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ABSTRACT
In database-driven opportunistic spectrum access, location
information of secondary users plays an important role. In a
database query-and-update procedure, a secondary user re-
ports to the geolocation database of its location information,
so that the updated knowledgebase facilitates location-aided
incumbent protection and network coexistence. However,
such database-driven spectrum sharing becomes very chal-
lenging when the secondary users are mobile. In this paper,
we propose a probabilistic coexistence framework that sup-
ports mobile users by incorporating the solutions to solve
two core problems: (i) white space allocation (WSA) at the
database and (ii) location update control (LUC) at the users.
We frame the two problems such that they interact through
dynamic control of the users’ location uncertainty levels. For
WSA, we derive a centralized real-time solution to mitigate
mutual interference among secondary users and protect pri-
mary users against harmful interference. For LUC, we design
a local two-level strategy to enable both movement-driven
and interference-driven control of location uncertainty. This
strategy makes an appropriate trade-off between the effec-
tiveness of interference mitigation and the cost of database
queries. To evaluate our algorithms, we have carried out
both theoretical model-driven and real-world trace-driven
simulation experiments. Our simulation results show that
the proposed framework can determine and adapt the data-
base query intervals of mobile users to achieve near-optimal
interference mitigation with minimal location updates.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design
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1. INTRODUCTION
In opportunistic spectrum access (OSA), primary users

(a.k.a. incumbent users) and secondary users are usually
co-located and share the same swaths of spectrum. Incum-
bent protection (i.e., primary-secondary spectrum sharing)
then becomes the major concern, and can be addressed by
spectrum sensing techniques and/or geolocation database
services. Protecting incumbent users while effectively iden-
tifying white spaces is challenging when spectrum sharing
relies solely on sensing-only cognitive radios (CRs) [1, 2].
Here, the “white space” refers to fallow spectrum that sec-
ondary users can use under the constraint that they do not
cause harmful interference to primary users. For this reason,
database-driven white space networks [3, 4, 5] have found fa-
vor with the spectrum regulators and the wireless industry.
Henceforth, we assume a database-driven spectrum sharing
system that is consistent with the Spectrum Access System
(SAS) for spectrum sharing in the 3.5 GHz band [6, 7], which
has recently been proposed by the Federal Communications
Commission (FCC). A geolocation database has access to
the operating characteristics of incumbent users, such as
service types, channel reservations, and protection require-
ments. In database-driven OSA, a registered secondary user
(or its home base station) exchanges information with the
geolocation database through a database query-and-update
procedure. On the one hand, the user queries the database
by its location information and retrieves local white space
availability. On the other hand, the user updates the data-
base with its operating information, including its location,
so that the updated knowledgebase can facilitate location-
aided incumbent protection and network coexistence (i.e.,
secondary-secondary spectrum sharing) [6, 7, 8, 9].

The above database-driven spectrum sharing system can
work well with static secondary networks. However, when
the secondary users are mobile, the problem of incumbent
protection becomes very challenging [4, 10]. Furthermore,
the problem of network coexistence, i.e., spatial spectrum
reuse and mutual interference mitigation among mobile sec-
ondary users, is even more difficult, and has not been ad-
dressed in the existing work. When supporting mobile users,
each user can query and update the database at a fixed in-
terval, and the database query interval (or location update
interval) is a key operational parameter that impacts the
performance of the spectrum sharing system [7]. On the
one hand, during these intervals, the database may have to
rely on past location information to ensure incumbent pro-
tection and mitigate mutual interference. This leads to con-
siderable loss of white space opportunities [4] and increased
likelihood of suboptimal resource allocations. On the other
hand, it can be unacceptable to blindly reduce the intervals
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because of limited database processing capacity, significant
communication overhead rise, and needless network resource
waste. This causes the database to become a bottleneck in
processing spectrum sharing information. The goal of this
paper is to study the strategies for determining and adapt-
ing the database query intervals to strike an appropriate
trade-off between interference-aware spectrum sharing and
cost-effective database access. To the best of our knowledge,
this paper is the first work addressing this problem.
We focus on two major problems for supporting secondary

user mobility: (i) white space allocation (WSA) and (ii) loca-
tion update control (LUC). The database performsWSA and
centrally allocates white spaces for secondary users based on
their probabilistic location uncertainty levels to mitigate co-
channel interference among them and ensure no interference
with primary users. Each mobile user performs LUC and
locally adjusts its location uncertainty level by adapting its
database query interval, so that an appropriate trade-off
between interference mitigation effectiveness and database
query cost can be achieved. The two problems are solved
alternately through dynamic control of location uncertainty.
Formulating a solution approach that jointly solves these

two problems is challenging. First, the location uncertainty
level of a user has to be quantified to model WSA and LUC.
Second, the LUC design for each user has to locally adapt
database query interval to the time-varying spectrum envi-
ronment without global knowledge. Third, the WSA design
for the database has to promptly adjust resource allocation
in response to the dynamic changes in spectrum availability,
location uncertainty, and mutual interference probability.
In this paper, we make the following contributions:

• We propose a probabilistic coexistence framework, which
incorporates WSA at the database and LUC at the users.
This framework jointly addresses the issues of spectrum
sharing and database access in database-driven OSA.

• For WSA, we derive a centralized real-time solution that
minimizes the probability of mutual interference among
secondary users and guarantees full protection of primary
users. For LUC, we design a local two-level strategy that
minimizes the weighted sum of mutual interference prob-
ability and database query frequency (i.e., inverse of the
interval). This strategy combines movement-driven and
interference-driven control of location uncertainty.

• We evaluate the algorithms for WSA and LUC in two
types of simulation experiments. In the first experiment,
we have simulated WiFi-like secondary networks using a
theoretical mobility model. In the second experiment, we
have simulated cellular-like secondary networks using a
real-world mobility trace dataset. Our results suggest that
the proposed framework determines and adapts the data-
base query intervals of mobile users to realize near-optimal
interference mitigation with minimal location updates.

• We provide discussions on system design guidelines and
real-world deployment issues in database-driven OSA.

The rest of this paper is organized as follows. Related
work is discussed in section 2. System overview is described
in section 3. The problems of WSA and LUC are formulated
and solved in sections 4 and 5, respectively. Simulation re-
sults are shown in section 6. Implementation discussions are
presented in section 7, and conclusion is drawn in section 8.

2. RELATED WORK
Recently, the FCC issued a NPRM for enabling small cell

use in the 3.5 GHz band [6, 7]. In the proposed framework,
spectrum sharing can be achieved among three tiers of users,

including tier-1 incumbent access users, tier-2 priority access
users, and tier-3 general authorized access users. The tier-1
and tier-2 users are protected in certain exclusion zones,
while tier-3 users have to opportunistically access the band.
All the users register with the SAS that incorporates a geo-
location database and various interference mitigation tech-
niques. The SAS needs to i) specify appropriate operations
across the tiers of users based on location-specific data on
spectrum occupancy; ii) resolve interference issues promptly;
and iii) coordinate the registered users, if necessary, based
on user-generated data on spectrum sharing. The SAS is
able to collect location information of registered secondary
users and achieve location-aided spectrum sharing.

The research on supporting secondary user mobility in
OSA is still in its infancy. The problem of protecting pri-
mary users from being interfered with by mobile secondary
users has been studied in [4, 10]. In [4], the authors pro-
pose a service called SenseLess, which is a database-driven
white space network. To enable mobile users without loss
of white space opportunities, the database query interval of
a user traveling at 60 miles/hour is suggested to be shorter
than 30 seconds. However, such a high database query fre-
quency may not always be necessary. When the database
manages resource allocation, a certain loss of white spaces
is acceptable as long as the remaining white spaces can be
enough to offer what the user has requested. For a practical
database query strategy, one should consider the trade-off
between interference mitigation effectiveness and database
query cost. Furthermore, the authors oversimplify the way
of setting a database query interval—i.e., they propose that
the database query interval of a user is inversely propor-
tional to the speed of the user. For a cost-effective database
query strategy, however, one should consider the behaviors
of all the primary users and coexisting secondary users in
the vicinity to determine the interval. In [10], the authors
propose enabling mobile users in a sensing-only CR network.
To protect primary users under the location uncertainty of a
secondary user, a guard distance is controlled to enlarge each
primary exclusion zone for an extra protection. In database-
driven spectrum sharing, however, it would be more chal-
lenging to achieve the coexistence of mobile secondary users
due to the need for dynamic control of both interfering and
interfered users’ location uncertainty levels.

In CR networks without the issue of location uncertainty,
the problems of joint resource allocation have been studied
in [11, 12, 13, 14, 15]. In our problem, however, we try to
find out how certain a location estimate should be to jointly
optimize spectrum sharing and database access.

3. SYSTEM OVERVIEW
In this section, we introduce our coexistence framework

and explain basic assumptions and system model.

3.1 Basic Assumptions
We assume a spectrum sharing system similar to that in

the 3.5 GHz band [6, 7]. A set of primary users P and a set
of secondary users S are co-located and share the same set
of channels K. The primary users are protected from any
harmful interference in certain pre-defined exclusion zones,
while the secondary users have to tolerate harmful inter-
ference from others. All the users register with a central
database server similar to the SAS in the 3.5 GHz band,
which operates a geolocation database with the database
query-and-update functionality and performs WSA for the
registered users. In this work, the terms “central database
server” and “database” will be used interchangeably. The
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Figure 1: A database-driven spectrum sharing scenario.

base stations offer the interfaces between the registered users
and the database. Each user s ∈ S can be mobile, and per-
forms LUC for itself. At a certain interval, it updates the
database with its current operating information, including
its location, and queries the database for location-specific
resource allocation. We assume that the users do not share
location information among each other for privacy protec-
tion and overhead reduction. We assume a time-slot-based
system. At the beginning of each time slot, location updates
are submitted from the users according to the decisions for
LUC in the previous time slot. Using the location updates,
the database makes a decision for WSA and notifies the users
of changed resource allocation when necessary through their
home base stations. Note that even if a user does not query
the database, the database still computes resource alloca-
tion based on its estimation of the user’s location. In this
work, a database query is equivalent to a location update.
A user accesses the database at most once in each time slot.

3.2 Location Probability Grid
The issues of incumbent protection and spectrum reuse in

database-driven spectrum sharing rely on the location infor-
mation of secondary users. When the users are mobile, their
locations can become uncertain and thus affect resource allo-
cation decisions. Hence, a database-driven system needs to
quantify the location uncertainty level of a user between suc-
cessive location update events so that the decisions for WSA
and LUC can be adjusted accordingly. In this work, we uti-
lize location probability grids (LPGs) to achieve this. In the
current designs of geolocation databases, spectrum availabil-
ity is computed for each location pixel in a pre-defined map
grid L (e.g., a map grid with the granularity of 50m×50m
pixel). Hence, as illustrated in Figure 1, we can define a
LPG for each mobile user as the probability distribution of
the user’s location estimate over the map grid L. For each
user s ∈ S, its LPG is defined by Qs(t) , {qs,l(t) for l ∈ L},
where each qs,l(t) is the probability that user s is at loca-
tion pixel l in time slot t. The LPG of each user defines the
fuzziness of its location estimate at the database, which is a
function of the elapsed time since the latest location update.
The fuzzy location (or called movement contour) of user s is

defined by Ls(t) , {l | qs,l(t) > 0 for l ∈ L}, which includes
all the possible locations of the user in time slot t. Let ℓs(t)
denote the actual location of user s in time slot t, which may
not be known by the database. The database has to perform
WSA based on the knowledge of LPGs. Each user needs to
perform LUC to update its LPG when necessary and make
its fuzzy location capture its actual location.

3.3 A Coexistence Framework
Intuitively, there exists a trade-off between interference

mitigation effectiveness and database query cost. On the
one hand, frequent database access decreases the fuzziness

of location estimates and keeps the system deterministic, so
that the database can precisely allocate white spaces with-
out losing spectrum opportunities or creating mutual inter-
ference. But frequent database access may not always be
necessary. For example, when a user occupies a channel ex-
clusively or the user is far away from other co-channel users,
fuzzy location of the user is acceptable due to low likelihood
of mutual interference. Moreover, too frequent database ac-
cess may cause delay in server response time or introduce
other types of cost such as battery power drain. On the oth-
er hand, infrequent database access increases the fuzziness
of location estimates, so that large user movement contours
may lead to overconservative resource allocation and thus
low spectrum utilization. Hence, an optimal database query
frequency needs to be found to address the trade-off.

The above trade-off issue involves two problems: (i) WSA,
i.e., spectrum sharing controlled by the database; and (ii)
LUC, i.e., database access controlled by the mobile users.
For WSA, the database first generates LPGs based on the
current and past location updates, and then minimizes the
probability of mutual interference among secondary users
while guaranteeing full protection of primary users based on
the updated LPGs. For LUC, the users determine whether
to submit location updates next to minimize the weighted
sum of mutual interference probability and database query
frequency based on the local measurements of user move-
ment and co-channel interference. The problems are solved
alternately through the control of LPGs. In the next two
sections, the two problems are addressed separately.

4. WHITE SPACE ALLOCATION
In this section, we formulate the problem of WSA and

provide a centralized real-time solution.

4.1 Problem Formulation
In each time slot t, the central database server updates its

estimation of all the registered users’ LPGs based on their
current and past location updates. Using the updated LPGs,
the database performs WSA to minimize the probability of
mutual interference among secondary users under the con-
straint that the users do not cause harmful interference to
primary users. The database achieves this by coordinating
the channel assignments and transmit power levels of sec-
ondary users. The decision for WSA can be broadcasted to
the users through their home base stations.

For WSA that mitigates mutual interference, we need to
first create a model of likely interference among secondary
users with fuzzy locations. For each user s ∈ S and each
channel k ∈ K, define Xs,k(t) as a binary channel alloca-
tion indicator such that Xs,k(t) = 1 (0) represents user s is
(is not) allocated to channel k in time slot t. Due to spatial
spectrum reuse, denote the set of coexisting users that share
the same channel k in time slot t by Sk(t) , {s |Xs,k(t) =
1 for s ∈ S} = {s1, ..., sMk}. A possible location distribu-

tion of the co-channel users is (l1, ..., lMk) ∈ LMk . Given
Qsm(t) for all sm ∈ Sk(t), the probability that a particular

location distribution (l1, ..., lMk) happens is
∏Mk

m=1 qsm,lm(t).
Thus, the database computes the probability of interference
experienced at each user sm on channel k in time slot t by

Ism,k(t) ,
∑

(l1,...,lMk
)∈LMk

Jsm|l1,...,lMk
(t)

Mk∏
m=1

qsm,lm(t), (1)

where Jsm|l1,...,lMk
(t) is a binary interference indicator such

that Jsm|l1,...,lMk
(t) = 1 (0) represents certain intolerable
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interference is (is not) experienced at user sm for location
distribution (l1, ..., lMk). Given a certain (l1, ..., lMk), the
database can utilize a radio wave propagation model to com-
pute the signal-to-interference-plus-noise ratio (SINR) at the
receiver of link sm, denoted by Rsm|l1,...,lMk

(t). Here, link

sm refers to the link in which user sm can be either a trans-
mitter (in the uplink) or a receiver (in the downlink). We
consider basic path loss model as an example, and other
models can also be applied in our framework. Let

Rsm|l1,...,lMk
(t) =

Ysm,k(t)Hlm,lm(t)∑Mk

m′=1
m′ ̸=m

Ysm′ ,k(t)Hlm′ ,lm(t) + Z0

, (2)

where Ysm,k(t) is transmit power from link sm on channel k,
Hlm,lm(t) is transmission gain in link sm, Hlm′ ,lm(t) is inter-
ference gain from link sm′ to link sm, and Z0 is noise power.
Assume a threshold Řsm such that harmful interference to
link sm occurs if Rsm|l1,...,lMk

(t) < Řsm . Let

Jsm|l1,...,lMk
(t) = 1

(
Rsm|l1,...,lMk

(t) < Řsm

)
, (3)

where 1() is an indicator function that is equal to 1 (0) if its
condition is true (false). Combining (1), (2), and (3), Is,k(t)
is a function of Qs(t), Xs,k(t), Ys,k(t) for s ∈ S.
Having formulated Is,k(t) under location uncertainty, we

can now formulate the problem of WSA. Given Qs(t) for all
s ∈ S, the database needs to find Xs,k(t) and Ys,k(t) for
s ∈ S, k ∈ K to minimize the global objective function

I(t) , 1

|S|
∑
s∈S

Is(t), (4)

where Is(t) is the average value of Is,k(t) over Ks(t) ,∑
k∈K Xs,k(t) channels taken by user s at a time, namely

Is(t) =
1

Ks(t)

∑
k∈K

Xs,k(t)Is,k(t). (5)

There are three constraints for WSA. The first constraint
ensures the protection of primary users. In database-driven
white space networks, primary users are protected in pre-
defined exclusion zones. Hence, all the possible locations of
secondary users under location fuzziness must be outside the
exclusion zones of co-channel primary users. Suppose each
channel k is occupied by a set of primary users Pk(t) and
a set of secondary users Sk(t). The union of the exclusion

zones of primary users in Pk(t) is defined by X̃k,l(t), which is

a binary channel occupancy indicator such that X̃k,l(t) = 1
(0) represents channel k is not (is) available for secondary
users at location pixel l in time slot t. The fuzzy location of
each secondary user s is characterized by Ls(t). Hence, the
constraint for incumbent protection is defined as

qs,l(t)[1− (Xs,k(t) + X̃k,l(t))] ≥ 0

for s ∈ S, k ∈ K, l ∈ L.
(6)

The second constraint avoids secondary user starvation by
ensuring a minimum number of channels, Ǩs, to be taken
by each user s, which is expressed as

Ks(t) ≥ Ǩs for s ∈ S. (7)

The third constraint limits the maximum transmit power,

Ŷs, of each user s, which is expressed as

Ys,k(t) ≤ Xs,k(t)Ŷs for s ∈ S, k ∈ K. (8)

In summary, the problem of WSA solved at the central
database server in time slot t can be written as follows.

Algorithm 1 for WSA at the database in time slot t

1: compute Qs(t) for s ∈ S according to past location
update history submitted from user s

2: for each generation do
3: clone a number of best feasible solutions from previ-

ous generation as offsprings
4: select enough pairs of good feasible solutions from

previous generation as parents
5: for each pair of parents do
6: reproduce a pair of offsprings via crossover,

which randomly swaps some rows in matrices
[Xs,k(t)]|S|×|K| for parent 1 and [X ′

s,k(t)]|S|×|K|
for parent 2 (same crossover is applied for
[Ys,k(t)]|S|×|K| and [Y ′

s,k(t)]|S|×|K|)
7: mutate each offspring according to a probability,

where a row in matrix [Xs,k(t)]|S|×|K| is randomly
reordered without loss of feasibility (same mutation
is applied for [Ys,k(t)]|S|×|K|)

8: end for
9: break when runtime reaches a threshold
10: end for

Problem 1 (White Space Allocation)
Given: Qs(t) for s ∈ S;
Find: Xs,k(t), Ys,k(t) for s ∈ S, k ∈ K;

Minimize: I(t);
Subject to: (6), (7), (8).

Because each Qs(t) for computing I(t) follows a general
probability distribution, Problem 1 is a mixed-integer non-
linear program (MINLP), which is NP-hard in general. Fur-
thermore, since the database needs to solve Problem 1 in
every time slot, it cannot afford the time to find the real op-
timal solution. Therefore, we extend the genetic algorithm
in [11] to derive a fast heuristic solution to Problem 1.

4.2 A Genetic Algorithm
Due to the complexity of Problem 1 and the requirement

of fast database response, we apply a variant of genetic al-
gorithm [11] to derive a solution for WSA iteratively in real
time. In Algorithm 1, line 1 updates LPGs for computing
the objective value, and line 3 and lines 4-8 implement the
two stages of cloning and breeding in a genetic algorithm,
respectively. In each step of a generation, the candidate solu-
tions are guaranteed to be feasible to Problem 1. A heuristic
solution with the best objective value can be obtained when
Algorithm 1 terminates. In section 6, we will evaluate the
optimality gap of the solution given by Algorithm 1.

5. LOCATION UPDATE CONTROL
In this section, we formulate the problem of LUC and

design a local strategy with no need for global knowledge.

5.1 Problem Formulation
In time slot t, each mobile user s ∈ S performs LUC to

adjust Qs(t+1) for the next WSA by determining whether it
wants to submit a location update in the next time slot t+1.
For user s, define As(t) as a binary database query indicator
such that As(t) = 1 (0) represents user s submits (does not
submit) a location update to the database in time slot t. In
general, Qs(t) can be generated by a movement prediction
model based on the sequence of As(t

′) for t′ = t, t−1, ... and
the past location update history in the database.

For LUC that addresses cost-effective database access, we
first define the weighted average database query cost (i.e.,
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database query frequency) of mobile users in time slot t by

C(t) , θ

|S|
∑
s∈S

As(t), (9)

where θ is a positive weight factor, and can be set to reflect
various overhead associated with processing query requests
at both servers and devices. It may reflect cost factors such
as computing power [4], energy consumption, control com-
munication overhead, server response delay, and resource re-
allocation frequency. Expression (9) makes the cost function
scale proportional to the frequency of database queries.
Having modeled C(t), we can now formulate the problem

of LUC, assuming global knowledge of Qs(t), Xs,k(t), Ys,k(t)
for s ∈ S, k ∈ K and future knowledge of Xs,k(t+1), Ys,k(t+
1) for s ∈ S, k ∈ K at this time. In time slot t, given
the solutions to Problem 1 obtained from time slot t and
predicted from time slot t+1, the mobile users need to find
As(t+ 1) for s ∈ S to minimize the objective function

G(t+ 1) , δI(t+ 1) + (1− δ)C(t+ 1), (10)

where I(t + 1) is the objective function of Problem 1, and
δ ∈ [0, 1] is a weight factor that can be set on demand.
In addition to the constraints (6), (7), and (8), there is one

more constraint for LUC, which ensures that the estimated
Ls(t) can always capture the actual ℓs(t). We have

ℓs(t) ∈ Ls(t) for s ∈ S. (11)

This constraint (11) is needed to guarantee the effectiveness
of incumbent protection and interference mitigation in Prob-
lem 1. If any ℓs(t) ̸∈ Ls(t) occurs, even though constraint
(6) makes sure that Ls(t) does not overlap with any primary
exclusion zone, it is likely that ℓs(t) moves into an exclusion
zone, resulting in harmful interference from user s to prima-
ry users. Without constraint (11), it is also possible that the
value of I(t) computed using Ls(t) cannot accurately reflect
the actual interference from or to user s located at ℓs(t).
In summary, the problem of LUC solved at the mobile

users in time slot t can be written as follows.

Problem 2 (Location Update Control)
Given: As(t

′) for t′ = t, t− 1, ..., s ∈ S;
Xs,k(t), Ys,k(t) for s ∈ S, k ∈ K;
Xs,k(t+ 1), Ys,k(t+ 1) for s ∈ S, k ∈ K;

Find: As(t+ 1) for s ∈ S;
Minimize: G(t+ 1);

Subject to: (6), (7), (8), (11).

If Problem 2 is solved centrally at the database, constraint
(11) cannot be guaranteed. Because user s does not have to
continuously query and update the database in every time
slot, the database cannot always keep track of ℓs(t). It is
possible that a rapid change in a user’s speed or direction
makes the estimated movement contour become inaccurate
and lose track of the user. This constraint, however, can
be easily satisfied at a user. Each user s knows ℓs(t) (e.g.,
via GPS) and its past location update history. The user
can locally compute Qs(t) (Ls(t)) using the same movement
prediction model as used at the database [16] and compare it
with ℓs(t) to see whether constraint (11) holds. In the rest
of this section, we will derive a local heuristic solution to
Problem 2 through a local strategy for setting each As(t+1).

5.2 A Local Two-Level Strategy
Solving Problem 2 locally at mobile users is challenging.

Each user s cannot have the future knowledge of Qs′(t+ 1)
for s′ ̸= s and Xs,k(t + 1), Ys,k(t + 1) for s ∈ S. As a

heuristic, we can assume a short-term prediction based on
the correlation between time slot t and time slot t + 1 [17]
and the fact that the local decision of a user has limited
impact on the global decision for all the users. We have

Xs,k(t+ 1) = Xs,k(t),

Ys,k(t+ 1) = Ys,k(t) for s ∈ S, k ∈ K.
(12)

Then, each user s only needs to set its own As(t + 1) as
a part of a solution to Problem 2. However, user s cannot
have the global knowledge of Qs′(t), Xs′,k(t), Ys′,k(t) for
s′ ̸= s. Keeping track of such information locally at each
user demands real-time message exchanges among all the
users at all time. This is prohibitively expensive and very
impractical. Thus, we need to propose a local strategy for
each user s to find the proper setting of As(t+1) that solves
Problem 2 only based on local measurements.

The basic idea for our heuristic local strategy is based on
locally evaluating the impact of a location update on the
minimization of mutual interference I(t + 1) in (10). Local
measurements of user movement and co-channel interference
can be used to set As(t+1) through a two-level strategy. On
the first level, a movement-driven strategy (MDS) identifies
the “must-update” and “no-update” instances with regard to
the constraints of Problem 2. A location update is necessary
if skipping it will violate constraint (11) or harm spectrum
utilization greatly due to white space loss caused by con-
straint (6). A location update is avoidable if skipping it will
not negatively affect interference mitigation and constraint
satisfaction. For the instances when MDS is not sufficient
to tell the impact of a location update, on the second level,
an interference-driven strategy (IDS) further identifies the
“no-update” instances from these uncertain instances with
regard to the objective function of Problem 2. A location
update is unnecessary in this step if doing it will not im-
prove interference mitigation. In the rest of this section, we
will first illustrate the designs of the two strategies, and then
combine them as a local heuristic algorithm for LUC.

5.2.1 Movement-Driven Strategy
The MDS for LUC locally identifies the “must-update”

and “no-update” instances with regard to the constraints
of Problem 2. These instances are identified according to
two design needs. First, constraint (11) should always hold.
Second, constraint (6) should not lead to inefficient spectrum
utilization. To explain our design formally, we will show
how we mathematically quantify the location accuracy and
location fuzziness of Qs(t) for each user s ∈ S and how to
use these two values in meeting the two needs.

We define the location accuracy ofQs(t) by qs(t) , qs,ℓs(t),
which is the probability of locating ℓs(t) by Qs(t). The first
need is addressed by the following two propositions.

Proposition 1 For each user s ∈ S, constraint (11),
i.e., ℓs(t) ∈ Ls(t), is locally guaranteed if qs(t) > 0 holds.

Proof Please refer to the definition of Ls(t). �
In robot navigation research, a LPG is often created by

using Bayes filters, which probabilistically estimate the lo-
cation of an object from noisy observations. In our problem,
however, each mobile user exactly reports its location infor-
mation. Hence, we only need to implement one prediction
step of general Bayes filters without sequential localization
error correction. We integrate grid-based localization [18]
and sampling-based localization [19, 20] to generate LPGs.

Specifically, the database can utilize the sequence of As(t
′)

for t′ = t, t − 1, ... and the past location update history to
generate Qs(t). Suppose that the latest location update
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from user s happens in time slot t0, i.e., As(t0) = 1 and
As(t

′) = 0 for t′ = t, t − 1, ..., t0 + 1. Define t̃s(t) = t − t0
as the elapsed time since the last location update. The past
location update history can include the reported location l̃s
and velocity vector ṽs in time slot t0. In each prediction
step for locating user s using a technique of sampling-based
Monte Carlo localization, all the samples for location esti-
mation are placed at l̃s initially. Then, each sample is shifted
according to its randomly generated succeeding location

L̇s(t) , l̃s + (ṽs + w̃s) t̃s(t), (13)

where L̇s(t) is a random variable generated by the movement
prediction model representing an estimate of ℓs(t), and w̃s is
a vector of random variables characterizing the uncertainty
in generating Qs(t). The Qs(t) is essentially the probability

distribution of L̇s(t) over L. Using (13), we have

qs(t) = Pr{l̃s + (ṽs + w̃s) t̃s(t) = ℓs(t)}. (14)

The probability distribution of w̃s varies with the applied
movement prediction model and the knowledge of underly-
ing terrain data. As an example, we assume w̃s follows a
bivariate normal distribution with parameters (µx = 0, µy =
0, σ2

x, σ
2
y, ρ) in the two-dimensional map grid with no terrain

knowledge. Then, we have the following common results.

Proposition 2 For bivariate normal w̃s, qs(t) is upper
bounded by a monotonically decreasing function of t̃s(t), i.e.,

q̃s(t) = Pr{l̃s + (ṽs + w̃s) t̃s(t) = E[L̇s(t)]},

where E[L̇s(t)] = l̃s+ṽst̃s(t). As ℓs(t) deviates from E[L̇s(t)],
qs(t) is a monotonically decreasing function of t̃s(t).
Proof Let w̃s = (Wx,Wy) and define a vector of random

variables (Lx, Ly) = t̃s(Wx,Wy) + (l̃x, l̃y), where (l̃x, l̃y) =

l̃s + ṽst̃s can be viewed as a constant vector. Based on
the probability density function (PDF) of (Wx,Wy) and
the properties for linear transformations of bivariate ran-
dom variables, the joint PDF of (Lx, Ly) can be derived as

fLx,Ly (lx, ly) =
1

2πσxσy

√
1− ρ2

1

t̃2s
× (15)

exp

−

(
lx−l̃x
σx

)2

+
(
ly−l̃y
σy

)2

−2ρ
(
lx−l̃x
σx

)(
ly−l̃y
σy

)
2(1− ρ2)

1

t̃2s

 .

Hence, qs(t) is the double integral of fLx,Ly (lx, ly) over the

small area of location pixel ℓs(t), and is a function of t̃s(t)
for t̃s(t) > 0. Because the size of ℓs(t) is fixed, qs(t) is only
determined by fLx,Ly (lx, ly). For ρ ∈ (−1, 1), we know that(

lx−l̃x
σx

)2
+

(
ly−l̃y

σy

)2
−2ρ

(
lx−l̃x

σx

)(
ly−l̃y

σy

)
2(1−ρ2)

≥ 0. Hence,

fLx,Ly (lx, ly) ≤
1

2πσxσy

√
1− ρ2

1

t̃2s
. (16)

The equality in (16) holds when (lx, ly) = (l̃x, l̃y). In this

perfect case, ℓs(t) can always be captured by E[L̇s(t)], which
is on the top of the bell-shaped joint density fLx,Ly (lx, ly).
In this case, qs(t) reaches its upper bound q̃s(t), which is the

double integral of fLx,Ly (lx, ly) over ℓs(t) = E[L̇s(t)]. Since

q̃s(t) is determined by fLx,Ly (lx, ly) =
1

2πσxσy

√
1−ρ2

1
t̃2s
, q̃s(t)

is a monotonically decreasing function of t̃s(t).

As ℓs(t) deviates from E[L̇s(t)], dℓs,l̃s(t) < dℓs,l̃s(t + 1),

where dℓs,l̃s(t) is the distance between ℓs(t) and E[L̇s(t)]. It

is easy to show qs(t) > qs(t+ 1) through (15). �

Even though qs(t) may have local fluctuations when t̃s(t)
increases due to likely irregular trajectory of user s, it is
bounded by the monotonically decreasing upper bound and
it is common that ℓs(t) deviates from E[L̇s(t)] without local-
ization correction. Its general trend is decreasing with time.
Hence, setting As(t + 1) = 0 will mostly lead to a further
decrease in qs(t). To ensure qs(t + 1) > 0, user s needs to
track the drop in qs(t) and set As(t + 1) = 1 when qs(t) is
too low. This addresses the first need for constraint (11).

We define the location fuzziness of Qs(t) by |Ls(t)|, which
is the covered pixel area of Ls(t). The second need can be
addressed by the following proposition.

Proposition 3 For bivariate normal w̃s, |Ls(t)| is a
monotonically increasing function of t̃s(t).

Proof The size of |Ls(t)| depends on the covariance ma-

trix of (Lx, Ly) = t̃s(Wx,Wy) + (l̃x, l̃y), which is[
(t̃sσx)

2 ρ(t̃sσx)(t̃sσy)
ρ(t̃sσx)(t̃sσy) (t̃sσy)

2

]
,

where both t̃sσx and t̃sσy grow with t̃s(t). Hence, for a fixed
ρ, |Ls(t)| enlarges as t̃s(t) increases. �

Hence, setting As(t+1) = 0 will lead to a further increase
in |Ls(t)|, which indicates that Ls(t+1) is a fuzzier estimate
of ℓs(t+1) compared with Ls(t) as an estimate of ℓs(t). To
avoid significant loss of white space opportunities and high
chance of inaccurate resource allocations, user s needs to
set As(t+1) = 1 when necessary. This addresses the second
need for not being affected by constraint (6) too much.

If w̃s follows a general probability distribution, different
movement prediction models can achieve different levels of
location estimation deviation, but the properties of lower
location accuracy and greater location fuzziness are usually
true as the elapsed time increases.

Local MDS The MDS works as follows. Each user s
can track qs(t) and set As(t + 1) using two thresholds: α1

and α2 (α1 ≥ α2). There are three possible cases:

a. When qs(t) ≥ α1, user s assumes “no-update” case and
sets As(t+ 1) = 0.

b. When α2 < qs(t) < α1, user s assumes uncertain case and
needs to consider using IDS for further investigation.

c. When qs(t) ≤ α2, user s assumes “must-update” case and
sets As(t+ 1) = 1.

For case a, a relatively small |Ls(t)| ensures that Ls(t) nicely
captures ℓs(t) and thus constraints (11) and (6) are easy to
satisfy. If user s sets As(t+1) = 1, it is very likely that this
action has little impact on the resource allocation decision
under the slightly reduced location uncertainty. For case
c, a relatively large |Ls(t)| tends to cause significant loss
of white space opportunities due to constraint (6) and high
chance of inaccurate interference estimation. If user s sets
As(t + 1) = 0, it is very likely that the database makes a
suboptimal resource allocation decision under the increased
location uncertainty. More importantly, if qs(t) is very low,
qs(t+1) = 0 is possible and thus violates constraint (11). For
case b, IDS is needed as an additional step to set As(t+ 1).

5.2.2 Interference-Driven Strategy
The IDS for LUC further locally identifies the“no-update”

instances among the uncertain instances from MDS (in case
b) with regard to the objective function of Problem 2. To
decide whether As(t + 1) should be 0 or 1, user s needs to
predict which action will lead to a smaller objective value.
Ideally, user s can take the following process. First, user s
solves Problem 1 for time slot t + 1 to obtain the values of
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I(t + 1) for both As(t + 1) = 0 and As(t + 1) = 1 cases.
Next, user s compares the values of G(t + 1) for the two
cases. Whichever objective value that comes the smallest
corresponds to the optimal setting of As(t+ 1) for Problem
2. However, this process requires user s to have perfect
global knowledge, which is impractical to obtain. Thus, we
need to derive a heuristic strategy to set As(t+1), which can
approximate this process but only requires local knowledge.
Based on (9) and (10), we know that the key in the design

of IDS is to find a local way to determine whether

I(t+ 1)|As(t+1)=0 − I(t+ 1)|As(t+1)=1 >
(1− δ)θ

δ|S| . (17)

If (17) is likely to be true (false), set As(t+ 1) = 1 (0).
Global IDS To find a way to judge (17), we consider

that user s using a channel k ∈ K has a set of co-channel
neighbors s′ ∈ Sk(t), s

′ ̸= s. As an example, we discuss IDS
with global knowledge based on the co-channel interference
in the uplink from user s to others s′. Define ds′(t) as the
protection radius from the receiver of each interfered link s′,
and define ds,s′(t) as the distance between the transmitter
of the interfering link s and the receiver of each interfered
link s′. Define ω1 ∈ [0, 1) and ω2 ∈ (1,∞). With proper ω1

and ω2, there are three possible relative location cases:
1. When ds,s′(t) ≤ ω1ds′(t) for any s′ ∈ Sk(t), s

′ ̸= s, user s
assumes “no-update” case and sets As(t+ 1) = 0.

2. When ω1ds′(t) < ds,s′(t) < ω2ds′(t) for any s′ ∈ Sk(t),
s′ ̸= s, user s sets As(t+ 1) = 1.

3. When ds,s′(t) ≥ ω2ds′(t) for all s′ ∈ Sk(t), s
′ ̸= s, user s

assumes “no-update” case and sets As(t+ 1) = 0.
For case 1, user s is deep inside the protection area of a link
s′. Because MDS guarantees that ℓs(t) ∈ Ls(t) and |Ls(t)| is
not too large in case b, there should be a relatively full over-
lap between Ls(t) and the protection area of link s′. Thus,
even setting As(t+1) = 0, Problem 1 is likely to judge that
links s and s′ have a high probability of mutual interference
and make a resource allocation decision as same as that in
the case of setting As(t+ 1) = 1 (so that the mutual inter-
ference probability is 1). Because the decisions for WSA in
both update and no-update cases should be the same, (17) is
likely to be false. For case 3, user s is far outside the protec-
tion area of any link s′ ∈ Sk(t). The movement contour of
user s is likely to be mostly outside the protection area of any
link s′. Thus, even setting As(t+1) = 0, Problem 1 is likely
to judge that links s and s′ have a low probability of mu-
tual interference and make a resource allocation decision as
same as that in the case of setting As(t+1) = 1 (so that the
mutual interference probability is 0). Because the decisions
for WSA in both update and no-update cases should be the
same, (17) is likely to be false. For case 2, user s is near the
boundary of the protection area of a link s′. The movement
contour of user s is partly inside and partly outside the pro-
tection area of link s′. If user s sets As(t+ 1) = 1, Problem
1 can precisely know whether there is mutual interference
between links s and s′. If there exists mutual interference,
the database will try to reallocate channels to links s and
s′ to eliminate the interference. If there exists no mutual
interference, the database is likely to keep the interference
to be zero. In both cases, the solution to Problem 1 usually
makes the probability of mutual interference between links
s and s′ be zero. If user s sets As(t+1) = 0, Problem 1 can
only use the movement contour to obtain a positive value of
mutual interference probability. The left-hand side of (17)
is usually large, so (17) is likely to be true.
Unfortunately, user s cannot precisely know which case

it belongs to without perfect knowledge of other co-channel

Figure 2: PDFs of Rs,k(t) (ω1 = 2
3
, ω2 = 4

3
).

users’ location information, which is impractical to obtain.
However, user s can estimate which relative location case it
is likely in based on its local measurement of Rs,k(t), the
SINR that user s has observed on channel k in time slot t.

Proposition 4 The relative location cases and the local
measurement of Rs,k(t) are correlated in a stochastic sense.

For example, we use numerical results to create Figure 2,
which shows the PDFs of Rs,k(t) observed in different rela-
tive location cases. The exclusive case refers to the situation
where there is no any other user sharing the channel with
user s. Obviously, a location update is not needed in the
exclusive case. The PDFs of the other three cases are aver-
aged when the number of co-channel users ranges from 2 to
7. The details of the 7-cell system will be presented in sec-
tion 6. We observe that when the locally measured Rs,k(t) is
either low enough or high enough, the false judgement rates
for the “no-update” cases (except for case 2) are relatively
low due to their distinct peaks in the PDFs. Then, user s
can usually identify the “no-update” instances properly.

Local IDS The IDS works as follows. Each user s that
takes a channel k can measure Rs,k(t) and set As(t + 1)
using two thresholds: β1 and β2 (β1 ≤ β2). There are three
possible cases mapping with the relative location cases:
1’ When Rs,k(t) ≤ β1, user s assumes “no-update” case and

sets As(t+ 1) = 0.

2’ When β1 < Rs,k(t) < β2, user s sets As(t+ 1) = 1.

3’ When Rs,k(t) ≥ β2, user s assumes “no-update” case and
sets As(t+ 1) = 0.

For case 1’, user s is most likely in case 1. For case 3’, user s
is very likely in either case 3 or the exclusive case. For case
2’, user s can be in case 1, 2, or 3. Using a safe strategy that
cares more about interference mitigation effectiveness than
database query cost, user s assumes the worst case 2.

5.2.3 Combining MDS and IDS
The local two-level strategy for LUC that combines MDS

and IDS is summarized in Algorithm 2. Two sets of thresh-
olds, i.e., movement-related α1 and α2, and interference-
related β1 and β2, are used to identify the cases where a
location update is unnecessary (in cases a, 1’, 3’) or neces-
sary (in cases c, 2’). Running Algorithm 2 at mobile users
gives a heuristic solution to Problem 2. After the thresholds
have been determined, the complexity of Algorithm 2 main-
ly comes from computing Qs(t) through one prediction step
of a Bayes filter, which is not very expensive. In sections 6
and 7, we will discuss how these thresholds can be set.

6. PERFORMANCE EVALUATION
In this section, we evaluate the proposed algorithms using

the results from two simulation experiments. First, we have
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Algorithm 2 for LUC at user s ∈ S in time slot t

1: if As(t) == 1 (0) then
2: query (do not query) the database
3: end if
4: access white space spectrum according to Xs,k(t),

Ys,k(t) for k ∈ K assigned by the database
5: compute Qs(t) as in Algorithm 1, and measure qs(t)
6: if case a (c) then
7: set As(t+ 1) = 0 (1)
8: else
9: set As(t+ 1) = 0
10: measure Rs,k(t) for all k with Xs,k(t) == 1
11: if case 2’ for any k then
12: set As(t+ 1) = 1
13: end if
14: end if

simulated WiFi-like secondary networks using a theoretical
mobility model. Second, we have simulated cellular-like sec-
ondary networks using a real-world mobility trace dataset.

6.1 Model-Driven Simulation
In the first experiment, we study a 7-cell spectrum sharing

system, in which the seven base stations for secondary net-
works are placed at the center and six vertices of a regular
hexagon with the edge length of 1500 m. Total m channels
are shared by m primary users and 2m secondary users.
Each primary user occupies a different channel in its ex-
clusion zone with the radius of 1500 m, and its duty cycle
is λ. The primary users are uniformly distributed. Each
secondary user is randomly associated with a base station,

and let Ǩs = 1, Ŷs = 100 mW, Řs = 10 dB. The random
movement of each user is defined by a semi-Markov smooth
mobility model [21]. The target direction in the model is
restricted back when the user is more than 1500 m away
from its home base station, and the average target speed is
on the order of human walking speed. The granularity of
the map grid is 50m×50m, and the duration of a time slot
is 120 s. In this example, the cells largely overlap with each
other, and user mobility relative to the size of map grid is
high enough to generate dynamic inter-cell interference. We
explain the settings of α1, α2 in MDS and β1, β2 in IDS to
adapt the database query intervals. The average objective
function is recorded as Ḡ = δĪ + (1 − δ)C̄, where Ī is the
average fraction of time for unsuccessful reception in each
link and C̄ is the average value of C(t) over time with θ = 1.
First, we show the impact of α1 and α2 on Ḡ. In Figure

3, fixing α2 = 0.01, β1 = 5 dB, β2 = 14 dB, we increase
α1 from α2 to 1. This increases the probability of case 2’
in IDS and thus increases C̄. In Figure 4, fixing α1 = α2,
we increase α2 from 0 to 1. This increases the probability
of case c in MDS and thus increases C̄. To balance between
Ī and C̄, larger α1 and larger α2 are chosen for larger δ to
keep higher location accuracy and smaller location fuzziness.
Larger α1 − α2 is used to give more preference to IDS.
Second, we show the impact of β1 and β2 on Ḡ. According

to Figure 2, too small β1 or too large β2 can create a lot of
unnecessary location updates due to falsely treating case 1
or 3 as case 2’. On the contrary, too large β1 or too small β2

can omit a lot of necessary location updates due to falsely
treating case 2 as case 1’ or 3’. The values of β1 and β2

should be chosen with regard to the false judgement rates
for the relative location cases. In Figure 5, fixing α1 =
0.7, α2 = 0.01, we increase β2 − β1 from 0 (decreasing β1

from 9.5 dB and increasing β2 from 9.5 dB). This increases

Figure 3: Impact of α1 on Ḡ (m = 28):
(a) δ = 1 (left); (b) δ = 0.8 (middle); (c) δ = 0.6 (right).

Figure 4: Impact of α2 on Ḡ (m = 28):
(a) δ = 1 (left); (b) δ = 0.8 (middle); (c) δ = 0.6 (right).

the probability of case 2’ in IDS and thus increases C̄. To
balance between Ī and C̄, smaller β1 and larger β2 are chosen
for larger δ to reduce the false judgements that cause missing
necessary location updates, while larger β1 and smaller β2

are chosen for smaller δ to reduce the false judgements that
cause unnecessary location updates.

Third, we compare the value of 1−Ī given by our heuristic
mechanism with the value given by an impractical optimal
mechanism. Here, our mechanism is called movement-driven
and interference-driven database query strategy (MIDQ).
We also consider two alternative heuristic mechanisms: a
pure movement-driven database query strategy (MDQ) (by
fixing α1 = α2) and a periodic database query strategy
(PDQ) (as used in [4]). The optimal mechanism assumes
perfect global knowledge, so that all the users’ actual loca-
tions are known (without location update cost) and an opti-
mal resource allocation is performed accordingly. The ratio
of 1 − Ī from a heuristic solution to that from the optimal
solution is depicted in Figure 6. It can be seen that the ratio
grows with increasing database query frequency. For MIDQ,
C̄ is increased by first increasing α1 (α2 = 0.01, β1 = 5 dB,
β2 = 14 dB) from 0.01 to 1 and then increasing β2 − β1.
For MDQ, C̄ is increased by increasing α1 = α2 from 0.01
to 1. Compared with MDQ and PDQ, the proposed MIDQ
achieves better reduction of mutual interference with the
same level of database query frequency (cost). With a high
enough database query frequency, MIDQ can achieve almost
the same interference level as the optimal mechanism.

6.2 Trace-Driven Simulation
In the second experiment, we have utilized a real-world

mobility trace dataset that contains the GPS coordinates of
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Figure 5: Impact of β1 and β2 on Ḡ (m = 28):
(a) δ = 1 (left); (b) δ = 0.8 (middle); (c) δ = 0.6 (right).

Figure 6: Optimality gap of heuristic WSA and LUC (m = 28):
(a) λ = 0 (top-left); (b) λ = 0.25 (top-right);

(c) λ = 0.75 (bottom-left); (d) λ = 1 (bottom-right).

real taxis collected in the San Francisco Bay Area [22]. In
this experiment, a taxi represents a mobile secondary user.
However, we need to deploy the base stations for secondary
networks, since the dataset does not include any location
information of cellular base stations or WiFi access points.
We use a similar method as used in [23]. The possible lo-
cations of the base stations to be deployed are the location
points that have been traveled by the taxis in the dataset,
and the points are along roads and around buildings. Each
point is assigned with a selection probability, which is the
frequency at which the location point has been visited by
the taxis. In this way, more base stations are deployed in
more heavily traveled areas. Total m channels are shared
by m primary users and 2m secondary users. As shown in
Figure 7, the traces of 48 taxis are selected, and 12 base
stations are deployed. We assume that each taxi is associ-
ated with the nearest base station, i.e., inter-cell handover
is enabled. The exclusion zones of the primary users with
a radius of 3000 m are uniformly distributed in the simula-
tion area. The granularity of the map grid is 100m×100m,
and the duration of a time slot is 60 s. Similar to Figure
6, the ratio of the heuristic solution to the optimal solution
is shown in Figure 8. From the results, we can see that
the proposed MIDQ still outperforms MDQ and PDQ. The
overall performance of the heuristic mechanisms degrades in
this experiment compared with that in the first experiment.
Besides the impact of incumbents, this should be caused by
the high-speed vehicular mobility that leads to less accurate
movement prediction and the dynamic user-cell association
that leads to less accurate local interference estimation.

Figure 7: A trace-driven simulation scenario in San Francisco
(lines: taxi movement trajectories; triangles: secondary base
stations; circles: primary exclusion zone centres).

Figure 8: Optimality gap of heuristic WSA and LUC (traces):
(a) λ = 0 (top-left); (b) λ = 0.25 (top-right);

(c) λ = 0.75 (bottom-left); (d) λ = 1 (bottom-right).

7. DISCUSSIONS
In this section, we discuss system design guidelines and

real-world deployment issues in database-driven OSA.
1 The database query interval of each mobile user should

be adapted according to both internal factors (e.g., user
mobility, database processing capacity, and location priva-
cy) and external factors (e.g., incumbent protection, and
network coexistence) to achieve a proper balance between
spectrum sharing and database access. In general, a higher
frequency of database queries is necessary if i) user move-
ment pattern is more dynamic; ii) interference mitigation
effectiveness is of higher priority than database query cost;
iii) location information is less sensitive at the database; iv)
the duty cycle of primary users is larger, i.e., less channels
are available for certain users; v) mutual interference is more
likely to occur, i.e., more users share certain channels.

2 In a probabilistic coexistence framework as proposed
in this work, the database can set the system parameters
offline (e.g., via statistical analysis) or online (e.g., via a
stochastic decision process). For example, the thresholds α1

and α2 can be empirically set according to the maximum
and minimum desired levels of location accuracy or location
fuzziness, respectively, for a certain movement prediction
model. The thresholds β1 and β2 can be dynamically ad-
justed according to the changes in the spectrum environment
(e.g., primary user activity, secondary user density and mo-
bility, and resource reallocation) and the results from past
decisions (e.g., the rate at which erroneous decisions have
been made in determining the appropriate case for a user).
To reduce complexity, the thresholds can also be empirically
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set according to the PDFs as in Figure 2. One can learn the
amount of false judgement for each case given a particular
setting of β1 and β2, and thus make an educated choice.
The offline and online decisions can be combined to mediate
a trade-off between performance and complexity.
3 For the estimation of user movement pattern at the

database, the applied localization method or movement pre-
diction model determines how the location uncertainty level
of a user changes with time. In general, a more advanced
localization technique (e.g., a method that integrates GPS,
maps, and user behaviors) achieves a slower drop in location
accuracy and a slower rise in location fuzziness, and requires
less location updates for localization error correction.
4 For the estimation of harmful interference to primary

users and mutual interference among secondary users at the
database, the applied radio wave propagation model affects
the effectiveness of spectrum availability prediction and re-
source allocation. In general, a more sophisticated signal
propagation model (e.g., Longley-Rice with terrain data [4])
achieves better incumbent protection and higher spectrum
utilization, and even further improves local decisions at the
users for mutual interference mitigation.
5 It is hard to quantify the cost of database queries in

database-driven spectrum sharing. However, one of major
bottlenecks in such a system is the capacity of the central
database server. In a fine-grained system, each single user
performs LUC, and the central server manages spectrum
sharing information and performs WSA at the user-level
granularity. The computational complexity of resource allo-
cation is affected by the number of registered users and the
spatial granularity of map grid, and the resource allocation
has to meet the timely requirement if a time slot is very
short. Hence, when designing a database-driven spectrum
sharing system, the maximum number of registered users
that can be served by each server needs to be considered.
Alternatively, each base station can manage the users in its
cell as a whole. In such a coarse-grained system, each base
station performs LUC, and the central server offers the ser-
vices at the cell-level granularity. In this approach, each
base station further performs WSA at the user-level granu-
larity. In general, the fine-grained system is recommended
when database processing capacity is not a problem, while
the coarse-grained system is preferred when server response
delay or resource reallocation frequency is too high.

8. CONCLUSION
In this paper, we have addressed two major problems for

supporting mobile users in database-driven OSA: WSA and
LUC. In the proposed coexistence framework, WSA is per-
formed centrally, while LUC is performed locally. We have
used a LPG to quantify the location uncertainty level of each
user. The problems of WSA and LUC have been jointly
solved through dynamic control of LPGs. The local strate-
gy for adapting database query intervals combines practical
MDS and IDS to reduce database query cost without neg-
atively impacting interference mitigation effectiveness. Our
model-driven and trace-driven simulation results have shown
that the intervals can be adapted to yield near-optimal
interference mitigation with minimal location updates.

References
[1] S. Haykin. Cognitive radio: Brain-empowered wireless

communications. IEEE J. Sel. Area. Comm., 23(2), Feb.
2005.

[2] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty.
Next generation/dynamic spectrum access/cognitive ra-

dio wireless networks: A survey. Elsevier Comp. Netw.,
50(13), Sep. 2006.

[3] D. Gurney, G. Buchwald, L. Ecklund, S. Kuffner, and
J. Grosspietsch. Geo-location database techniques for
incumbent protection in the tv white space. In Proc.
IEEE DySPAN’08, Oct. 2008.

[4] R. Murty, R. Chandra, T. Moscibroda, and P. Bahl.
Senseless: A database-driven white spaces network.
IEEE Trans. Mobi. Comp., 11(2), Feb. 2012.

[5] M. Barrie, S. Delaere, G. Sukareviciene, J. Gesquiere,
and I. Moerman. Geolocation database beyond tv white
spaces? matching applications with database require-
ments. In Proc. IEEE DySPAN’12, Oct. 2012.

[6] FCC. Enabling innovative small cell use in 3.5 ghz band
nprm & order. GN Docket No. 12-354, FCC 12-148, Dec.
2012.

[7] FCC. Wireless telecommunications bureau and office
of engineering and technology call for technical papers
on the proposed spectrum access system for the 3.5 ghz
band. GN Docket No. 12-354, DA 13-2213, Nov. 2013.

[8] C. Ghosh, S. Roy, and D. Cavalcanti. Coexistence chal-
lenges for heterogeneous cognitive wireless networks in
tv white spaces. IEEE Wirel. Comm., 18(4), Aug. 2011.

[9] B. Gao, J.-M. Park, Y. Yang, and S. Roy. A taxonomy of
coexistence mechanisms for heterogeneous cognitive ra-
dio networks operating in tv white spaces. IEEE Wirel.
Comm., 19(4), Aug. 2012.

[10] A. W. Min, K.-H. Kim, J. P. Singh, and K. G. Shin. Op-
portunistic spectrum access for mobile cognitive radios.
In Proc. IEEE INFOCOM’11, Apr. 2011.

[11] H. Kim and K. G. Shin. Asymmetry-aware real-time dis-
tributed joint resource allocation in ieee 802.22 wrans.
In Proc. IEEE INFOCOM’10, Mar. 2010.

[12] Q. Ni and C. C. Zarakovitis. Nash bargaining game the-
oretic scheduling for joint channel and power allocation
in cognitive radio systems. IEEE J. Sel. Area. Comm.,
30(1), Jan. 2012.

[13] B. Gao, J.-M. Park, and Y. Yang. Uplink soft frequen-
cy reuse for self-coexistence of cognitive radio networks
operating in white-space spectrum. In Proc. IEEE IN-
FOCOM’12, Mar. 2012.

[14] Y. Tachwali, B. F. Lo, I. F. Akyildiz, and R. A-
gust́ı. Multiuser resource allocation optimization using
bandwidth-power product in cognitive radio networks.
IEEE J. Sel. Area. Comm., 31(3), Mar. 2013.

[15] B. Gao, Y. Yang, and J.-M. Park. A credit-token-based
spectrum etiquette framework for coexistence of hetero-
geneous cognitive radio networks. In Proc. IEEE INFO-
COM’14, Apr. 2014.

[16] Y. Xu, J. Winter, and W.-C. Lee. Dual prediction-based
reporting for object tracking sensor networks. In Proc.
ACM MobiQuitous’04, Aug. 2004.

[17] Q. Xu, S. Mehrotra, Z. M. Mao, and J. Li. Proteus:
Network performance forecast for real-time, interactive
mobile applications. In Proc. ACM MobiSys’13, Jun.
2013.

[18] W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Es-
timating the absolute position of a mobile robot using
position probability grids. In Proc. AAAI’96, Aug. 1996.

[19] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte
carlo localization for mobile robots. In Proc. IEEE I-
CRA’99, May 1999.

[20] M. S. Arulampalam, S. Maskell, N. Gordon, and
T. Clapp. A tutorial on particle filters for online
nonlinear/non-gaussian bayesian tracking. IEEE Trans.
Sign. Proc., 50(2), Feb. 2002.

[21] M. Zhao and W. Wang. A novel semi-markov smooth
mobility model for mobile ad hoc networks. In Proc.
IEEE GLOBECOM’06, Nov. 2006.

[22] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Gross-
glauser. CRAWDAD data set epfl/mobility (v. 2009-
02-24). online: http://crawdad.org/epfl/mobility/, Feb.
2009.

[23] S. Dimatteo, P. Hui, B. Han, and V. O.K. Li. Cellular
traffic offloading through wifi networks. In Proc. IEEE
MASS’11, Oct. 2011.

224




