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ABSTRACT
Consider a wireless network in which selfish users compete with
each other for usage of spectrum. We view this competition as a
spatial spectrum access game. There are two fundamental ques-
tions regarding this game: how to converge to the optimal Nash
equilibrium, and how to converge fast. To answer these two ques-
tions, we apply a technique called Belief Propagation to design al-
gorithms for users in this game, which can guarantee fast conver-
gence to an optimal or nearly optimal pure strategy Nash equilib-
rium. Specifically, when the interference graph is an undirected
tree or a directed acyclic graph, our algorithms can find the optimal
Nash equilibrium in linear time. For general undirected interfer-
ence graph, our algorithm converges fast as long as the game is
potential (which is the case for many typical scenarios). For some
other typical spatial spectrum access games, our algorithms can
provide a good approximation to the optimal Nash equilibrium.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Communi-
cation

Keywords
Wireless Network; Distributed Algorithm; Game Theory; Belief
Propagation

1. INTRODUCTION
With the rapid development of mobile computing technology, the

number of computing nodes in a network grows explosively while
the number of available channels is an invariable natural resource
limited by physical laws. Consider a multi-hop wireless network,
e.g., a wireless ad-hoc network or a vehicular network. Since the
nodes of the network usually belong to different users, these users
will compete with each other for the usage of channels.

Naturally, we can view the above competition among users as
a game, which is called spatial spectrum access game [5]. The
players of this game are the selfish users, while the utilities of these
users correspond to the network performance they experience. In
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principle, this spatial spectrum access game will converge to a Nash
equilibrium eventually. Once the Nash equilibrium is reached, each
user has no incentive to further change her own strategy, and thus a
stable state of the entire network is achieved.

While this picture of converging to Nash equilibrium (stable state
of network) looks nice, there are still two fundamental questions.
First, a spatial spectrum access game can have multiple Nash equi-
libria, with completely different utitlities for users. How can users
choose their strategies such that they have the best possible utilities
in the finally reached Nash equilibrium? Second, the convergence
to a Nash equilibrium can be a slow process. What strategies should
users choose such that the entire network enter the stable state as
quickly as possible? Our goal in this paper is to answer these two
questions. That is, we would like to design distributed algorithms
that converge fast to an optimal or near-optimal pure strategy Nash
equilibrium in spatial spectrum access games.

In order to achieve this goal, we adopt the model of graphi-
cal game, in which the underlying graph is the interference graph,
which captures the interference relations among users. We focus
on the pure strategy Nash equilibrium (PSNE) because the proba-
bilistic behavior of users can be hard-coded into the space of pure
strategies. Our first step is to reduce the task of finding an optimal
PSNE of a graphical game to the maximum a posteriori (MAP) es-
timation in a graphical model. We then use a modified version of
max-product belief propagation (BP) algorithm to find the optimal
PSNE. The BP algorithm has the following virtues:

1. BP is simple and easy to implement. We only need a single
control channel for message passing.

2. BP is flexible so that the utility function of each user can be
locally defined and needs not to be known by other users, sat-
isfying privacy requirement. The final outcome of the PSNE
reflects the utilities of all users.

3. The max-product BP is a greedy algorithm maximizing the
utility of each user in every round, which is consistent with
the selfishness of users. Moreover, each user only has local
information. None of them could have enough information
to be cheating.

Our Results In a general model (which can be used for, e.g.,
FDMA, TDMA, CDMA and CSMA/CA), we show the spatial spec-
trum access games on undirected interference graphs are potential
games, guaranteeing the convergence to PSNE. We give a general
reduction from the problem of finding optimal PSNE of graphical
games to the MAP estimation in graphical model. The algorithmic
results we obtain include:
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1. When the interference graph is an undirected tree or a di-
rected acyclic graph, max-product belief propagation con-
verges to the optimal PSNE of graphical games in linear time.

2. For any undirected interference graph, the BP-guided local
dynamics converges to a PSNE as long as the game is po-
tential, and experiments show that the convergence is fast for
the considered protocols.

3. For some typical spatial spectrum access games, including
the weighted q-state independent set, weighted q-coloring
where q > ∆, where q is the number of channels and ∆ is
the maximum degree of the interference graph, there is a
polynomial-time approximation scheme (PTAS) for finding
the optimal solution on planar graphs.

4. For k-outerplanar graphs where k is any fixed constant, there
is a linear-time dynamic programming algorithm for finding
the optimal PSNE for any spatial spectrum access games.

Related Work Mechanism design for spatial spectrum access has
been studied extensively for different protocols [8, 13, 18]. This
problem was modeled as various combinatorial problem such as
independent set [19, 28], coloring [15, 23, 30] and matching [19,
28]. Designing spectrum sharing mechanism in the context of game
theory has been studied in [5, 10, 13, 15, 22]. Static game was
used to analyze channel assignment for single collision domain in
[10]. Channel assignment for multi-collision domain by game the-
ory was studied in [13, 22, 5]. Graphical game was first applied to
address spatial spectrum access on undirected interference graphs
in [22]. Then in [3] the model was generalized to directed interfer-
ence graphs on which the graphical congestion game with linear la-
tency function was studied. In [5], the concept of spatial spectrum
access games was proposed and the convergence of real network
protocols was answered for the first time. All the previous works
on spatial spectrum access games focused on searching for a PSNE
rather than finding the optimal PSNE for spatial spectrum access.

The graphical game was first studied in [20]. The connection
between graphical models and graphical games was first discussed
in [7], which was used to deciding the existence of PSNE on graphs
with bounded treewidth.

Belief propagation is rediscovered many times in the history and
has been widely used in artificial intelligence, information theory,
statistical physics and many other related fields. In [26], they were
developed for exact probabilistic inference in acyclic Bayesian net-
works. Much earlier in [11], they were used for decoding low-
density parity-check (LDPC) codes. Recently, max-product and
min-sum belief propagation were used to design various message-
passing algorithms for combinatorial optimization problems, such
as min-cost flow [12], maximum weight matching [2], maximum
weight independent set [27]. All these optimization problems are
special cases of optimization for PSNE of graphical games.

2. SYSTEM MODEL
We consider a wireless network with n heterogeneous users V =

{1, . . . , n} and q orthogonal channels Q = {1, . . . , q}. Each user is
a transmitter with multiple radios and can access multiple chan-
nels simultaneously. In a fading environment, each user vi has a
limited interference range whose diameter is denoted by ri. The
distance between user vi and user v j is denoted by di j. The inter-
ference relations among all users are described by an interference
graph G = (V, E), with each vertex v ∈ V representing a user in
the network, and a directed edge going from u to v if and only if
ru > duv. For each user v, we use Nin(v) = {u : (u, v) ∈ E} and

Nout(v) = {u : (v, u) ∈ E} to denote the set of in-neighbors and out-
neighbors of v respectively, and din(v) = |Nin(v)| and dout = |Nout(v)|
the in-degree and out-degree of v respectively. If for any two users
u, v ∈ V , when u can interfere with v, v can also interfere with u,
the interference graph becomes an undirected graph. The directed
edges (u, v) and (v, u) can be replaced by a single undirected edge
{u, v} and Nin(v) = Nout(v) = N(v) for all v ∈ V . For each user i, let
fi denote her utility function, which maps the channel assignment to
payoff. The median access problem is modeled as a graphical game
on interference graph with these utility functions, where the notion
of graphical game is to be formally defined later. We consider the
utility functions realized by the MAC protocols extensively used in
practice, including the contention-based protocol CSMA/CA, and
the contention-free protocols FDMA, TDMA and CDMA.

1. For FDMA, TDMA and CDMA, a channel is divided equally
into frequency bands, time slots or orthogonal codes. A strat-
egy of user i ∈ V is a boolean vector si = (si,1, . . . , si,q)
where si, j indicates whether user i is using channel j. And∑q

j=1 si, j ≤ δi where δi is the number of radios of user i. The
utility function fi is defined as in [10, 13]:

fi =
∑
j∈Q

θ j
si, j

si, j +
∑

k∈Nin(i) sk, j
,

where θ j is the rate of channel j, which is assumed to be
shared equally by the users.

2. For the CSMA/CA protocol, strategies of each user i ∈ V are
samely defined as above. When a channel j is sensed busy,
user i makes a delay of time τi, j uniformly generated from
[0, λ j]. The utility function fi is defined as in [5]:

fi =
∑
j∈Q

si, j

∫ λ j

0

θ j

λ j

∏
k∈Nin(i)

(
Pr[τk, j > τi, j]

)sk, j dτi, j

=
∑
j∈Q

si, j

∫ λ j

0

θ j

λ j

(
λ j − x
λ j

)p j

dx,

where p j =
∑

k∈Nin(i) sk, j and θ j is the rate of channel j.

For time-varying channels, θ j may be the expectation value of a
stationary stochastic process.

Note that for all the considered protocols, we do not need to con-
sider the case that two radios of the same user compete the usage
of the same channel simultaneously.

In interference graphs, a directed cycle of length 2 is formed
by two directed edges (u, v), (v, u) ∈ E between the same pair of
vertices. And we have the following simple proposition.

PROPOSITION 1. In any directed interference graph, if there
is no directed cycle of length 2, then there is no directed cycle of
length greater than 2.

PROOF. If (u, v) ∈ E and (v, u) < E, then we have ru > duv

and rv < duv, and hence ru > rv. Let G be an interference graph
with no directed cycle of length 2. If there is a directed cycle L =

(u1, u2, . . . , u`, u1) with ` > 2 in G, then we have ru1 > ru2 > . . . >
ru` > ru1 , which leads to a contradiction.

By this proposition, in our model the interference graph as shown
in Figure 1 will never appear. Therefore, it is safe to characterize
all directed acyclic interference graphs by the following definition.

DEFINITION 2. An acyclic interference graph is a directed in-
terference graph with no cycle of length 2.
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Figure 1: An Impossible Directed Interference Graph

3. PRELIMINARIES

3.1 Graphical games
The classic graphical game [20] is defined on undirected graphs.

Here we consider the more general setting of directed graphs [3, 5].

DEFINITION 3. (Graphical Game) A graphical game is a pair
(G, F) where G = (V, E) is a directed or undirected graph over
V = {1, . . . , n}, and F = { fi : i ∈ V} is a set of local payoff functions.
Each node i ∈ V represents a player whose in-neighborhood is
defined as Nin(i) = { j : ( j, i) ∈ E} and strategy set is defined as S i.
For any joint action s = (s1, . . . , sn) ∈ S = S 1 × . . .× S n, the payoff
of i is given by fi(si, sNin(i)) where sNin(i) is the strategy profile of its
neighbors.

Note that fi can be written as fi(si, sNin(i)) as long as we consider
only symmetric functions.

DEFINITION 4. The pure strategy Nash equilibrium (PSNE) of
a graphical game (G, F) is defined as a strategy profile s = (s1, . . . , sn)
that for each si where i ∈ V , si = argmaxy∈S i

fi(y, sNin(i)).

DEFINITION 5. A graphical game is called an ordinal potential
game if there exist a potential function Φ : S → R+ such that when
player i changes its strategy si to s′i , sgn(Φ(s)−Φ(s′)) = sgn( fi(s)−
fi(s′)) where s = (s1, . . . , si, . . . , sn) and s′ = (s1, . . . , s′i , . . . , sn).

DEFINITION 6. A graphical game is called an exact potential
game if there exist a potential function Φ : S → R+ such that when
player i changes its strategy si to s′i , Φ(s) − Φ(s′) = fi(s) − fi(s′)
where s = (s1, . . . , si, . . . , sn) and s′ = (s1, . . . , s′i , . . . , sn).

DEFINITION 7. A graphical game is called a weighted poten-
tial game if there exist a potential function Φ : S → R+ such that
when player i changes its strategy si to s′i , Φ(s)−Φ(s′) = wi( fi(s)−
fi(s′)) where s = (s1, . . . , si, . . . , sn) and s′ = (s1, . . . , s′i , . . . , sn).

It is well-known that if a game is potential it must possess a
PSNE [24]. The PSNE can be achieved by the local improvement
of strategies as long as the potential function exists [29]. When the
potential function is maximal or minimal, the strategy profile is a
PSNE. This is known as the finite improvement property (FIP).

3.2 Factor graphs
A factor graph [21] is one type of graphical modelG = (X,F ,E),

which is a bipartite graph where X = {X1, . . . , Xk} is the set of vari-
able nodes, with each Xi being a random variable whose joint dis-
tribution to be specified later, and F = {F1, . . . , F`} is the set of
function nodes, and E = {{Xi, F j} : i ∈ [k], j ∈ [`]} is the set of
edges adjoining variable nodes and function nodes. The bipartite
graph G represents a function g(x1, . . . , xn) =

∏m
j=1 F j(x∂ j) where

x∂ j denotes the restriction of x = (x1, x2, . . . , xn) on the neighbor-
hood ∂ j = {i : {Xi, F j} ∈ E} of j in G. We assume that F j depends
only on those variables xi with i ∈ ∂ j so that g is well-defined. This
gives rise to a natural probability distribution, in which the joint
probability of any x ∈ X1 × . . . × Xn is defined as

P(x) =
1
Z

m∏
j=1

F j(x∂ j)

where the normalizing factor Z =
∑

x
∏m

j=1 F j(x∂ j) is called the
partition function.

A compelling reason for adopting factor graph is because of its
simplicity and flexibility for analysis. When the environmental
constraints change, the factor graph can be easily modified to adapt
to the new environment by changing function nodes. For instance,
in cognitive radio networks, secondary users cannot use a channel
which is being used by a primary user. Thus once an idle channel
c is occupied by a primary user, all the function nodes associated
with variable nodes corresponding to a secondary user interfering
with the primary user can be changed to new function nodes by
each combining with a new function node whose constraint func-
tion is a Boolean indicator function indicating that xi , c for all
involved variables.

3.3 The reduction
Given a graphical game (G,F ) where G = (V, E), a strategy

profile s = (s1, . . . , sn) is a PSNE if and only if for all i ∈ V , si

is the best response for sNin(i). Hence a graphical game (G,F ) can
be represented by a factor graph G = (V, F,E) in such a way that
for each player i ∈ V , we have a variable node in the factor graph
which takes the strategy si of play i as value, and for each player
i ∈ V , we also have a function node Fi adjacent to the variable
nodes corresponding to players in Nin(i), including player i itself.
The function Fi is defined as

Fi =

exp ( fi) if si = argmaxy∈S i
fi(y, sNin(i)),

0 otherwise.
(1)

Then searching the optimal pure strategy Nash equilibrium with
maximum total payoff is equivalent to finding an assignment of
variables with maximum product value in the factor graph, as fol-
lows:

max
n∑

i=1

fi = max

exp

 n∑
i=1

fi

⇔ max
n∏

i=1

Fi.

If the utility fi is interpreted as “cost" and each player strives to
minimize her cost, then Fi can be set as the dual version of max-
product, that is

Fi =

exp (− fi) if si = argmaxy∈S i
fi(y, sNin(i)),

0 otherwise.

Then searching the optimal pure strategy Nash equilibrium with
minimum total payoff is still equivalent to

min
n∑

i=1

fi = max

exp

− n∑
i=1

fi

⇔ max
n∏

i=1

Fi.

Hence both utility maximization and cost minimization in graph-
ical games can be reduced to computing the maximum a posteriori
(MAP) value in corresponding factor graphs.

Sometimes we need to make a tradeoff between utility maxi-
mization and fairness. In this case, the constraint function Fi can
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Figure 3: Factor Graph for Undirected Tree

be simply set as

Fi =

 fi = exp
(
log fi

)
if si = argmaxy∈S i

fi(y, sNin(i)),
0 otherwise.

By the inequality of arithmetic and geometric means, n
(∏n

i=1 fi
)1/n

provides a lower bound for
∑n

i=1 fi and the equality holds if and only
if f1 = . . . = fn, which means the maximization of

∏n
i=1 Fi (equiv-

alently,
∏n

i=1 fi) provides a tradeoff between utility maximization
and fairness. We call this algorithm “fairness propagation". How-
ever, this algorithm can only be used in a limited amount of cases
where the maximization of

∏n
i=1 Fi can be exactly and efficiently

computed. In other cases the performance of this algorithm cannot
be well measured.

3.4 Belief Propagation
A tutorial of classic BP and max-product BP can be found in [21].

By our reduction, the factor graph translated from a directed acyclic
interference graph may not always be a tree. An example is shown
in Figure 2. In addition, even for the undirected interference graph
which is a tree, the resulting factor graph may not be a tree either,
as shown in Figure 3.

We modify the standard max-product BP algorithm to deal with
this complication. Let µ(t)

a→i denote the message sent from function
node a to variable node i in t-th iteration and x∂a denote the joint
configuration of the neighbors (variable nodes) of a when the strat-
egy s j is fixed to be x j for every player j. If a is Fi, then

µ(t)
a→i(xi) = max

x∂a\i

{
Fa(x∂a)

∏
j∈∂a\i

µ(t)
j→a(x j)

}
.

Otherwise, µ(t)
a→i(xi) = 1. Let µ(t)

i→a denote the message sent from
variable node i to function node a in t-th iteration. Then

µ(t+1)
i→a (xi) =

∏
b∈∂i\a

µ(t)
b→i(xi) = µ(t)

Fi→i(xi).

Each message is a key-value map where the key is xi and the value
is µi→a(xi) or µa→i(xi). From now on, when mentioning BP or max-
product BP equations, we refer to this modified version.

Observe that if in the graphical game PSNE does not exist, then
in the factor graph the messages µFi→i(xi) = 0 for all xi ∈ si. There-
fore, the fixed point representing the nonexistence of PSNE is

µi→a(xi) =

1 if a is Fi,
0 otherwise,

µa→i(xi) =

0 if a is Fi,
1 otherwise.

The belief propagation algorithm on factor graphs can be eas-
ily translated back to distributed algorithm on interference graphs
in the following way. Since for every graphical game, the corre-
sponding factor graph has the same number of variable node and
function node, the function node Fi can be treated as the decision
making process of player i. Therefore the messages exchanged be-
tween i and Fi will not appear in the network. The messages ex-
changed from variable node i and Fi to variable node j and F j are
the messages exchanged between player i and player j. By this
translation, we have the distributed algorithm in the network.

4. THE EXISTENCE OF PSNE
We show that in undirected interference graphs, for the spatial

spectrum access games using considered protocols, Nash equilib-
rium always exists, by showing that the games are potential.

LEMMA 8. All spatial spectrum access games on undirected
graphs using FDMA, TDMA and CDMA are potential games.

PROOF. We transform throughput maximization to delay min-
imization where the delay of user i using channel j is defined as
si, j +

∑
k∈N(i) sk, j if si, j = 1, which is a linear function of the number

of neighbors of user i using channel j. When the delay function is
linear, by the main result of [3], the spatial spectrum games using
FDMA, TDMA and CDMA are potential games.

When the utility function is f ′i = log fi, it is proved in [5] that
spatial spectrum access games on undirected interference graph us-
ing CSMA/CA are ordinal potential games.

LEMMA 9. All spatial spectrum access games on undirected
graphs using CSMA/CA are potential games.

PROOF. A PSNE for f ′i is also a PSNE for fi since
log fi(s1, . . . , si, . . . , sn) ≥ log fi(s1, . . . , s′i , . . . , sn) for ∀i ∈ V im-
plies fi(s1, . . . , si, . . . , sn) ≥ fi(s1, . . . , s′i , . . . , sn) for ∀i ∈ V .

Since a potential game always has PSNE [24], we have the fol-
lowing theorem.

THEOREM 10. For spatial spectrum access games on undirected
graphs using FDMA, TDMA, CDMA, and CSMA/CA protocols,
PSNE always exists.

When the interference graph is directed, for (i, j) < E and ( j, i) ∈

E, we have ∂2 fi
∂si∂s j

, 0 and ∂2 f j
∂si∂s j

= 0, thus the ratio between them is
±∞. By Theorem 4.5 in [24], the potential function does not exist.
This shows an evidence that for directed interference graphs, PSNE
of spatial spectrum access game may not always exist.

We can use a similar local message-passing algorithm called sur-
vey propagation [4] to decide whether a PSNE exists. As in Sec-
tion 3.3, the graphical game is translated into a constraint satisfac-
tion problem (CSP), with constraints set as

Fi =

1 if si = argmaxy∈S i
fi(y, sNin(i)),

0 otherwise.
(2)

Then the PSNE exists if and only if there exists a truth assignment
for the CSP.
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Figure 4: Reduction by Crossing Replacement

5. COMPUTATIONAL COMPLEXITY
In this section, we explore the computational complexity of graph-

ical games to see how hard the problem is in general. It is known
that deciding the existence of PSNE for graphical games is NP-
complete [14]. The following theorem says the problem remains
hard even on planar graphs.

THEOREM 11. Deciding the existence of PSNE for graphical
games on planar graphs is NP-complete.

PROOF. This can be proved by a reduction from computing PSNE
for graphical games (G,F ) on general graphs to computing PSNE
for graphical games (G′,F ′) on planar graphs, which is constructed
by simply replacing each crossing with 4 new additional player
whose payoff is always 0 and whose strategy will not affect other
players’ payoff, as shown in Figure 4. The strategies of additional
player satisfy sV1 = sU3 , sV2 = sU4 , sV3 = sU1 and sV4 = sU2 , then
(G,F ) has a PSNE only if (G′,F ′) has a PSNE. This completes the
reduction.

Since graphical congestion game [3] is a spacial case of graph-
ical game, by the PLS-completeness result for classic congestion
games [9], which are graphical congestion games on complete graph,
we have the following theorem.

THEOREM 12. Computing PSNE for graphical games is PLS-
complete.

On the other hand, the decision problem becomes trivial on di-
rected acyclic graphs.

THEOREM 13 (CHEN et al. [5]). There always exists a PSNE
for graphical games on directed acyclic graphs.

The PSNE of graphical games on directed acyclic graphs can be
found in O(|V | + |E|) time by topological sorting.

Observing that load balancing is a special case of graphical con-
gestion game, by the NP-completeness of load balancing, the fol-
lowing theorem holds.

THEOREM 14. Given a graphical game defined on an undi-
rected graph and an integer k > 0, determining whether there exists
a PSNE with cost at most k is NP-complete.

The following theorem can be proved by the same reduction used
in the proof of Theorem 11.

THEOREM 15. Given a graphical game defined on an undi-
rected planar graph and an integer k > 0, determining whether
there exists a PSNE with cost at most k is NP-complete.

Indeed, graphical game is a general model which covers many
combinatorial optimization problems. When the utility function

is properly set, as in Equation (3), the maximum independent set
(MIS) problem can be coded as finding optimal PSNE in a special
class of graphical games. Another observation is that the maxi-
mum weight q-coloring with q > ∆ can also be reduced to op-
timizing PSNE of graphical games. It is known that MIS is MAX
SNP-complete [25] and NP-hard to approximate within polynomial
factor in polynomial time [16], which leads to the following inap-
proximability results.

THEOREM 16. Computing optimal PSNE of graphical games
is MAX SNP-complete.

THEOREM 17. For any ε > 0, there does not exist any nε−1-
approximation algorithm for computing optimal PSNE of graphical
games unless P = NP.

PROOF. Both theorems can be proved by reducing maximum
independent set to finding optimal PSNE in graphical games. We
can set fi as

fi =


1 if si, j = 1 and ∀ j ∈ N(i), s j = 0,
0 if si, j = 0 and ∃ j ∈ N(i), s j = 1,
−1 if si, j = 1 and ∃ j ∈ N(i), s j = 1.

(3)

Then each PSNE is a maximal independent set and the optimal
PSNE is a maximum independent set. Then by the inapproxima-
bility of maximum independent set, the theorem follows.

6. ALGORITHM FOR ACYCLIC GRAPHS
In [20], an algorithm called “TreeNash" was proposed to com-

pute a PSNE on undirected trees. Now we show that when the
graphical game is defined on directed acyclic graphs or undirected
trees, our modified max-product BP converge very fast to the fixed
point s = (s1, . . . , sn) maximizing the total payoff

∑n
i=1 fi. Indeed,

on these graphs, the max-product BP is equivalent to a parallel dy-
namic programming.

THEOREM 18. For a graphical game on an undirected tree,
suppose t∗ is the diameter of the tree,

1. The max-product BP equations converge to a fixed point after
t > t∗ iterations. That is, for any edge (i, a) in the factor
graph and any t > t∗, µ(t)

i→a = µ(t∗)
i→a and µ(t)

a→i = µ(t∗)
a→i.

2. The convergent fixed point is an optimal PSNE: for any player
i and any t > t∗, µ(t)

i (xi) =
∏

a∈∂i µ
(t−1)
a→i (xi) = maxs:si=xi

∏
i Fi =

maxs:si=xi exp (
∑

i fi).

PROOF. We set the function associated to the function nodes as
in Equation (1). Initially, for each player i, the message µ(1)

i→a(xi) = 1
if si = xi. Otherwise µ(1)

i→a(xi) = 0. The proof is by induction on the
depth of the tree. The base step of the induction is for the case of
single-node graph whose factor graph contains one variable node
and one function node connected by a single edge. We define the
message from empty set is 1. In the first round, the message from
Fi to i is

µ(1)
Fi→i(xi) =

Fi(xi) if xi is the best strategy,
0 otherwise.

It is easy to see that the messages have converged and Fi(xi) =

max
(
exp(

∑
i fi)

)
is the maximum total utility of the graphical game

on the single-node tree. Then µ(t)
i→Fi

(xi) = 1 and µ(t)
Fi→i(xi) = µ(1)

Fi→i(xi)
for any t > 1. Hence the messages have converged.

Suppose it holds for tree with depth τ, then we show that it also
holds for tree with depth τ+1. Consider the tree rooted at i of depth

229



is τ+ 1, whose the subtree is of depth at most τ. Then after at most
τ rounds, µ j→Fi (x j) where j ∈ ∂Fi\i is the maximum total utility for
subtree T j rooted at j whose configuration is x j. Then we have

µ(τ)
Fi→i(xi) = max

∂Fi\i

{
Fi(x∂Fi )

∏
j∈∂Fi\i

µ(τ)
j→Fi

(x j)
}
.

We can see that µ(τ+1)
i (xi) =

∏
a∈∂i µ

(τ)
a→i(xi) = µ(τ)

Fi→i(xi) is the
maximum total utility of graphical game when si is fixed to xi. This
complete the induction.

THEOREM 19. For a graphical game on a directed acyclic in-
terference graph, suppose t∗ is the length of the longest path from
any of the node whose in-degree is 0 to any of the node whose out-
degree is 0. Such nodes always exist since the interference graph is
acyclic.

1. The max-product BP equations converge to a fixed point after
t > t∗ iterations. That is, for any edge (i, a) in the factor
graph and any t > t∗, µ(t)

i→a = µ(t∗)
i→a and µ(t)

a→i = µ(t∗)
a→i.

2. The convergent fixed point is an optimal PSNE: for any player
i and any t > t∗, µ(t)

i (xi) =
∏

a∈∂i µ
(t−1)
a→i (xi) = maxs:si=xi

∏
i Fi =

maxs:si=xi exp (
∑

i fi).
PROOF. This theorem is proved by a structural induction on the

depth of the directed interference graph. The depth of node i is
defined as the maximum length of shortest paths from any node
whose in-degree is 0. The depths of the nodes with in-degree 0 are
set as 0.

It is easy to see that the function nodes of variable nodes with
depth larger than 0 will only sends “1" messages to the variable
nodes with depth 0, which will not affect their computation of mes-
sages after round 0. Hence in round 0 the messages of nodes with
depth 0 has converged. Similarly, the function nodes of variable
nodes with depth larger than t + 1 will only sends “1" messages to
the variable nodes with depth t. Hence if in round t the messages
of nodes with depth t converge, then the messages of nodes with
depth t + 1 will converge in round t + 1. The computation details
are similar to theorem 18. This completes the induction.

7. ALGORITHM FOR CYCLIC GRAPHS
We study the convergence rate of our max-product BP algorithm

to PSNE on cyclic undirected graphs. We start by showing an im-
possibility result.

THEOREM 20. Synchronous max-product BP does not always
converge for spatial spectrum access games on cyclic graphs.

PROOF. We set the function associated to the function nodes as
in Equation (2), with the initial condition µ(1)

i→a(xi) = 1 if si = xi

and µ(1)
i→a(xi) = 0 if otherwise. Let µ(t)

i→a(xi) and µ(t)
a→i(xi) denote

the messages sent from i to a and from a to i in the t-th iteration
respectively. Then for i ∈ V , we have

µ(1)
Fi→i(xi) =

1, if x is the best response of sN(i),
0, otherwise.

Hence it holds that

µ(2)
i→a(xi) =

1, if a is Fi,

µ(1)
Fi→i(xi), otherwise.

We defined s(t) = {s(t)
1 , . . . , s

(t)
n }where s(t)

i = xi such that µ(2)
i→a(xi) = 1

for a , Fi. Then for i ∈ V , we have

µ(t)
Fi→i(xi) =

1, if xi is the best response of s(t)
N(i),

0, otherwise.

Suppose the interference graph is an undirected complete graph
of n vertices and Q = {1, 2, 3}. The rates of the channels satisfy θ1 =

θ3 > θ2. All users initialize their strategies by randomly choosing
channel from Q′ = {1, 2}. Then for t ∈ N+,

µ(2t−1)
Fi→i (xi) =

1, if xi = 3
0, otherwise,

µ(2t)
Fi→i(xi) =

1, if xi = 1
0, otherwise.

Then the BP process falls into a infinite loop and never converge.

We can avoid this issue by introducing the concept of BP-guided
local dynamics where the strategy update is guided by the asyn-
chronous max-product BP equations:

µ(t+1)
i→a (xi) = µ(t)

Fi→i(xi),

µ(t)
Fi→i(xi) = max

∂Fi\i

{
Fi(x∂Fi )

∏
j∈∂Fi\i

µ
(τ j)
j→Fi

(x j)
}

where µ(τ j)
j→Fi

(x j) is the τ j-th and the latest message sent from j to
Fi. By setting Fi as in Equation (2), µ(1)

i→a(xi) = 1 if si = xi and
µ(1)

i→a(xi) = 0 if otherwise, then µ(t)
Fi→i(xi) = 1 if xi is the best re-

sponse for sNin(i). If the best response xi computed by µ(t)
Fi→i(xi) is

not the current si, then user i modify its strategy to si = xi.
For BP-guided local dynamics, the convergence time is mea-

sured by the number of strategy modification of all the users instead
of the number of rounds. We further require that no two updates
of strategies involving interfering users can occur simultaneously,
then the following holds.

THEOREM 21. The BP-guided local dynamics converges to a
PSNE for spatial spectrum access games on undirected graphs if
the game is potential.

PROOF. For potential games, the utility improvement of each
user will also improve the value of potential function. When the
potential function is maximal, the strategy profile s = (s1, . . . , sn) is
a PSNE after convergence. And by the finite improvement property,
this algorithm will terminate in finite steps.

By Theorem 12, computing a PSNE for graphical games is PLS-
complete. Therefore, instead of exact PSNE we study the conver-
gence rate to approximate PSNE, called ε-PSNE, defined in [6].

DEFINITION 22. (ε-PSNE) A state s = (s1, . . . , sn) is an ε-
PSNE if no player can improve its payoff by a factor greater than
ε ∈ [0, 1). If fi is interpreted as cost, then fi(s1, . . . , s′i , . . . , sn) ≥
(1− ε) fi(s1, . . . , si, . . . , sn) for all s′i ∈ S i. If fi is interpreted as util-
ity, then fi(s1, . . . , s′i , . . . , sn) ≤ (1 + ε) fi(s1, . . . , si, . . . , sn) for all
s′i ∈ S i.

To reach an ε-PSNE, a user will change its strategy if and only
if it can improve its utility by a factor at least ε, which is called
ε-move [6]. To study the rate of convergence to a ε-PSNE, we
transform the utility maximization problem into its dual version,
the cost minimization. The cost is defined as Ci =

∑
j∈si

Ci, j =∑
j∈si

1/ fi, j where fi, j is the utility of user i using channel j, which
can be naturally defined for all our considered protocols. Note that
fi, j is a function of the number of neighbors using channel j, we
define α as the lower bound of a constant which satisfies fi, j(x) ≤
α· fi, j(x+1) for x ∈ [n−1]. Then Ci, j(x+1) ≤ α·Ci, j(x), satisfying the
α-bounded jump condition [6]. By this transformation, the spatial
spectrum access games using FDMA, TDMA and CDMA becomes
exact potential games, and hence possess a potential function Φ [3].

We show the convergence rates of BP-guided local dynamics
which are assumed to satisfy the following conditions.
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1. Condition 1: The player with maximum cost can make an
ε-move.

2. Condition 2: If the player v with maximum cost cannot
make an ε-move, at least one of its neighbors u ∈ N(v) has
cost greater than any player u′ ∈ N(u)\v and can make an
ε-move.

Let ∆ denote the maximum degree of the interference graph and
Φ denote the potential function of spatial spectrum access games.
The upper bounds of convergence time for the dynamics satisfying
conditions 1 and 2 are given by the following theorems.

THEOREM 23. If a spatial spectrum access game possesses an
exact potential function Φ and the dynamics satisfies the condition
1, then the convergence time is O(nε−1 log Φmax).

PROOF. Since Φ(s) ≤
∑

i Ci(s) for any strategy profile s, then
each time the player with maximum cost makes a ε-move, it de-
creases the potential function at least a factor ε

n . Hence (1− ε
n )tΦmax <

Φmin, then t = O(nε−1 log Φmax).

THEOREM 24. If a spatial spectrum access game possesses an
exact potential function Φ and the dynamics satisfies the condition
2, then the convergence time is O(nα∆ε−1 log Φmax).

PROOF. Suppose i is the user with maximum cost. For (i, j) ∈ E,
let s = (s1, . . . , si, . . . , s j, . . . , sn) and s′ = (s1, . . . , s′i , . . . , s j, . . . , sn),
s′′ = (s1, . . . , si, . . . , s′i , . . . , sn). If user j moves from s j to s′i ,
then C j(s′′) ≤ (1 − ε)C j(s). Since user i did not move to s′i , then
(1− ε)Ci(s) ≤ Ci(s′). For each channel e ∈ s′i , Ci,e(s′) ≤ α∆C j,e(s′′),
then Ci(s′) ≤ α∆C j(s′′). Hence it holds that (1 − ε)Ci(s) ≤ Ci(s′) ≤
α∆C j(s′′) ≤ α∆(1 − ε)C j(s). The ε-move made by player j will
decrease the potential function by a constant at least ε

nα∆ . Hence
(1 − ε

nα∆ )tΦmax < Φmin, then t = O(nα∆ε−1 log Φmax).

If the condition 1 and 2 to is loosed such that they are satisfied at
least once respectively during T strategy updates, then the conver-
gence time becomes O(nT ε−1 log Φmax) and O(nTα∆ε−1 log Φmax).
This technique can be easily generalized to weighted potential games.

8. ALGORITHM FOR PLANAR GRAPHS
We give approximation algorithms for computing optimal PSNE

in some typical spatial spectrum access games on planar graphs in
the sense of polynomial time approximation scheme. This is use-
ful because the interference graphs of wireless mesh networks are
often planar.

DEFINITION 25. A polynomial time approximation scheme
(PTAS) for an optimization problem is an polynomial time algo-
rithm A(I, ε) which takes an instance I of the problem and a pa-
rameter ε and always return a solution with accuracy (1 − ε) for
maximization and (1 + ε) for minimization.

We consider the spatial spectrum access games induced by in-
dependent sets or colorings studied in [19, 28, 15, 23, 30]. When
transmission time is long and users can be blocked to avoid colli-
sions, then the optimization of spatial spectrum access can be mod-
eled as a q-state maximum weight independent set (q-MWIS) prob-
lem where the set of state is denote as {0, . . . , q − 1}. A user is in
state j ∈ [1, q − 1] means the user is using channel j, and state 0
means the user is idle or blocked. The model of independent set for
scheduling and congestion control in wireless networks has been
widely studied [19, 28].

If the system requires high quality of service (QoS) which block-
ing user is not allowed, then the game can be modeled as a maxi-
mum weight q-coloring (q-MWC) problem as in [15, 23, 30], where

the set of colors is {1, . . . , q}. A user is of color j means the user
is using channel j. Since deciding the existence of a proper color-
ing is nontrivial for q ≤ ∆ where ∆ is the maximum degree of the
graph, we only consider the case where q > ∆. Both q-MWIS and
q-MWC can be formulated as computing optimal PSNE of spatial
spectrum access games. We have the following algorithmic result
generalized from the PTAS for maximum independent set problem
on planar graphs in [1].

THEOREM 26. There exist PTAS for computing (q-state) maxi-
mum weight independent set and maximum weight q-coloring with
q > ∆ on planar graphs.

Given a planar embedding of planar graph G, the level-1 vertices
are the vertices on exterior face, and a vertex is a level-k if it is on
the exterior face by deleting all the vertices of level < k. A planar
graph is k-outerplanar if for some embedding it has no vertex of
level > k.

THEOREM 27. The optimal PSNE of graphical games can be
exactly computed in O(qO(k) · n) time for k-outerplanar graphs.

The algorithm in this theorem is a dynamic programming algo-
rithm, which can either be generalized from the dynamic program-
ming in [1] for computing MIS on k-outerplanar graphs, or spe-
cialized from the dynamic programming in [31] for counting CSPs
on graphs of bounded treewidth O(k) (which cover k-outerplanar
graphs). In particular, for q-MWIS and q-MWC, this exact algo-
rithm can be combined into a PTAS on planar graphs using the
same routine designed in [1] for maximum independent sets. This
gives us the PTAS in Theorem 26. We omit detailed proofs here.

The next theorem shows that in general we may not expect to
always have good approximation of PSNE as in the cases of q-
MWIS and q-MWC.

THEOREM 28. There is no PTAS for computing optimal PSNE
for graphical games on planar graphs unless P = NP.

PROOF. If the PTAS exists, then there is an algorithm can ap-
proximate the total payoff of PSNE within accuracy (1 − ε) for any
ε > 0, which implies a polynomial time algorithm for deciding the
existence of PSNE on planar graphs, which is NP-hard by Theo-
rem 11.

The following heuristics can be considered to cope with the above
inapproximability result. Given a spatial spectrum access game on
planar graph G, we can use the linear-time algorithm in [17] to gen-
erate a planar embedding. Fix a constant k. Applying the dynamic
programming algorithm in Theorem 27, we can find an optimal
PSNE for the k-outerplanar components separated by the level-`
vertices for all ` mod (k + 1) = 0, and then randomly assign chan-
nels for the level ` vertices. Since the game is potential, we can then
apply the asynchronous max-product BP to converge to a PSNE.
The heuristic part is that we wish the randomly assigned channels
would not distort too much from a globally optimal PSNE.

9. EVALUATIONS
We evaluate the performance of BP-guided local dynamics for

spatial spectrum access games. We consider the case where the
size of the network is 1000m × 1000m and q = 5. The rates of
channels is in the range from 10Mbit/s to 60Mbit/s. Each user has
a interference range 50m. The locations of n users are uniformly
distributed in the network. For each case, we generate a random
interference graph and evaluate the performance for 11 rounds to
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test the robustness. Since the utility functions of FDMA, TDMA
and CDMA has the same form, we only evaluate the performance
of FDMA for the contention-free protocols, and the CSMA/CA for
the contention-based protocol.

We first evaluate the performance of random dynamics on undi-
rected interference graphs, which is BP-guided local dynamics where
the order of users updating their strategies is random. We consider
four cases where the number of users n = 100, 200, 500, 1000. For
each case compare the total utility of users between random access
and PSNE, as shown in Figure 5 and Figure 6. The corresponding
convergence time which is measured by the number of total strat-
egy updates is shown in Figure 7 and Figure 8. Since the PSNE
may not exist on directed interference graphs, we only evaluate the
performance for cases where n is relatively small. The performance
is similar to those of undirected interference graphs as long as the
dynamics can converge.

We can see that for all the communication protocols considered
in this paper the BP-guided local dynamics can improve the total
utility of users by more than 60%. And this improvement is very
stable which does not decrease when the number of users increases
from 100 to 1000. Moreover, the evaluation shows that the average
number of strategy updates of each user is about 0.7-0.8, which is
less than 1. This shows the BP-guided local dynamics can converge
very fast to a PSNE of spatial spectrum access games. Thus the cost
of spectrum mobility is very small.

We then consider the cases where the orders of users updating
their strategies are not random. We consider six types of dynamics.
The first three has been considered in [6] to study the convergence
properties of congestion games where the orders are determined by
global priorities, listed as follows:

1. Largest cost dynamics (LCD): the players with largest delay
(minimum throughput) has priority to move, that is, fi(s) ≤
f j(s) for all j ∈ V .

2. Largest gain dynamics (LGD): the players with largest abso-
lute improvement has priority to move, that is, fi(s′)− fi(s) ≥
f j(s′′) − f j(s) for all j ∈ V , where s′ is the strategy profile
after user i updates its strategy and s′′ is the strategy profile
after user j updates its strategy.

3. Largest ratio dynamics (LRD): the players with largest rela-
tive improvement has priority to move, that is, fi(s′)− fi(s)

fi(s)

≥
f j(s′′)− f j(s)

f j(s) for all j ∈ V , where s′ is the strategy profile after
user i updates its strategy and s′′ is the strategy profile after
user j updates its strategy.

The next three types of dynamics is similar to the above three,
except the orders of strategy updates are determined by local prior-
ities, listed as follows:

1. Local Largest cost dynamics (LLCD): the players with largest
delay (minimum throughput) has priority to move, that is,
fi(s) ≤ f j(s) for all j ∈ N(i).

2. Local Largest gain dynamics (LLGD): the players with largest
absolute improvement has priority to move, that is, fi(s′) −
fi(s) ≥ f j(s′′) − f j(s) for all j ∈ N(i), where s′ is the strategy
profile after user i updates its strategy and s′′ is the strategy
profile after user j updates its strategy.

3. Local Largest ratio dynamics (LLRD): the players with largest
relative improvement has priority to move, that is, fi(s′)− fi(s)

fi(s)

≥
f j(s′′)− f j(s)

f j(s) for all j ∈ N(i), where s′ is the strategy profile

after user i updates its strategy and s′′ is the strategy profile
after user j updates its strategy.

It is easy to see that all the users who have local priorities to move
form an independent set of the interference graph. We do not re-
quire them to move simultaneously. From the evaluation we can see
that for all the communication protocols considered in this paper,
the performances of LGD (LLGD) and LRD (LLRD) are almost
the same, which is similar to random dynamics that can improve
the network performance by more than 60%, as shown in Figure 9.
When n is small, the performance of LCD (LLCD) is very close to
LGD (LLGD) and LRD (LLRD). However, as n increases, the per-
formance of LCD (LLCD) decreases compared to LGD (LLGD)
and LRD (LLRD). When n = 1000, for all the considered proto-
cols, the LCD can only improve the network performance by 25%.
The LLCD is better, when n = 1000 it can improve the network
performance by about 50%, as shown in Figure 10.

Due to the space limit, we omit the evaluation of convergence
time of these dynamics. Actually, the convergence time of LGD
(LLGD) and LRD (LLRD) is almost the same for all the com-
munication protocols considered in this paper, which is similar to
their performances. For LCD (LLCD), although its performance is
poorer, the convergence is faster. An empirical conclusion is, when
the improvement is larger, the convergence time is longer. This
provides a method to make a tradeoff between the performance and
convergence.

10. CONCLUSION
We translate the problem of finding optimal pure strategy Nash

equilibrium (PSNE) in spatial spectrum access games for chan-
nel assignment in wireless networks into estimating maximum a
posteriori (MAP) assignment in factor graphs, and then propose to
use a modified version of max-product belief propagation to solve
the problem. Our algorithms are guaranteed to converge in lin-
ear time to an optimal PSNE if the interference graph is an undi-
rected tree or directed acyclic interference graph, and converge fast
to a near-optimal PSNE when the interference graph is undirected.
Moreover, the optimization problem can be exactly solved on k-
outerplanar graphs and for some typical special cases it has polyno-
mial time approximation scheme on planar graphs. There are some
interesting problems remaining open such as the approximability
of finding the optimal PSNE for spatial spectrum access games on
planar graphs or families of graphs arising from wireless networks.
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Figure 5: Performance evaluation for FDMA when n = 100, 200, 500, 1000
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Figure 6: Performance evaluation for CSMA/CA when n = 100, 200, 500, 1000
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Figure 7: Convergence time for FDMA when n = 100, 200, 500, 1000
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Figure 8: Convergence time for CSMA/CA when n = 100, 200, 500, 1000
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Figure 9: Performance evaluation of global-priority dynamics for FDMA and CSMA/CA when n = 500, 1000
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Figure 10: Performance evaluation of local-priority dynamics for FDMA and CSMA/CA when n = 500, 1000

[5] X. Chen and J. Huang. Spatial spectrum access game: Nash
equilibria and distributed learning. In Proceedings of the
thirteenth ACM international symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), pages 205–214,
2012.

[6] S. Chien and A. Sinclair. Convergence to approximate nash
equilibria in congestion games. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 169–178, 2007.

[7] C. Daskalakis and C. H. Papadimitriou. Computing pure
nash equilibria in graphical games via markov random fields.
In Proceedings of the 7th ACM conference on Electronic
commerce (EC), pages 91–99, 2006.

[8] S. C. Ergen and P. Varaiya. Tdma scheduling algorithms for
wireless sensor networks. Wireless Networks,
16(4):985–997, 2010.

[9] A. Fabrikant, C. Papadimitriou, and K. Talwar. The
complexity of pure nash equilibria. In Proceedings of the
thirty-sixth annual ACM symposium on Theory of computing
(STOC), pages 604–612, 2004.

[10] M. Felegyhazi, M. Cagalj, S. S. Bidokhti, and J.-P. Hubaux.
Non-cooperative multi-radio channel allocation in wireless
networks. In Proceedings of the 26th IEEE International
Conference on Computer Communications (INFOCOM),
pages 1442–1450, 2007.

[11] R. Gallager. Low-density parity-check codes. IRE
Transactions on Information Theory, 8(1):21–28, 1962.

[12] D. Gamarnik, D. Shah, and Y. Wei. Belief propagation for
min-cost network flow: Convergence and correctness.
Operations Research, 60(2):410–428, 2012.

[13] L. Gao and X. Wang. A game approach for multi-channel
allocation in multi-hop wireless networks. In Proceedings of
the 9th ACM international symposium on Mobile ad hoc
networking and computing (MobiHoc), pages 303–312,
2008.

[14] G. Gottlob, G. Greco, and F. Scarcello. Pure nash equilibria:
Hard and easy games. In Proceedings of the 9th conference
on Theoretical aspects of rationality and knowledge (TARK),
pages 215–230, 2003.

[15] M. M. Halldórsson, J. Y. Halpern, L. E. Li, and V. S.
Mirrokni. On spectrum sharing games. In Proceedings of the
twenty-third annual ACM symposium on Principles of
distributed computing (PODC), pages 107–114, 2004.

[16] J. Hastad. Clique is hard to approximate within n1−ε . In
Proceedings of the 37th Annual Symposium on Foundations
of Computer Science (FOCS), pages 627–636, 1996.

[17] J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal
of the ACM (JACM), 21(4):549–568, 1974.

[18] L. Jiang and J. Walrand. A distributed csma algorithm for
throughput and utility maximization in wireless networks.

IEEE/ACM Transactions on Networking (TON),
18(3):960–972, 2010.

[19] C. Joo, X. Lin, J. Ryu, and N. B. Shroff. Distributed greedy
approximation to maximum weighted independent set for
scheduling with fading channels. In Proceedings of the
fourteenth ACM international symposium on Mobile ad hoc
networking and computing (MobiHoc), pages 89–98, 2013.

[20] M. Kearns, M. L. Littman, and S. Singh. Graphical models
for game theory. In Proceedings of the Seventeenth
conference on Uncertainty in artificial intelligence, pages
253–260. Morgan Kaufmann Publishers Inc., 2001.

[21] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Transactions
on Information Theory, 47(2):498–519, 2001.

[22] H. Li and Z. Han. Competitive spectrum access in cognitive
radio networks: Graphical game and learning. In Wireless
Communications and Networking Conference (WCNC), 2010
IEEE, pages 1–6, 2010.

[23] A. Mishra, S. Banerjee, and W. Arbaugh. Weighted coloring
based channel assignment for wlans. ACM SIGMOBILE
Mobile Computing and Communications Review,
9(3):19–31, 2005.

[24] D. Monderer and L. S. Shapley. Potential games. Games and
economic behavior, 14(1):124–143, 1996.

[25] C. H. Papadimitriou and M. Yannakakis. Optimization,
approximation, and complexity classes. Journal of computer
and system sciences, 43(3):425–440, 1991.

[26] J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann, 1988.

[27] S. Sanghavi, D. Shah, and A. S. Willsky. Message passing
for maximum weight independent set. IEEE Transactions on
Information Theory, 55(11):4822–4834, 2009.

[28] G. Sharma, R. R. Mazumdar, and N. B. Shroff. On the
complexity of scheduling in wireless networks. In
Proceedings of the 12th annual international conference on
Mobile computing and networking (MobiCom), pages
227–238, 2006.

[29] C. Tekin, M. Liu, R. Southwell, J. Huang, and S. H. A.
Ahmad. Atomic congestion games on graphs and their
applications in networking. IEEE/ACM Transactions on
Networking, 20(5):1541–1552, 2012.

[30] W. Wang and X. Liu. List-coloring based channel allocation
for open-spectrum wireless networks. In IEEE Vehicular
Technology Conference, volume 62, page 690, 2005.

[31] Y. Yin and C. Zhang. Approximate counting via correlation
decay on planar graphs. In SODA, pages 47–66. SIAM, 2013.

234




