NE with pNE
cmp = 1, if N ≤ N0

• (
N

�N0�
)
pure NE with NNE

cmp = �N0�, if N > N0 and N0

is not an integer,
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• (
N
N0

)
pure NE with NNE

cmp = N0 and
(

N
N0−1

)
pure NE

with NNE
cmp = N0 − 1, if N > N0 and N0 is an integer,

• one symmetric mixed NE with pNE
cmp = N0/N , if N >

N0

where

N0 =
c2 + cexc − c1

cexc
R (2)

In either case, and given that NNE
cmp = N · pNE

cmp, the ag-
gregate cost (fees+excess cost) paid by the drivers equals

CNE
agg = min(R,N)c1+max(0, NNE

cmp−R)(c2+cexc)+(N−NNE
cmp)c2

2.2 Fast and frugal decision heuristics
The NE is a solution concept with strong implications for

the properties of decision-makers: they are agents with per-
fect processing capacity to analyze the available information
and assess the alternatives presented to them. Most impor-
tantly, they can also analyze the possible strategies of other
agents and identify the equilibrium choice, from which they
have no reason to unilaterally deviate.

In this paper we are interested instead in a breed of heuris-
tics developed in behavioral sciences such as psychology and
biology, called fast and frugal heuristics [8]. Fast and fru-
gal heuristics are models for making decisions, that: (i) rely
heavily on core human capacities (such as memory recogni-
tion and recall); (ii) do not necessarily use all available in-
formation, and process the information they use by simple
computations (such as using only one piece of information);
(iii) are easy to understand, apply, and explain.

An important family of fast and frugal heuristics are the
lexicographic heuristics, whereby the user inspects the at-
tributes in a specified order and makes a decision based on
the first attribute that allows for a decision to be made, with-
out consulting other attributes. For example, consider the
priority heuristic for choices among risky gambles [9]. Let us
say we want to choose one of X = (xmin, p;xmax, 1−p) and Y
= (ymin, q; ymax, 1 − q), where for X the numerical outcome
xmin is obtained with probability p and xmax is obtained
with 1 - p and 0 < xmin < xmax (and analogously for Y).

If |xmin − ymin| > thr1 · max{xmax, ymax}, no other at-
tributes are inspected and the gamble with the higher value
on its minimum outcome is chosen. Otherwise, if |p − q| >
thr21, a decision is made in favor of the gamble with the
lower probability of minimum outcome without considering
attributes beyond the second. In the opposite case, the gam-
ble with the higher maximum outcome is chosen (and if the
maximum outcomes are equal, a choice is made randomly).

Such lexicographic heuristics describe well people’s choices
of consumer goods such as microwaves and apartments [5].
And, Katsikopoulos and Gigerenzer [6] have analytically shown
that the priority heuristic predicts a host of major empirical
phenomena in risky choice such as violations of the common
consequence and common ratio axioms as well as the four-
fold pattern of risk attitudes [10]. Another model of bounded
rationality for a risky choice between two gambles, similar to
the priority heuristic, was developed by Rubinstein in [11].
Both models attempt to model the underlying psychologi-
cal processes and do not transform values or probabilities.
But, unlike the priority heuristic, Rubinstein’s model does
not employ limited search and is not lexicographic.

1The value 0.1 is used for both thresholds thr1 and thr2 in
[9] as a global constant across all humans.

Another example of a lexicographic heuristic describing
people’s multi-attribute choices under certainty is determin-
istic elimination by aspects (DEBA) [12]. In DEBA, the
decision maker first orders the attributes according to the
magnitude of their importance weights (x1, x2, ...). She then
inspects the value of all alternatives on the first attribute x1.
If all alternatives score equally on x1, this attribute is elim-
inated. If exactly one alternative outperforms the rest on
x1, this alternative is chosen. Otherwise, all alternatives
with a value on x1 less than the maximum are eliminated
and the process is repeated for the second attribute x2. The
process continues this way until an alternative is chosen. If
more than one alternatives are left after all attributes are
inspected, then one of them is chosen randomly.

The performance of lexicographic heuristics, in terms of
accuracy or utility maximization, has been studied, via com-
puter simulations and mathematical analysis in datasets from
business, medicine and psychology. Overall, three major
stylized facts have emerged [13]. First, there are small dif-
ferences in performance between heuristics and more com-
plex benchmarks such as linear regression, neural networks,
classification and regression trees or naive Bayes. Second,
simple heuristics often have higher performance in out-of-
sample prediction. Third, each one of heuristics or bench-
marks outperforms the other under certain conditions.

In what follows, an implementation of the priority heuris-
tic guides the drivers’ decisions between the two parking re-
sources, when those consider only the fees charged for them.
In section 4, we let decisions take account of both fees and
distances of the resources from the drivers’ destinations.

3. THE PRIORITY HEURISTIC FOR SELECT-
ING PARKING RESOURCE

3.1 Description of the heuristic
We devise an implementation of the priority heuristic for

the parking choice problem drawing on its generic descrip-
tion in Section 2. Since the problem setting involves losses
(costs) rather than gains, the heuristic prescribes that drivers
consider first the minimum cost related to each parking al-
ternative; then the probabilities that these costs emerge out
of their choices; and, finally, if no decision is made by that
time, the maximum costs they may incur when choosing the
one or the other alternative. More specifically, invoking the
notation in Section 2.2, the on-street parking space can be
viewed as the risky gamble X = (−c1,min(1, R/N);−(c2 +

cexc), 1−min(1, R/N)), whereas the option of parking lot as
the fixed-outcome gamble Y=−c2 with probability 1. Then,

• (step 1) drivers decide to search for on-street parking
space if the minimum possible costs of the two alter-
natives, c1 and c2 respectively, differ by more than a
percentage thrc of the worst-case cost they may incur
as a result of their selection (i.e., c2 + cexc).

• (step 2) In the opposite case, i.e., u = c2−c1
c2+cexc

≤ thrc,
they postpone their decision until after considering the
probabilities of minimum costs: if their difference ex-
ceeds a threshold thrp, they head for a parking lot.

• (step 3) Otherwise, when 1 − min(1, R/N) < thrp so
that neither the second criterion helps them reach a
decision, they compare the maximum possible costs,
c2+ cexc and c2, and decide in favor of the parking lot.
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a. Parking fees/cost b. Parking demand

Figure 1: Probability distributions for the sensitivity of drivers to the minimum parking cost (left) and the
respective probabilities (right).

Table 1: Conditions for more efficient parking re-
source selection under the priority heuristic.
A vs. B Corresponding rdc range

A > B rdc < B (C1)
rdc ≥ A (C2)

max(B,
N·Fthrc (

c2−c1
c2+cexc

)−R

R
) ≤ rdc < A (C3)

A < B rdc ≥ B (C4)
rdc < A (C5)

A ≤ rdc < min(B, N−R

N·Fthrc (
c2−c1

c2+cexc
)−R

) (C6)

A = N−R
R

, B = (1 + c2
cexc

) · F−1
thrc

(R/N)

As mentioned in Section 2.2, the original generic descrip-
tion of the priority heuristic in [9] recommends a single
driver-agnostic constant (i.e., 0.1) for both threshold param-
eters, thrc and thrp. We argue instead that these values vary
across drivers reflecting differences in their financial status,
the reason of their trip (business or leisure) and their indi-
vidual preferences. This heterogeneity of drivers is modeled
statistically through two probability distribution functions,
fthrc and fthrp respectively. If Fthrc and Fthrp are the re-
spective cumulative distribution functions, the number of
drivers competing for on-street parking spots equals (ref.
Fig. 1)

NPH
cmp = N · Fthrc(

c2 − c1

c2 + cexc
) (3)

whereas the drivers selecting the parking lot alternative are

NPH
PL = N ·

(
1− Fthrc(

c2 − c1

c2 + cexc
)
)

(4)

Note that the partitioning of drivers into the two groups is
independent of the distribution fthrp . Drivers who do not
decide to compete for on-street parking space in step 1 will
end up in a parking lot either in step 2 or in the last step.
What fthrp determines is the portion of drivers deciding in
favor of a parking lot in step 2 rather than in the last step.

3.2 Comparison with the game model Γ1(N)

It is then convenient to analyze the efficiency of the park-
ing search process under the game and the priority heuristic
models as a function of the decision certainty ratio rdc =
(c2− c1)/cexc. This ratio grows as the parking fee difference
increases or the cruising cost, e.g., the risk related to com-
peting for on-street parking, declines. It, thus, reflects the
overall attractiveness of the on-street parking alternative.
Theorem 1 summarizes the comparison of the two decision-
making models.

Theorem 1. The parking search process when drivers’
choices are driven by the priority heuristic is more efficient
than when they act as fully rational strategic agents under
the conditions listed in Table 1.

Proof. As already mentioned in Section 2.1, whenever
N > R, the number of competing drivers induced by the
strategic game exceeds the on-street parking capacity, i.e.,
NNE

cmp > R. On the contrary, under the priority heuristic,
this number may generally be greater or smaller than R. We
consider these two cases separately.

NPH
cmp < R: This implies that

rdc < (1 +
c2

cexc
) · F−1

thrc
(R/N) (5)

and the difference in the aggregate cost induced by the two
decision-making models is

ΔCagg = CPH
agg − CNE

agg

= (R −NPH
cmp)(c2 − c1)− (NNE

cmp −R)cexc (6)

If NNE
cmp = N0 < N , i.e., rdc < N/R− 1, then

ΔCagg = −NPH
cmp(c2 − c1) < 0 (7)

without additional conditions.
On the other hand, if NNE

cmp = N , i.e.,

rdc ≥ N/R− 1 (8)

ΔCagg = R(c2 − c1+ cexc)−N(Fthrc(
c2 − c1

c2 + cexc
)(c2− c1)+ cexc)

is negative when rdc < (N −R)/(N · Fthrc(
c2−c1

c2+cexc
)−R) so

that, in combination with (8), rdc must satisfy

N −R

R
≤ rdc <

N − R

N · Fthrc(
c2−c1

c2+cexc
)−R

(9)

This interval of values is non-empty only when

rdc < F−1
thrc

(
2R

N
)(1 +

c2

cexc
) (10)

Constraint 10 is inactive since, for NPH
cmp < R, it is domi-

nated by constraint (5).
NPH

cmp ≥ R: Now rdc ≥ (1 + c2
cexc

) · F−1
thrc

(R/N) and the

aggregate cost under both decision-making models can be
written as function of Ncmp as

Cagg = R · (c1 − c2 − cexc) +N · c2 +Ncmp · cexc (11)

so that
ΔCagg = (NPH

cmp −NNE
cmp)cexc (12)
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Figure 2: Number of drivers competing for on-street parking and aggregate cost as a function of the parking
demand: R=25.

and it suffices to compare the numbers of drivers that end up
competing for on-street parking space under the two models.

When NNE
cmp = N , i.e., rdc > N/R − 1

ΔCagg = N · (Fthrc(
rdc

1 + c2/cexc
)− 1) < 0 (13)

without additional conditions. Otherwise, when rdc ≤ N/R−
1, it must also hold

rdc >
N · Fthrc(

rdc
1+c2/cexc

)

R
− 1 (14)

Combining (5)-(14) we get Table 1.

Corollary 1. The parking search process when drivers’
choices are driven by the priority heuristic is coherently more
efficient than when they act as fully rational strategic agents
as long as either:

N · Fthrc(
c2−c1

c2+cexc
)− R

R
< (1 +

c2

cexc
) · F−1

thrc
(R/N) <

N −R

R

or

N − R

R
< (1 +

c2

cexc
) · F−1

thrc
(R/N) <

N − R

N · Fthrc(
c2−c1

c2+cexc
)−R

Proof. By inspection of Table 1 (2nd column, lines 3
and 6), these conditions enforce negative ΔCagg throughout
the range of possible rdc values.

What are plausible choices for the distribution fthrc(x)?
One such choice would be a parabolic function of the type
fthrc (x) = αx2 + βx + γ over [0, cmax] implying that more
drivers risk competing at medium values of the u ratio rather
than at very low or high fee differences. HEnce, imposing∫ cmax

0
fthrc (x) = 1 and fthrc (0) = fthrc (cmax) = 0, we get

fthrc (x) =

{ 6x
c2max

(
1− x

cmax

)
if x ∈ [0, cmax]

0 otherwise

3.3 Numerical results
We validate the analysis of Section 3.2 and demonstrate

the operational dynamics of the parking search process un-
der the two decision-making models for different values for
the fees charged c1, c2, the cruising cost cexc, and the driver’s
sensitivity to their difference (cmax).

In Fig. 2a (rdc = 1.75) the game model prescribes that
min(N0 = 68.75, N) vehicles should be competing for on-
street parking space. The priority heuristic, on the other
hand, requires that a fixed 62% of the population should do
so, resulting in under-utilization of on-street parking space
for N < 40. The aggregate cost remains consistently lower
under the heuristic even for demand/supply ratios N/R ex-
ceeding four and up to N ≤ 110, where the condition (C3) of
Table 1 is violated (for N=110, A=3.6, B=0.95, N ·Fthrc(

c2−c1
c2+cexc

)−
R)/R = 1.7447).

As drivers become more sensitive to the charged fee dif-
ferences (Fig. 2b, cmax=0.6), the priority heuristic directs
more of them to compete for on-street parking space. The
aggregate paid cost exceeds that at the NE of the strategic
game faster but not before the demand/supply ratioN/R ex-
ceeds 3 (for N=80, A=2.4, B=0.837, N ·Fthrc(

c2−c1
c2+cexc

)−R)/R

= 1.796 ). The predictions of the two decision-making mod-
els are identical when the fee difference c2 − c1 a) makes the
parking lot prohibitive for all drivers deciding heuristically;
b) renders the expected cost of competition for on-street
parking (1) smaller than the parking lot fee for any (realis-
tic) value of parking demand. This is the case in Fig. 2c.

4. TWO PARKING LOTS AND THE
DISTANCE-COST TRADEOFF

The assumption underlying Γ1(N) is that the parking
lots do not differentiate with respect to their location and
fees. Equivalently, all parking lots are located within ap-
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Table 2: Pure NE of Γ2(N) for different values of N
Range of N NE states (NNE

1 , NNE
2 ) Number of realizations Conditions

[1, N12] (N, 0) 1 -

(N12, N12 + R2] (�N12�, N − �N12�)
( N
�N12�

)
N12 �∈ N

∗

(N12, N −N12)
( N
N12

)
N12 ∈ N∗
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∗
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( N13
N13+N23

N, N23
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N)
( N

N13
N13+N23

N

) N13
N13+N23

N ∈ N
∗

(N13 +N23,∞) (�N13�, �N23�) N!

�N13�!�N23�!(N−
2∑

j=1
�Nj3�)!

N13, N23 �∈ N
∗

(N13, N23)
N!

N13!N23!(N−N13−N23)!
N13, N23 ∈ N

∗

(N13 − 1, N23 − 1) N!

(N13−1)!(N23−1)!(N−
2∑

j=1
Nj3−2)!
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(N13 − 1, N23)
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(N13−1)!N23!(N−
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Nj3−1)!

N13, N23 ∈ N∗

(N13, N23 − 1) N!

N13!(N23−1)!(N−
2∑

j=1
Nj3−1)!

N13, N23 ∈ N∗

proximately the same area (e.g., business district) and they
charge the same fee for their parking space so that drivers
do not have strong preference for the one or the other.

In this section, we relax these two assumptions, intro-
ducing differentiation with respect to both charged fees and
distances from travel destination. We consider two parking
lots as alternatives to on-street parking. The first one is
co-located with the drivers’ common travel destination (dis-
tance r1 = 0) and charges a fee c3 per time unit. The second
parking lot is further away at distance r2 > 0 and charges a
fee c2, with c1 < c2 < c3. On a more technical note, these
assumptions turn the original single-attribute choice prob-
lem with essentially two alternatives into a two-attribute
(cost, distance) choice problem with three alternatives. As
before, we first formulate a game model for it, which be-
comes relevant under the highly normative assumption that
that the vehicular nodes decide and act strategically and
fully rationally. We then tailor the simpler DEBA heuristic
(ref. Section 2) to the problem and compare the solutions it
induces against the NE of the game model.

4.1 Strategic fully rational decision-making
The game model that captures the strategic interactions

of drivers under full rationality stands in direct analogy with
Γ1(N), as defined in Section 2.1.

Definition 2. The Extended Parking Spot Selection Game
is a tuple Γ2(N) = (N ,R, (Ai)i∈N , (wj), j ∈ {1, 2, 3}), where:

• N = {1, ...,N}, N > 1 is the set of drivers searching for
parking space,

• R = R1 ∪ R2 ∪ R3 is the set of parking spots; R1 is
the set of on-street spots, with R = |R1| ≥ 1; R2 is the
set of spots in the more distant yet cheaper parking lot,
with |R2| = R2 > 1 and R1 +R2 < N ; and R3 is the set
of parking spots in the spacious but expensive lot that
lies next to the travel destination, with |R3| = R3 > N.

• Ai = {1, 2, 3} is the action set for each driver i ∈ N ,
action “1” denoting search for on-street parking space,
“2” driving directly to the cheaper and “3” to the more
expensive parking lot.

• wj(·, ·), j = 1, 2, 3 are the cost functions of the three
actions, respectively.

With respect to the original game Γ1(N), cost functions have
now to account for the non-monetary cost related to the
distance of the three alternatives and the effort related to
driving and walking from/to them. If fr(·) is a function that
monetizes this cost, it holds that fr(r2) > fr(r1) > fr(r3) = 0.

Then w1(n1, n2) is given by (15)2,

w2(n1, n2) = min(1,
R2

n2
)(c2 + fr(r2))+ �1−R2/n2	+(c3 + cexc)

2The assumption in (15) is that drivers that fail to seize an
on-street parking spot will first seek for parking space in the
distant cheaper lot and only if this does not work out for
them, they will resort to the expensive lot with guaranteed
parking space.
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w1(n1, n2) = min(1,
R1

n1
)
(
c1+fr(r1)

)
+�1− R1

n1
	+

( �R2 − n2	+ · (c2 + cexc + fr(r2)
)

�n1 − R1	+ + �n2 − R2	+
+(1− �R2 − n2	+

�n1 −R1	+ + �n2 −R2	+
)(c3+cexc)

)
(15)
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Figure 3: Survey outcomes regarding the parking preferences of 1200 drivers in Nicosia, Cyprus.

and w3(n1, n2) = c3, where �x	+ = max(x, 0) and (n1, n2)
describes the state of the system, i.e., the numbers of ve-
hicular nodes that decide to compete for on-street parking
capacity and drive towards the cheaper distant parking lot,
respectively3.

In principle, fr(·) is driver-specific; extra driving and walk-
ing effort is not equally annoying to all drivers. Yet for
computational tractability purposes, we restrict ourselves to
symmetric users, assuming that fr(·) has similar semantics
for all users. Defining:

N12 =
c2 + fr(r2) + cexc −

(
c1 + fr(r1)

)
cexc

R1

N13 =
c3 + cexc −

(
c1 + fr(r1)

)
cexc

R1 and

N23 =
c3 + cexc −

(
c2 + fr(r2)

)
cexc

R2 (16)

we can show that

Theorem 2. The game Γ2(N) has the pure NE listed in
Table 2.

Proof. The proof is given in the Appendix A.

Proposition 1. For any value of N > R1, the NE of
the game Γ2(N) induce over-competition for the on-street
parking capacity.

Proof. The proof is given in the Appendix B.

4.2 Heuristic decision-making
The game-theoretic model for the drivers’ decisions among

the three alternatives has normative rather than descriptive
value. Besides acquiring and exhaustively processing infor-
mation about the demand and supply of parking resources,
vehicular nodes also need to “monetize” the cost related to
the distance of parking resources from the drivers’ desti-
nation. As a more realistic decision model, we introduce
a heuristic that essentially modulates the generic DEBA
heuristic in [12] with application-specific data obtained via a
paper survey. The survey was carried out in Nicosia, Cyprus,

3Apparently a state {n1, n2} implies that the remaining N−
n1 − n2 vehicular nodes select the more expensive parking
lot.

during the summer months of 2012 with the participation of
around 1200 drivers replying to more than twenty questions
about their parking habits and preferences.

The replies of drivers about the parking resource type they
make use of and their selection criteria are summarized in
Figure 3. They reveal two distinct stages at their decision-
making process as well as high heterogeneity regarding their
decision criteria. First, the population of drivers is parti-
tioned into five groups reflecting their preferences about the
type of parking resource (on-street parking vs. parking
lot) and the frequency of their usage. Then, drivers using
parking lots either exclusively or occasionally, are further
divided into three groups, depending on the criteria (cost
and/or distance from destination) directing their decisions.

Technically speaking, let i ∈ [1, 5] and j ∈ [1, 3] index the
groups of drivers emerging at the first and second stage, re-
spectively, in left-to-right order as they appear in Fig. 3. For
example, i = 2 denotes the group of drivers that primarily
seek on-street parking and j = 1 the parking lot users who
consider only the charged fees when selecting a lot. If pi and
qj are the percentage volumes of the respective groups, the
expected number of drivers who search for on-street parking
space is:

NH
1 = N · (p1 + αp2 + 0.5p3 + (1 − α)p4) (17)

where 0.5 < α ≤ 1 is the quantitative interpretation of “pri-
marily” in the responses of drivers. The plausible assump-
tion in (17) is that all on-street parking spots are subject
to the same charging policy throughout the area of inter-
est and their distance from the drivers’ common destination
does not vary considerably.

Likewise, the expected number of users that will end up
in a parking lot is

NH
PL = NH

2 +NH
3 = N · (p5 + αp4 + 0.5p3 + (1− α)p2) (18)

The way these NH
PLusers further decide between the two

parking lots is dictated by the right plot in Fig. 3. The
cheaper but remote (expensive yet destination-adjacent) park-
ing lot is chosen by the NH

PL · q1(q2) drivers plus part of the
NH

PL · q3 drivers who account for both criteria in their deci-
sions. We argue that these drivers essentially consider the
two criteria sequentially: first, the distance, then the park-
ing fees. If the distance of (walking time from) the remote
lot is prohibitive (e.g., beyond a driver-specific threshold
thrw), they drive to the destination-adjacent parking lot.
Otherwise, they consider the difference in the fees charged
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Figure 4: Distribution of vehicles to the three parking resources when decisions use the hDEBA heuristic:
R1=25, R2=40, wmin = 3, wmax = 12, cmax = 5.

by the two lots, c3−c2. If this is “small” enough, (e.g., below
a driver-specific threshold thrc), they pay the higher fee of
the nearby lot to save the additional driving and walking
overhead; otherwise, they drive to the remote parking lot.

As in section 3, we capture the heterogeneous sensitivity
of drivers to the parking lot distance and fees statistically
through negative parabolic distributions of the type f(x) =

αx2+βx+γ . We let thrw vary in [wmin, wmax] and enforcing
f(wmin)=f(wmax)=0 we get α = −6/(wmax − wmin)

3, β =

−α · (wmin + wmax) and γ = α · wminwmax.
The fee difference threshold, on the other hand, is let vary

in [0, cmax] according to

fthrc(x) =
6x

c2max

(
1− x

cmax

)
(19)

For given distance (i.e., expected walking time) w2 of the
distant parking lot, the number of drivers that select it is

NH
2 = NH

PL ·
(
q1 + q3(1 − Fthrw (w2)) · Fthrc(c3 − c2)

)
whereas

NH
3 = NH

PL·
(
q2+q3·

(
Fthrw (w2)+(1−Fthrw (w2))·(1−Fthrc (c3−c2)

))
will drive to the nearer and more expensive parking lot. The
way the actual distance of the remote parking lot and the
fee difference partition the drivers’ population into the three
parking resources is shown in Fig. 4. As expected, more
parking lot users are directed to the cheaper remote one with
parallel reduction of the expensive lot users as w2 decreases
and the fee c3 of the expensive lot increases.

It is worth remarking that the proposed heuristic is essen-
tially a driver heterogeneity-aware adaptation of the original
DEBA heuristic; we, thus, call it hDEBA. The practice in
lexicographic multi-attribute selection is to encode the three
parking resource alternatives as vectors of three attributes
(a1, a2, a3) in order of decreasing importance weight (pri-
ority). The attribute with the highest priority corresponds
to the parking resource type and is binary. An expected
number of NH

1 drivers implicitly set a1 = 1 if the type is
“on-street parking” and a1 = 0 if it is “parking lot”; the
opposite holds for the remaining NH

PL drivers. The second
attribute corresponds to the distance from the destination
and is turned to a binary one through the driver-specific
threshold thrw. Finally, the third attribute is the fee of the
parking resource, which is conceptually set to zero or one
by each driver depending on the relation of c3 − c2 to her
threshold thrc. Note that thrw → 0 for the NH

PLq2 drivers

that decide exclusively on the basis of the distance attribute
and thrw → ∞, thrc → 0 for the NH

PL · q1 drivers who only
consider the charged fees.

4.3 Strategic vs. heuristic predictions
However the decision is made, the aggregate cost that

drivers will have to pay is a function of their partitioning
to the three groups {N1, N2, N3}. Its most general expres-
sion is given by (20).

The analytical comparison of the two decision-making mod-
els along the lines of Theorem 1 is not straightforward. In-
stead, we plot in Fig. 5 the partitions of the vehicles’ pop-
ulation and compare the aggregate cost generated by the
NE of the Γ2(N) game and the operation of the hDEBA
heuristic for typical parameter values. In all four scenarios,
and many more that are not shown here due to space con-
straints, the trend is similar: the number of vehicles that
select the on-street parking space is consistently higher un-
der strategic decision-making than under hDEBA, whereas
the situation is reversed for the vehicle population that se-
lects the cheaper distant parking lot, at least for low and
moderate demand/supply ratios. The excess cruising cost
due to the first group of vehicles is higher than the excess
cost paid by vehicles that do not manage to get a parking
space in the distant parking lot and perforce end up in the
expensive parking lot. As a result, the aggregate cost under
hDEBA turns out to be smaller than that induced by the
NE of Γ2(N) and sometimes even very close to the minimum
possible (OPT).

5. DISCUSSION-CONCLUSIONS
We have carried out a performance analysis study that ac-

knowledges the role of cognitive heuristics in drivers’ decision-
making and assesses their impact on the efficiency of the
parking search process. These heuristics cater for humans’
bounded rationality and present a radical departure from the
normative model of strategic decision-maker who system-
atically aims at maximizing (minimizing) its gains (losses).
Two parking search scenarios have been considered and treated
as instances of multi-attribute choice problems with two
(three) alternatives, respectively. The proposed lexicographic
heuristics draw on research in the field of cognitive psychol-
ogy and we show analytically that their use reduces the ag-
gregate cost paid for satisfying the parking demand when
compared to the prescriptions of game-theoretic models as-
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Cagg = min(R1, N1)(c1 + fr(r1)) +min(max(N1 − R1, 0), max(N2 − R2, 0))(c2 + cexc + fr(r2)) (20)

+ max(N1 − R1 −max(R2 −N2, 0), 0)(c3 + cexc) +min(R2, N2)(c2 + fr(r2)) +max(N2 − R2, 0)(c3 + cexc) +N3c3
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Figure 5: Distribution of vehicles to the three parking resources and respective aggregate cost for different
parameter sets {c1, c2, c3, cexc, w2}: R1=25, R2=40, wmin = 3, wmax = 12, cmax = 5.

suming fully rational decision-makers, over a broad selection
of scenarios’ settings.

The main implications of this work concern the software
agents running over the devices that are mounted onboard
the vehicles. One configuration possibility for them is to try
to mimic the fully rational strategic agents. In that case, the
parking assistance system infrastructure needs to provide
them with detailed information about the available parking
resources, the fees they charge and estimates of the parking
demand. They then compute the NE of the respective game
and make the respective recommendations to the driver. A
simpler configuration alternative would allow for some driver
personalization, possibly upon first use by her. The driver
could enter very simple profile information such as whether
she prefers parking lots over on-street space, what is the ac-
ceptable fee difference between the two and how far from her
destination she is willing to park. The software could then
just try to make recommendations that respect its owner’s
preferences. According to the results of the paper, in the
majority of the scenarios, the second option will result in a
socially more efficient parking selection process.

One of the main advantages of the heuristic decision-making
models is that they directly describe how a decision is reached.
Fig. 6 implies that these models may be also much more
informative with respect to the sensitivity of the parking
search efficiency to parameters such as, in this case, the dif-
ference in fees charged by the different parking resources.
The expected number of competing vehicles is significantly
more responsive to this difference under the priority heuris-
tic model than it is under the game model Γ1(N).

Finally, on the methodological front, the steps taken in
this paper for the performance analysis of the parking search
process, i.e., (a)game formulation and analysis for estab-
lishing a reference; b) adaptation and analysis of a cogni-
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Figure 6: Sensitivity of competing vehicles to the
difference of parking resource fees: priority heuristic
vs. game Γ1(N), R=25.

tive (lexicographic) heuristic to the problem; (c) compari-
son of the prescriptions of the two models, could serve as
a template for the analysis of many more problems. They
are essentially applicable to various networking operations,
whereby decisions are taken by multiple end users and jointly
determine the outcome of the operation. The radio access
network selection (e.g., WiFi vs. cellular) is one such case.

On the other hand, there is an open question as to whether
drivers do actually practice such heuristics when searching
for parking space. There is compelling evidence that lexico-
graphic heuristics are employed by humans in a wide range
of very different selection tasks and can justify several well-
reported empirical phenomena that result from their choices
[5][6]. Yet, the ultimate validation of the heuristics’ rele-
vance calls for large-scale experimentation in real or semi-
real (i.e., emulator) conditions. Such experimentation is cur-
rently an open challenge for various research communities
including psychologists and transportation engineers.
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NNE
cmp ≥ N13 · (N12 +R2)

N13 +N23
=

(
c3 + cexc − (

c1 + fr(r1)
))

R1 ·
(

c2+fr(r2)+cexc−
(
c1+fr(r1)

)
cexc

R1 + R2

)
(
c3 + cexc −

(
c1 + fr(r1)

))
R1 +

(
c3 + cexc −

(
c2 + fr(r2)

))
R2

> R1

(
c3 + cexc −

(
c1 + fr(r1)

))
R1 +

(
c3 + cexc − (

c1 + fr(r1)
))

R2(
c3 + cexc −

(
c1 + fr(r1)

))
R1 +

(
c3 + cexc −

(
c2 + fr(r2)

))
R2

since N12/R1 > 1

> R1

(
c3 + cexc −

(
c1 + fr(r1)

))
R1 +

(
c3 + cexc − (

c2 + fr(r2)
))

R2(
c3 + cexc −

(
c1 + fr(r1)

))
R1 +

(
c3 + cexc −

(
c2 + fr(r2)

))
R2

= R1 since c2 + fr(r2) > c1 + fr(r1) (21)
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APPENDIX

A. PROOF OF THEOREM 2
We provide a sketch of the proof avoiding notation for-

malities that burden its comprehensibility. As long as the
drivers are fewer than the on-street parking spots R1, the
NE prescribes that all of them should direct thereto. The
same holds for all N values up to N12, where the expected
cost of choosing to search for curbside parking reaches that
of the second choice (head for the distant parking lot)
R1

N12
(c1 + fr(r1)) + (1 − R1

N12
)(c2 + fr(r2) + cexc) = c2 + fr(r2)

Any additional up to R2 drivers beyond the N12 ones should
then head for the distant cheaper parking lot. Therefore, as
N varies in [N12, N12 +R2] the individual driver cost at the
equilibrium remains constant and equals c2 + fr(r2).

When N exceeds N12+R2, the expected individual cost of
the first choice (on-street parking search) experiences a sud-
den increase since upon failure to seize an on-street spot,
a driver can only drive to the expensive parking lot; the
cheaper one is no longer an option. Hence, the split of
(n1, n2) in the NE for N = N12 +R2 + 1 features n1 < N12

and n2 > R2. The NE states (n1, n2) should satisfy
R1

n1
(c1+fr(r1))+(1−R1

n1
)(c3+cexc) =

R2

n2
(c2+fr(r2))+(1−R2

n2
)(c3+cexc)

Since n1 + n2 = N , it comes out that n1 = N13
N13+N23

N and

n2 = N23
N13+N23

N . NE states with n3 > 0 emerge only when

the expected costs of the first and the second choice equal
the cost (fees) of the expensive parking lot. This occurs for
n1 = N13 and n2 = N23 values satisfying

R1

N13
(c1 + fr(r1)) + (1− R1

N13
)(c3 + cexc) = c3, and (22)

R2

N23
(c2 + fr(r2)) + (1 − R2

N23
)(c3 + cexc) = c3 (23)

respectively. At the NE, any amount of drivers beyond
N13 + N23 select the expensive parking lot so that the in-
dividual driver’s cost is steady at c3. Table 2 provides the
full set of NE that emerge considering explicitly whether the
aforementioned equilibria values are integers or not. Their
validity check is straightforward.

B. PROOF OF PROPOSITION 1
The number of vehicles NNE

cmp that compete for on-street
parking capacity for R1 ≤ N < N12 is N ≥ R1. For N in
(N12, N12 +R2], the respective number is (16)

NNE
cmp = N12 =

(
1 +

(c2 − c1) + (fr(r2) − fr(r1))

cexc

)
R1 > R1

Likewise, for N > N13 +N23 the equilibrium value is

NNE
cmp = N13 =

(
1 +

c3 − c1 − fr(r1)

cexc

)
R1 > R1

Finally, the inequalities (21) assert that the equilibrium
number N ·N13/(N13 +N23) of competing vehicles also ex-
ceeds R1 when N lies in [N12 +R2, N13 +N23].

204




