
Optimal Determination of Source-destination Connectivity
in Random Graphs

Luoyi Fu, Xinbing Wang
Dept. of Electronic Engineering
Shanghai Jiao Tong University

Shanghai, China
{yiluofu,xwang8}@sjtu.edu.cn

P. R. Kumar
Dept. of Electrical and Computer Engineering

Texas A&M University
College Station, Texas

prk@tamu.edu

ABSTRACT
This paper investigates the problem of optimally determin-
ing source-destination connectivity in random graphs. We
consider the classic Erdos-Renyi (ER) random graph with n
nodes, where an edge independently exists between any two
nodes with probability p. The problem examined is that
of determining whether a given pair of nodes, a source S
and a destination D, are connected by a path. Assuming
that at each step one edge can be tested to see if it exists
or not, we determine an optimal policy that minimizes the
total expected number of steps.
The optimal policy has several interesting features. In

order to establish connectivity of S and D, a policy needs
to check all edges on some path to see if they all exist, but
to establish disconnectivity it has to check all edges on some
cut to see if none of them exists. The optimal policy has the
following form. At each step it examines the condensation
multigraph formed by contracting each known connected
component to a single node, and then checks an edge that
is simultaneously on a shortest S-D path as well as in a
minimum S-D cut. Among such edges, it chooses that which
leads to the most opportunities for connection. Interestingly,
the optimal strategy does not depend on p or n, even though
the entire graph itself undergoes a sharp transition from
disconnectivity to connectivity around p = lnn/n. The
policy is efficiently implementable, requiring no more than
30log2 n operations to determine which edge to test next.
The result also extends to some more general graphs.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: [Computer-
Communication Networks]

General Terms
Connectivity, Random Networks, Random Graphs
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1. INTRODUCTION
Connectivity of random graphs has long been a topic

of intensive study. A widely studied model, known as
the G(n, p) model, was proposed by Gilbert [1] in 1959.
It refers to a graph with n nodes, with an edge existing
independently between any pair of nodes with probability p.
Erdos and Renyi [2, 3] showed that this graph is connected
with probability approaching one as n → ∞, if p(n), the

probability p as a function of n, satisfies p(n) > (1+ϵ) lnn
n

,
and contains isolated nodes with probability approaching

one as n → ∞, if p(n) < (1−ϵ) lnn
n

. We will refer to
the G(n, p) model as the ER graph, in conformity with
common usage. In a wireless networking context, Gilbert
[4], and, more recently, Penrose [5] and Gupta and Kumar
[6], have studied geometric random graphs where nodes
have random uniform i.i.d. locations in a unit disk, and
showed that if the radio transmission range of each node

is r(n) =
√

lnn+c(n)

nπ2 , then the whole network is connected

with probability approaching one as n → ∞, if and only
if c(n) → +∞. Ever since, there has been much research
effort directed towards studying asymptotic connectivity of
randomly distributed wireless networks [7–15].

In this paper we consider ER Graphs. The above works
all focus on the connectivity of the entire network in the
asymptotic regime where the number of nodes goes to
infinity. The focus here is different in the following three
ways: (i) It is non-asymptotic, (ii) it is specific to the specific
realization of the random network that is being studied, and,
(iii) instead of studying the whole network’s connectivity,
the issue is the connectivity between a specified source S
and destination D. We examine the fundamental problem
of designing a policy that determines the connectivity of
S and D in minimum expected number of steps, where at
each step one edge can be chosen and tested to see if it
exists. The algorithm we present concludes either with the
discovery of a route or the discovery of a cut between S and
D. It is designed to reach a conclusion regarding one or the
other in the shortest expected time in ER graphs. It should
be noted that quickest discovery of a route is very different
from discovering the shortest path route, which is a very
well understood problem.

We start by considering the classic ER random graph,
with a designated source S and destination D. The inde-
pendence of edge occurrences and their equal probabilities
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turn out to give ER graphs a great advantage in terms of
solvability over other more complicated graph structures.
Subsequently, we consider some slightly more general graphs
in Section 5, where there is some additional deterministic
structure known a priori about the presence or absence of
certain edges.
The question of whether S and D are connected can be

resolved if one can either display an S-D path, or an S-D
cut. However, we do not know a priori whether the graph
is connected or not, thereby making it difficult to know
what to do – try to find a path or try to find a cut. The
optimal policy has to be dynamic, based on the presence or
absence of previously tested edges. This inherent tension in
the problem of determining connectivity makes the problem
somewhat challenging. Another difficulty is that we do not
know the optimal solution for general graphs where some
edges are known to exist, some known not to exist, and
others existing i.i.d. with probability p, which is what one
generally has after some steps of testing. Thus the proof
of optimality is not based on dynamic programming-like
arguments. Yet another aspect of interest is that the random
graph exhibits a phase transition depending on the value of

p. For p > (1+ϵ) lnn
n

, the entire graph itself, and not just the
particular S-D pair, is connected with high probability for

large n, while for p < (1−ϵ) lnn
n

, it is disconnected with high
probability. Thus, one may possibly expect that the optimal
strategy will depend on the value of p. Very interestingly,
however, the optimal policy does not depend on p or n at
all!
The main result is the optimality of the following simple

testing strategy: At each stage, form the condensation
multigraph by contracting each known connected component
to a single node. It is a multigraph since the edges between
nodes are inherited by the components to which they are
contracted. In the set of edges that lie both on a shortest
S-D path as well on the minimal S-D cut, test an edge
that leads to the most opportunities for connectivity. The
policy also has minimal complexity; it requires no more than
30log2 n operations to determine which edge to test next.
The policy is illustrated for a four-node ER graph in

Figure 1. Figure 2 shows the number of steps, averaged over
100 simulations, that the optimal policy takes to establish
S-D disconnectivity/connectivity in an ER graph with 1000
nodes, as a function of p. Determining S-D connectivity
at around its phase transition can involve many steps. In
between disconnectivity at very low p (say 10−5) that takes
about 999 steps to establish, and connectivity at very high
p (around p = 1) that can be established in 1 step, the value
of p passes through a phase transition around p = 0.002
(slightly smaller than the value of p = lnn/n ≈ 0.006 under
the phase transition to connectivity of the entire network),
where it takes a very large number of steps (about 15000)
to determine if S and D are connected or not.
The proof of optimality of the policy follows from the

proofs of optimality of the following three rules, which,
when combined together give rise to the policy equivalently
described above in terms of the condensation multigraph:
Rule 1) The testing starts with a tactic that can lead to
early termination by finding an S-D path: it first tests
the edges, i.e., one-hop paths, connecting the component
containing S and the component containing D. Rule 2) If
there are no such edges, then it switches to checking for S-
D disconnectivity by testing the edges on the S-D cut that

contains the minimum number of untested edges. Rule 3)
Among the edges in that cut, test the edge that leads to most
opportunities for connection. These three rules optimally
resolve the tension between checking for paths and cuts.
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Figure 1: Illustration of the evolution of the optimal
policy on a four-node ER random graph. The line in
red shows the edge selected for testing at each step.
A full line indicates that the edge was found to exist
after testing, while a dotted line indicates that the
edge was found to not exist after testing.
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Figure 2: Number of steps needed to determine S-
D disconnectivity/connectivity in a 1000 node ER
Graph, as a function of p.

Related Works: We note that there is no other work, to
the best of our knowledge, that addresses connectivity be-
tween a designated source and destination in random graphs.
Rather, as noted earlier, it is asymptotic connectivity of the
whole graph that has been intensively studied. Inspired by
Erdos and Renyi [2,3], there have been many works [16–21]
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dedicated to investigating connectivity of the entire network
when the number of nodes is sufficiently large.
Our work also has ties to wireless networks where con-

nectivity is determined by distance. Gilbert [4] initiated
the study of random graphs when nodes are randomly
distributed on a plane. Penrose [5] and Gupta and Kumar [6]
have determined the critical range for establishing overall
connectivity with probability approaching one as n goes
to infinity. This range results in each node connecting
to log n neighbors on average. Xue and Kumar [8], and,
subsequently, [9] and [10], further considered the number of
nearest neighbors that nodes need to connect to, in order
to ensure the network connectivity. The condition of full
connectivity was relaxed by Dousse et. al. [11], which
analyzed the scenario where the sink is connected (in a
multihop fashion) to a set of nodes that span the entire
network. The impact of node degree, density and network
dimension on connectivity is also investigated [7], [12]. Due
to the emergence of ad hoc networks, mesh networks and
sensor networks, there has also been research interest in
analysis of k-connectivity [13], [14], [15].

2. MODEL AND DEFINITIONS
Consider an ER Random Graph with n nodes. An edge

exists between any pair of nodes with equal probability
p, independently of others. At each step, one can test a
potential (i.e., untested) edge of the graph to see if it indeed
exists. Two specific nodes are identified, labeled S and D.
Our objective is to construct a sequential testing strategy
terminating in the minimal expected number of steps, to
determine if S and D are connected or not. Termination
occurs with

• Connectivity, when it has verified the existence of all
edges on some S-D path, or

• Disconnectivity, when it has verified the absence of all
edges on some S-D cut.

We employ three terms, known edge, known non-edge and
potential edge (also sometimes called an “untested edge.”).
A known edge is one that has already been tested and found
to exist. Similarly, a known non-edge is one that has already
been tested but found to not exist. Finally, a potential edge
is an edge that is yet to be tested, which upon testing may
turn out to exist or not exist. In Table 1, we list other
definitions used.

3. POLICY FOR CHECKING S-D CONNEC-
TIVITY IN ER RANDOM GRAPHS

We now present a policy π∗ = {π∗
0 , π

∗
1 , . . . , π

∗
N}, which we

call the alternating policy, for checking S-D connectivity in
an ER random graph. We label the nodes other than the
designated S and D as 1, 2, . . . , n − 2. Each π∗

t maps Gt

(defined in Table 1) to one of the remaining potential edges.
It specifies which potential edge should be tested at time t.
Note that N = n(n−1)/2 is the upper bound on the number
of edges in the graph, and thus the step by which the policy
must necessarily have terminated.
The policy π∗ has been defined in a brief manner in terms

of the condensation multigraph in Section 1. Now we define
it in a detailed manner in terms of three rules more suitable
for illustration and proof.

Table 1: Notations
Notation Definition

et The edge tested at step t.

Gt

The graph state known at step t. It is
a list of (i) those potential edges that
have been tested and found to exist,
i.e., “known edges,” (ii) those potential
edges that were tested and found to
not exist, called “non-edges,” and (iii)
the remaining potential edges that
have not yet been tested. Abbreviated
to G if there is no confusion (similarly
for the notation below).

CS,t (or CD,t, or Ci,t)

The connected component containing
the source (or destination, or the
i-th component not containing the
source or destination), in the graph
comprised of the known edges at step
t.

MG

A minimum cut for a graph state G,
defined as a set which contains the
minimum number of potential edges
at time t, which if they were found to
not exist, would lead to the conclusion
that CS and CD are not connected by
a path. Note that a minimum cut may
be non-unique.

3.1 The Alternating Policy π∗

Rule 1: The policy tests a potential edge between CS

and CD as long as there exists one such direct, one-hop,
potential edge between them. Clearly, if such a direct edge
is found to exist, then the policy terminates with the finding
that S and D are connected.

Rule 2: If there are no potential edges connecting CS

and CD as specified in Rule 1, then choose an edge from the
list L defined as follows.

First list all the paths, comprised of known or potential
edges, connecting CS to CD with the minimum number
of potential edges. One such path is illustrated in Figure
3(a). Such a path must necessarily have potential edges only
between connected components. If the path traverses only
one component, say C1, on its path from CS to CD, then it
must have exactly two potential edges on it, one connecting
CS to C1, and another connecting C1 to CD, as shown in
Figure 3(a). The remaining portion of the path must only
consist of known edges within connected components CS ,
C1 or CD. The same rule holds on the remaining potential
shortest paths, each traversing through only one component,
say Ci (2 ≤ i ≤ r), on its path from CS to CD.

Fix a minimum cut MG for the graph state G at that
time. Figure 3(a) shows two cuts, one separating CS from
C1 ∪C2 ∪ . . . Cr, and another separating CD from C1 ∪C2 ∪
. . . Cr. (Suppose that, as in the case illustrated, the former
is a Minimum Cut, and the latter contains more edges. In
the sequel we will show that shortest paths are of length at
most two, and minimum cuts will be precisely of this form,
as long as the policy keeps testing the edges in the prescribed
way.)

Among all the potential edges that are on the aforemen-
tioned shortest paths, list only those potential edges that
are also in the chosen minimum set MG . Define this as the
list L. Such a list is shown in Figure 3(b).
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For convenience of definition of Rule 3 below, we also list
the set of components {C1, C2, . . . , Cr} (0 ≤ r ≤ n − 2) to
which the edges belonging to this list L are connecting. Let
us call this set of components as C, i.e., C := {C1, C2, ..., Cr}.
Figure 3(b) illustrates this set C of components too.
Rule 3: In Rule 3 we further sharpen Rule 2 by specifying

which particular edge in L should be tested.
Rule 2 when followed will lead to the following structural

property, as we prove in the sequel. All edges in L are either
between CS and Ur

i=1Ci, or all edges are between CD and
Ur

i=1Ci. (Certainly this is true at the outset for the ER
graph, and if an edge is chosen from L, as in Rule 2, then
it retains that property). Suppose all edges in L connect to
CS , i.e., have one endpoint in CS . Then, for each Ci, let ni

be the number of direct potential edges between Ci and CD.
Sort the components in C based on ni in decreasing order.
Suppose that n1 is the largest. Test any edge in L that

connects CS to C1. This is illustrated in Figure 3(c).

A potential edge 

A known non-edge 

1n

2n

r
n

1 2 3 r
n n n n     

(a) (b) (c)

A potential edge that belongs to a minimum cut as well as a 

shortest path.

A potential edge along 

one shortest path

A known edge (inside

CS, CD Ci, etc)

Figure 3: The illustration of Rules 2 and 3.

4. THE PROOF OF OPTIMALITY OF THE
ALTERNATING POLICY π∗

We now commence the proof of optimality of the Alternat-
ing Policy π∗. It uses a carefully chosen stochastic coupling
in several places. We will consider the graph shown in Figure
3(c); the general case proceeds similarly. The edges meeting
Rules 2 and 3 are the potential edges between CS and C1.
Note that compared to the other Ci’s, C1 has the greatest
chance of subsequently having an edge connected to CD, if
an edge is found between C1 and CS .

4.1 Proof of Optimality of Rules 1 and 2
The optimality of Rule 1 follows from the following:

Lemma 1. Suppose that there are direct potential edges
between CS and CD. Then for any policy A that tests an edge

other than such a direct potential edge, there is a policy Ã
that does test a direct potential edge and has a lower expected
cost than A.

Proof. See Appendix A.

Next, assuming that Rule 1 is always followed, we prove
the optimality of Rule 2. The following lemma establishes a
preliminary property.

Lemma 2. When the policy follows both Rules 1 and 2,
all the edges in the minimum cut at any step will be between
∪r

i=1Ci and CS, or they will all be between ∪r
i=1Ci and CD.

Proof. A minimum set partitions the connected com-
ponents into two classes, with one class containing CS and
another class containing CD. An equivalent claim of the
lemma is that at any step t, all the components other
than CS or CD will lie in one class. Suppose that not
all the components lie in the same class. Then, in order
to determine the S-D disconnectivity, the edges between
components, in particular those that traverse two classes,
say Ci and Cj will need to be tested, in addition to those
between CS and the components in Ci, and those between
CD and the components in Cj . Therefore, extra steps are
wasted on testing the edges between components. However,
those edges will never need to be tested when a cut is chosen
to make all the components lie within one class.

Therefore, to prove Rule 2 in our scenario we only need
to prove Lemma 3 stated as follows.

Lemma 3. When there are no direct edges between CS

and CD, listing all the potential shortest paths and sampling
the edges in the minimum set on them will lead to smaller
expected cost than sampling any other edge first.

Proof. See Appendix B.

4.2 Proof of Optimality of Rule 3
Proving Rule 3 is equivalent to proving that in choosing

between any two components from the set {C1, , . . . , Cr} at
step t, the expected cost will be smaller if we first pick the
component with a larger number of direct edges to the other
side. Without loss of generality, let us suppose that there are
only two components, C1 and C2. Based on Lemma 2, all
the edges in the minimum cut MGt are always on the same
side. Let k11 and k21 be the number of edges from MGt that
connect to C1 and C2, respectively, as shown in Figure 4(a).
Similarly, let k12 and k22 be the number of direct edges C1

and C2 have to CD. Assuming that k12 ≥ k22 in Figure 4,
we have the following lemma regarding Rule 3.

Lemma 4. Among all the potential edges that C1 and C2

connect to in MGt , it incurs smaller expected cost to first
test the ones that C1 is connected to.

Proof. We prove this by induction on the number of
potential edges, in the graph of the type that results at each
step from following Rules 1 and 2. Based on Lemma 2, such
type of graph contains singleton components with the edges
in the minimum cut all being between CS and singletons, or
all being between CD and singletons. Clearly, Rules 1, 2 and
3 are all true for the graph with 2 potential edges. Assume
that Rule 3 is true for graphs with k potential edges. We
now consider the case where the graph has k + 1 edges.

Similar to the proof of Rule 1, we introduce two policies Ã
and A, both of which always follow Rules 1 and 2. Ã first
tests an edge connecting CS to C1, as prescribed by Rule
3. If it finds an edge, then by Rule 1 it subsequently tests
edges from C1 to CD. If not, according to Rule 2, the same
cut continues to be minimum, and by induction, since the
number of potential edges is reduced by one after the first
test, it continues to test the remaining edges between C1 and
CS . In contrast, the policy A violates Rule 3 on the first
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The potential edges in the minimum cut at a certain step in 

the evolution of the system
A known edge at a certain step in the evolution of the system

A known non-edge at a certain step in the evolution of the system
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Figure 4: The illustration of the four cases (Ẽ,E),
(Ẽc,Ec), (Ẽ,Ec) and (Ẽc,E).

test by testing an edge connecting to C2, and then follows
the optimal policy for the graph with k edges. We have four
possible cases, which are listed as follows:

Ẽ : Ã finds an edge between CS and C1, and subsequently
no edges between C1 and CD, and then the minimum cut

turns out to be on the same side as CS ; or Ã finds an edge
between CS and C1 and subsequently an edge between C1

and CD; or Ã finds no edges between CS and C1.

Ẽc Ã: finds an edge between CS and C1, and subsequently
no edges between C1 and CD, and the minimum cut
therefore subsequently switches to the side of CD.
E : A finds an edge between CS and C2, and subsequently

no edges between C2 and CD, and then the minimum cut
turns out to be on the same side as CS ; or A finds an edge
between CS and C2 and subsequently an edge between C2

and CD; or A finds no edges between CS and C2.
Ec: A finds an edge between CS and C2, and subsequently

no edges between C2 and CD, and the minimum cut
therefore subsequently switches to the side of CD.

The four cases, i.e., (Ẽ ,E), (Ẽc,Ec), (Ẽ ,Ec) and (Ẽc,E) are
illustrated in Figures 4(b), (c), (d) and (e), respectively.

Consider Figure 4(b), which is the case (Ẽ ,E). We will prove
using a stochastic coupling argument that testing C1 first
leads to smaller expected cost. We couple the edges labeled

with the same symbol (e.g., β) tested under Ã and A, as
shown in Figures 5 (a), (b), (c) and (d). Note in particular

that, edges in α and β under policy Ã are switched under

policy A, and edges in θ and ε under policy Ã are also
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Figure 5: The stochastic coupling of the edges under

policy Ã (shown in (a)) and policy A (shown in (b)).

switched under policy A, as shown in Figures 5 (a) and

(b). The edges in δ, λ, γ and η under policy Ã are the
same as those in δ, λ, γ and η under policy A, as shown
in Figures 5 (c) and (d). The edges with different labels
are defined in Table 2. Since testing each potential edge
has two possible outcomes depending on whether it exists

or not, the corresponding sample paths generated under Ã
and A are illustrated in Figures 6 (a) and (b), respectively.
The nodes in the figures represent the tested edges, while
the outcome of each tested edge is indicated by a label, 1 if
it exists, or 0 otherwise. Let PD,i (i = 1, 2, . . .) be the ith
path where CS and CD are found to be disconnected under

Ã (A), and let PC,i be (i = 1, 2, . . .) the ith path where CS

and CD are found to be connected under Ã (A). Note that
the paths with the same label have the same probability. As
an example, consider paths labeled as PD,4 in both Figures
6 (a) and (b). We can see that the outcome 0 from node
α in Figure 6(a) has the same probability as the outcome
0 from nodes β in Figure 6(b). The outcome 1 from node
β in Figure 6(a) has the same probability as the outcome
1 from node α in Figure 6(b). Nodes α and β have the
same number of edges, and the outcomes of the edges from
nodes θ, δ, ε and λ are the same in both figures. Another
example is the paths labeled with PC,2 in both figures. It
can be seen that the outcome 1 from node θ in Figure 6(a)
has the same probability as the outcome 1 from node ε in
Figure 6(b). Nodes θ and ε have the same number of edges,
and the outcomes of the edges emanating from nodes α and
λ are the same in both figures. Similar relationships hold
for the remaining paths with the same labels in Figures
4 (a) and (b), and we therefore omit their explanations.

As for the paths P̃D,1 and P̃D,2 in Figure 6(a) and paths

P̂D,1 and P̂D,2 in Figure 6(b), it is trivially true that any
terminating time belonging to the range [k12+2, 1+k11+k12]
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under the paths P̃D,1 and P̃D,2 can also be found under the

paths P̂D,1 and P̂D,2. Therefore, the only paths that have
different probabilities are shown in the form of bold lines

under both Ã and A (specifically, path αθcδ under Ã, and
paths αθcβδ, αθcβcλδ and αcλcβεcδ under A.). Obviously,
αθcδ dominates the paths αθcβδ, αθcβcλδ and αcλcβεcδ,
which indicates that testing C1 first will lead to smaller
expected cost. This completes the proof of the case in Figure
4(b).

Table 2: Definitions of the edges for coupling Ã and
A
Notation Definition

α The first potential edge that policy Ã (A) tests.

β The first potential edge that policy Ã (A) tests
between CS and C2 (C1).

θ
The first k22 potential edges that policy Ã (A)
tests after an edge is found between C1 (C2) and
CS . Recall that k12 ≥ k22.

ε k22 potential edges to be tested by policy Ã (A)
after β is found to exist.

δ
The k12 − k22 remaining potential edges yet to

be tested by policy Ã (A) between CD and C1,
after no edges are found to exist in θ (ε).

λ

The k11 − 1 remaining potential edges yet to

be tested by policy Ã (A) between CS and C1,
after the first edge between CS and C1 is found
to not exist.

γ
The k21 − 1 remaining potential edges between
CS and C2.

η The potential edge between C1 and C2.

Next we turn to the case (Ẽc,Ec) shown in Figure 4(c).

The paths generated under Ã and A using coupling are
illustrated in Figures 7 (a) and (b), respectively. Again, the
paths with the same label have the same probability, and

they can be checked as in the aforementioned case (Ẽ ,E).
As for the paths P̃D,1 and P̃D,2 in Figure 7(a) and paths

P̂D,1 and P̂D,2 in Figure 7(b), it is trivially true that any
terminating time belonging to the range [k12 + k21 + k22 +

2, k11 + k12 + k21 + k22 + 1] under the paths P̃D,1 and P̃D,2

can also be found under the paths P̂D,1 and P̂D,2. The

same conclusion also holds for the paths P̃C,1 and P̃C,2 in

Figure 7(a), and paths P̂C,1 and P̂C,2 in Figure 7(b). Hence,
we highlight the paths that will terminate in different time

with bold lines under both Ã and A (specifically path αθcδ

under Ã and paths αθcδβ, αθcδβcλ and αcλcβεcδ under A.).
Obviously, αθcδ terminates earlier than αθcδβ, αθcδβcλ as
well as αcλcβεcδ, which indicates that testing C1 first will
lead to smaller expected cost. This completes the proof of
the case in Figure 4(c).

Now we proceed to prove cases (Ẽ ,Ec) and (Ẽc,E), shown
in Figures 4(d) and 4(e), respectively. We first consider case

(Ẽ ,Ec). This case implies that the minimum cut turns out
to be on the same side of CS , after an edge is found between
C1 and CS but no edges are found between C1 and CD by

Ã. Due to Rule 2, it leads to smaller expected cost for Ã to
subsequently test the edges between C2 and CS rather than
those between C2 and CD. This means the expected cost of

case (Ẽ ,Ec) is smaller than that of case (Ẽc,Ec). Moreover,
we have already proved that the expected cost is smaller
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Figure 6: Paths generated by the coupling of Ã (a)
and A (b) for the case shown in Figure 4(b).

under policy Ã in case (Ẽc,Ec). By transitivity, we conclude

that Ã leads to smaller cost than A does in case (Ẽ ,Ec).

Now consider the last case, (Ẽc,E). This case implies that
the minimum cut switches to the side of CD, after an edge is
found between C1 and CS but no edges are found between

C1 and CD by Ã. According to Rule 2, it incurs smaller

expected cost if Ã subsequently tests the edges between C2

and CD rather than those between C2 and CS . Since we
have already proved that the cost is smaller under policy Ã
in case (Ẽ ,E), it follows that by transitivity that Ã leads to

smaller expected cost than A in case (Ẽc,E).

The low complexity of the policy, of no more than 30
log2 n operations per step, follows from the fact that except
for CS and CD, all other components are singletons, and
moreover are only of three kinds, either having a known
non-edge to S, or a known non-edge to D, or neither. Hence
all computations involving these components are extremely
simple.

5. EXTENSION TO GENERAL GRAPHS
In this section, we indicate extensions of the optimality

results, without proofs, to certain more general classes of
random graphs.

5.1 (1,p) Random Graphs
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Figure 7: Paths generated by the coupling of Ã (a)
and A (b) for the case shown in Figure 4(c).

By a (1,p) random graph, we mean a graph that initially
contains two types of edges, “1” edges and “p” edges. The
former are edges that are known to exist, i.e., exist with
probability one, while the latter are potential edges that
independently exist with probability p. The Alternating
Policy remains optimal under the condition that the size
of each component, excluding CS and CD, is the same.

5.2 (1,0,p) Random Graphs
By a (1,0,p) random graph, we mean a graph that also

initially contains“0”edges. A“0”edge is simply an edge that
we already know to not exist. Unfortunately, determining
the optimal policy for all types of (1,0,p) random graphs
appears to be intractable. The Alternating Policy remains
optimal for certain types of (1,0,p) graph patterns – series
graphs, parallel graphs, SP graphs, PS graphs, series of
parallel of series (SPS) graphs and parallel of series of
parallel (PSP) graphs.

5.2.1 Optimal policy for Series of Parallel (SP) Graph

-

s
An SP graph consists of several parallel graphs arranged

in series, as shown in Figure 8. It consists of n parallel
graphs labeled P1,P2, . . . ,Pn, with mi potential edges (i.e.,

existing independently with equal probability p) in the ith
parallel graph.

S D

Figure 8: A series of parallel (SP) graph.

Theorem 1. The optimal policy is to test the parallel
subgraph with the fewest number of potential edges.

5.2.2 Optimal Policy for Parallel of Series (PS) Graph-
s

A PS graph consists of a series graphs arranged in parallel,
as shown in Figure 9. It consists of n series graphs labeled
S1,S2, . . . ,Sn, with mi potential edges in the ith series
graph.

S D

Figure 9: A parallel of series (PS) graph.

Theorem 2. The optimal policy is to test any edge on the
series subgraph that contains the fewest number of potential
edges.

5.2.3 The Optimal Policy for SPS Graphs
An SPS graph consists of several PS graphs arranged in

series, as shown in Figure 10. It consists of n PS graphs
labeled PS1,PS2, . . . ,PSn, with mi potential edges in the
ith (1 ≤ i ≤ n) PS graph.

S D

Figure 10: A series of parallel of series (SPS) graph.

Theorem 3. The optimal policy is to test any edge in
that series graph which has the fewest number of edges in
the PS graph that contains the minimum number of series
graphs.

5.2.4 The Optimal Policy for PSP Graphs
A PSP graph consists of several SP graphs arranged in

parallel, as shown in Figure 11. It consists of n SP graphs
labeled as SP1,SP2, . . . ,SPn, with mi potential edges in
the ith (1 ≤ i ≤ n) SP graph.

Theorem 4. The optimal policy is to test any edge in
that parallel graph which contains the fewest number of
edges in the SP graph that contains the minimum number
of parallel graphs.
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Figure 11: A parallel of series of parallel (PSP)
graph.

6. CONCLUSION
We have studied the problem of optimally determining S-

D connectivity of random graphs. We have considered the
class of classic ER Random Graphs with a finite number n
of nodes, for any value of n. Assuming that each testing
of an edge has the same unit cost, we have determined a
policy for establishing whether the designated source and
destination are connected with minimum expected cost.
Interestingly, though ER graphs exhibit a sharp transition
between disconnectivity of the entire graph and connectivity
of the entire graph around p = lnn/n, the optimal policy
turns out to not depend on the specific value of p, or even of
which side of the phase transition p lies. The policy simply
contracts each known connected component to a single super
node at each step, and in that condensation multigraph
it simply tests an edge that is both on the shortest path
containing the super nodes containing S and D, as well as
on a minimum S-D cut, giving higher priority to sampling
the edges that will lead to more opportunities for S-D
connectivity. The policy is also extendable to certain types
of more generalized graph structures consisting of additional
deterministic structure.
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Appendix
Appendix A: Proof of Lemma 1
The proof uses stochastic coupling. We need to consider
a general hybrid graph that may be the state at some
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intermediate time. Such a graph will contain CS , CD, and
some other components with different sizes, as well as some
edges that we already know to not exist. Consider such
an initial graph state, and consider any policy A which
does not first test a potential direct edge (denoted by d)
between CS and CD at step 0. (We note that all direct
potential edges are identical.). Let Ui(ω) denote the choice
made by A at a subsequent step i, with ω representing the
sample path, with an outcome of sampling being either 1
(edge existing) or 0 (not existing). Denote by T (ω) the
termination time of A, and by nd(ω) the first time that
A tests d, i.e., nd(ω) = inf{t ≥ 1 : U(t) = d}. Since
A may never get to check d, we say that nd(ω) = +∞ if
U1(ω) ̸= d, U2(ω) ̸= d, . . . , UT (ω)(ω) ̸= d.
The sequence of edges tested under A till it terminates

can be divided into three cases, as follows:

• Case 1: {U1(ω), U2(ω), . . . , UT (ω)(ω)} where Ui(ω) ̸= d,
i = 1, . . . , T (ω). In this case, we have T (ω) < nd(ω) =
+∞.

• Case 2: {U1(ω), U2(ω), . . . , Und(ω)−1(ω), Und(ω)(ω) =
d}. Obviously, in this case we have T (ω) = nd(ω).

• Case 3: {U1(ω), U2(ω), . . . , Und(ω)−1(ω), Und(ω)(ω) =
d, Und(ω)+1(ω), . . . , UT (ω)(ω)} where we have T (ω) >
nd(ω).

Now we construct a family of policies {Ai}, where Ai

follows A, except that if A has not tested d by step i, then
Ai does test d at step i, and subsequently continues to test
the same edges tested by A except delayed by one step, and
catches up with A when A tests d. We note that each Ai is
a feasible policy, i.e., it only uses information that Ai will
provide (even though it is supposed to emulate A after step
i). In particular, let us consider A1, where the d is tested
at the first step, and which subsequently follows A (delayed
by one step below). Correspondingly, we denote T i as the
termination time of Ai. The sequence of resulting edges
tested by A1 till it terminates has three possible cases.

• Case 1: {d} if T 1 = nd(ω) or {T 1 < n(ω), ed = 1}.

• Case 2: {d, U1(ω), U2(ω), . . . , UT1(ω)} if T 1 < nd(ω)
and ed = 0.

• Case 3: {d, U1(ω), U2(ω), . . . , Und(ω)−1(ω),

Und(ω)(ω), Und(ω)+1(ω), . . . , UT1(ω)} if T 1 > nd(ω) and
ed = 0.

Based on this, T 1 can be expressed as

|T 1| =1
(
T 1 = nd(ω)

)
+ 1

(
T 1 < nd(ω), ed = 1

)
+ 1

(
T 1 < nd(ω), ed = 0

) [
|T 1|+ 1

]
+ 1

(
T 1 > nd(ω), ed = 0

)
|T 1|.

Based on this, we have

T 1 − T i =1
(
T i = nd(ω)

)
[1− T i]

+ 1
(
T i < nd(ω), d = 1

)
[1− T i]

+ 1
(
T i < nd(ω), d = 0

)
1.
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Figure 12: The edges coupled under policies Ã (a)
and A (b).

Now we consider the policy A2, and define T 2 similarly.
Then we have

E[T 1 − T 2] = E[1
(
T 2 = 2

)
(1− 2) + 1

(
T 2 < 2, ed = 1

)
(1− 1)

+ 1
(
T 2 < 2, ed = 0

)
|T |]

= E
[
1(T 2 = 2)(−1) + 1(T 2 = 1, ed = 0)

]
= −p+ 0 = −p.

Hence A1 has lower cost than A2. Similarly, we can prove
that eachAi has lower cost thanAi+1. Noting thatAN = A,
we thus conclude that A1 has lower cost than A, proving the
lemma. �

Appendix B: Proof of Lemma 3
We prove by induction on the number of steps. Clearly,
by Lemma 1, the conclusion holds at step 1. Suppose it is
true till a certain step t. From Lemma 2, it follows that
all the edges in the minimum cut at step t are either all
between CS and ∪r

i=1Ci, or they are all between CD and
∪r

i=1Ci. Furthermore, since all those edges are also along all
the potential shortest paths, they also belong to the set L.
Without loss of generality, suppose that all the edges in L
at step t are between CS and ∪r

i=1Ci. Now we consider step
t+ 1.

We introduce two policies Ã and A, where Ã always

follows Rule 2. Specially, at step t+1, Ã will test the edges
in MGt , starting from an edge between some component, say
C1, and CS . If an edge is found between C1 and CS , then,

due to Rule 1, Ã subsequently tests all the edges between
C1 and CD. If not, then the same cut continues to be the

minimum cut, and Ã continues to test the remaining edges
between C1 and CS . In contrast, A violates Rule 2 at step

t+ 1 by testing an edge between C1 and then follows Ã.
We prove that testing the edges between C1 and CS leads

to smaller expected cost, by again employing a stochastic
coupling. Note that the number of edges between C1 and
CS can be either larger or smaller than the number of the
edges between C1 and CD. We only consider the former case;
the latter is proved similarly. We couple the edges tested

under Ã and A, as shown in Figures 12. Table 3 lists the
permutations of the nodes labels involved in the coupling.

The paths generated under both Ã and A for the cases in
Figures 12(a) and (b) are shown in Figure 13. The nodes in
the figures represent the edges tested while the outcomes of
the tested edges are indicated using lines with 1 (or 0)
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Table 3: Definitions of the edges coupled under Ã
and A
Notation Definition

α The first potential edge that policy Ã (A) tests.

β The first potential edge that policy Ã (A) tests
between C1 and CD (CS).

θ
The k11−1 potential edges that policy Ã (A) tests
between C1 and CD (CS) after β is found not to
exist between C1 and CD (CS).

δ
The remaining k12−k11 (k11−k12) potential edges

to be tested by policy Ã (A) between CD and C1.

ε

The remaining k11 − 1 potential edges between C1

and CS to be tested by policy Ã and the k11 − 1
potential edges between C1 and CD to be tested
by policy A.
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Figure 13: Paths generated by the coupling on Ã (a)
and A (b) for the case shown in Figures 12 (a)-(b).

meaning that the edges turn out to exist (or not exist).
The paths that terminate at the same time are marked with

the same labels under Ã and A. The two paths highlighted
in bold lines in Figure 13(b), i.e., P̂D,1 and P̂D,2, represent
the graph states where none of the edges between C1 and CS

exist while one edge between C1 and CD is found to exist in
P̂D,2 and not to exist in P̂D,1 under policy A. The path in
bold line in Figure 13(a) represents the graph state where

none of the edges between C1 and CS exist under policy Ã,
with the circle containing dots being the possible edges that

Ã will subsequently test. Notice that if the circle represents

an edge between C1 and CD, i.e., if Ã chooses to test an
edge between C1 and CD, then both Figures 13(a) and (b)
will have the same termination probability. However, the
expected cost will be smaller if Ã tests any edge between
CS (CD) and one of the remaining components. Similarly,
we can prove that the expected cost can be even smaller if
the edge tested belongs to the remaining edges in L. The
proof is completed by checking all the components. �

214




