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ABSTRACT

The main-thread approach for optimizing the throughput capacity
over a multihop wireless network is to apply a multi-commodity
flow (MCF) formulation, augmented with a scheduling constraint
derived from the conflict graph associated with the network. A
fundamental issue with the conflict graph based MCF formulation
is that finding all independent sets (ISs) for scheduling is NP-hard
in general. If we express the MCF formulation in a matrix format,
the constraint matrix will contain a very large number of columns,
with each IS being associated with one column. According to the
linear programming theorem, such a type of problem can be ad-
dressed with the delayed column generation (DCG) method. Un-
fortunately, applications of the DCG in wireless networks have not
received much attention. To the best of knowledge, none of the
existing work conducted theoretical studies of the performance of
DCG in wireless networks. In this paper, we study the DCG method
in the context of a general network flow problem. With a protocol
interference model, we rigorously prove that searching an entering
column in the DCG operation is equivalent to a maximum weighted
independent set (MWIS) problem. A prominent theoretical contri-
bution of this paper is the theorem that: if an MWIS approxima-
tion algorithm with the approximation ratio β (< 1) is applied in
the DCG method, the maximum flow solved will be at least β of
the optimal solution. Furthermore, the DCG method is also ap-
plied to the multi-radio multi-channel (MR-MC) networks. With
extensive numerical results comparing to the existing methods, we
show that the DCG method achieves the most preferred tradeoff be-
tween computation complexity and network capacity and maintains
good scalability when addressing large-scale networks, particularly
in the complex MR-MC context.
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1. INTRODUCTION
The network capacity of fundamental importance to a multihop

wireless network is the total throughput traversing the given set of
ingress/egress edge nodes. The maximum network capacity is nor-
mally coupled with optimal routing and scheduling to form a net-

work dimensioning issue [2, 3]. A fundamental issue in the multi-
hop wireless networks is that the neighboring hops along a path,
when transmitting over the same spectrum, have to contend for the
channel access and can not transmit at the same time. The conflict

graph is the popular tool to model the interference among differ-
ent wireless links [4–6]. The main-thread approach for wireless
network dimensioning is to apply a multi-commodity flow (MCF)
formulation, augmented with constraints derived from the conflict
graph [2–4, 18].

The conflict-graph constraints are normally based on the concept
of independent set [4]: at a moment, the links that can have success-
ful transmissions simultaneously in the network form an indepen-
dent set over the conflict graph associated with the network. The
MCF formulation with the independent set constraints can gener-
ate an optimal scheduling (under the assumption of a synchronized
slotted system): the maximal independent sets (MISs) take turns
in grabbing the channel for data transmission, with the proportion
of transmission time for each set determined by the MCF solution.
The recent work in [9] develops a generic multi-dimensional con-
flict graph (MDCG) technique, which enables the conflict graph
based MCF formulation for a multi-radio multi-channel (MR-MC)
wireless network.

While the conflict graph based MCF formulation is a linear pro-
gramming problem, finding all ISs to be used is NP-hard in general.
A random algorithm for MIS search is proposed in [4] and widely
adopted in the literature, which provides a framework while more
MISs can be obtained with more rounds of computation. However,
in a large scale network (especially for the MR-MC case with the
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MDCG involved), the random search method incurs a heavy com-
putation overhead to find a large enough number of MISs for a good
approximate MCF solution. The work in [9] develops a heuristic
algorithm to search a smaller set of critical MISs, which can consid-
erably reduce the overhead in MIS search compared to the random
method. The overhead of searching critical MISs is still significant
anyhow in a large-scale network. Moreover, those heuristic MIS
search algorithms can not provision a guaranteed capacity region
of the MCF solutions.

Regarding the conflict graph based MCF linear programming
(LP) problem, if we express all the constraints in a matrix for-
mat, the constraint matrix will have a very large number of columns
where each IS will be associated with one column.1 Both searching
all the columns and storing the columns for MCF solutions incur
high complexity. According to the LP theorem, such a type of prob-
lem can be addressed with the delayed column generation (DCG)
method [11], where a new column will be iteratively searched on-
line based on the current feasible solution for the most reduced
cost till the optimal solution is reached. Unfortunately, applica-
tions of the DCG in wireless networks have not received enough
attention. We only noticed a couple of studies, which focus on
very specific cases. The work in [12] applies the DCG method to
study a minimum scheduling problem, with the objective to assign
at least one time slot to each node such that the total number of
time slots is minimized. In [13, 14], the DCG method is applied to
study joint routing, link scheduling and power control in wireless
networks. The fundamental issue is that none of the existing stud-
ies, to the best of knowledge, conducted theoretical studies of the
performance of DCG in wireless networks. In a wireless network
with a certain interference model, searching an entering column ac-
cording to the DCG will be a maximum weighted independent set
(MWIS) problem [16] (to be proved rigorously in this paper). Thus,
in practice, an approximation algorithm needs to be used to find an
entering independent set with a reasonable computation overhead.
A prominent theoretical contribution of this paper is that we prove

the following theorem: if an MWIS approximation algorithm with

the approximation ratio β (< 1) is applied in the DCG method, the

maximum flow solved under such an approximation algorithm will

be at least β of the optimal solution. More specifically, this paper
has four-fold contributions.

• We study the DCG method in the context of a general net-
work flow problem, and rigorously prove that searching an
entering column in the DCG operation is equivalent to an
MWIS problem.

• We conduct theoretical analysis to obtain the lower bound
of the network flow, when the MWIS problem involved in
the DCG method (which is NP-hard) is addressed with an
approximation algorithm. Specifically, if an MWIS approx-
imation algorithm with the approximation ratio β (< 1) is
used, the maximum flow solved will be at least β of the op-
timal solution. Furthermore, we show such a lower bound
also applies to the multi-commodity flow problem and the
network flow problem with a fairness constraint.

• The DCG method is also applied to the MR-MC network, ex-
ploiting the tuple-based network model and multi-dimensional
conflict graph technique developed in [9].

1Although it is sufficient to just involve maximal independent set
(MIS) in the scheduling [4], in this paper, we generally represent
the scheduling involving all ISs for the convenience of theoretical
analysis.

• We present extensive numerical results to demonstrate the
performance of the DCG method in terms of computation
overhead and the achieved network flow capacity, with com-
parison to that with the random search of MISs [4] and that
with the heuristic search of critical MISs [9]. It turns out the
DCG method achieves the most preferred tradeoff between
computation complexity and network capacity, and main-
tains good scalability when addressing large-scale MR-MC
networks. We also examine the performance of DCG method
under different MWIS approximation algorithms.

The remainder of this paper is organized as follows. Section 2
reviews more related work. Section 3 describes the system model.
Section 4 conducts a theoretical study of the performance of DCG
in solving various network flow problems. In Section 5, the DCG
method is applied to MR-MC networks. Section 6 presents exten-
sive numerical results to evaluate the performances of DCG, with
comparison to some existing methods. Section 7 gives the conclud-
ing remarks.

2. RELATED WORK
The MR-MC wireless networks have received substantial atten-

tion in the last few years, especially in the context of wireless mesh
networks (WMNs) [1,10,20]. Such a networking model can signifi-
cantly increase network capacity by simultaneously exploiting mul-
tiple non-overlapping channels through different radio interfaces.
Compared to the traditional SR-SC networks, MR-MC networking
takes place in a multi-dimensional resource space, with dimensions
defined by radio interfaces, links, and channels. The central issue
of resource allocation in such a multi-dimensional space is to find
solutions for a set of coupled problems including scheduling, chan-

nel and radio assignment, and routing [1, 19], with the objective
to optimize the network capacity. The conflict graph tool however
did not achieve the similar popularity in MR-MC networks as in
SR-SC networks [6, 7], mainly because the link conflict graph is
not sufficient for MR-MC networks to describe the extra conflict
relations in competing for radio interfaces and channels. The multi-
dimensional conflict graph technique developed in [9] fill the gap
between optimizing SR-SC and MR-MC networks. Each vertex
in the MDCG represents a link-radio-channel (LRC) tuple, a basic
resource point in the multi-dimensional resource space. The LRC-
tuple based MISs can then be searched over the MDCG to specify
the scheduling constraints in the MCF formulation.

Searching all independent sets is however NP-hard in general.
While the random search algorithm [4] and the critical MIS search
algorithm [9] can reduce the computation overhead in some degree,
neither of the two methods can provide performance guarantee of
the MCF capacity. With an LP formulation, the independent set
induces a large number of columns to the constraint matrix of the
MCF problem. The delayed column generation method is expected
to be decomposition method addressing such a problem. While the
existing studies [12,13] are limited to special scenarios without the-
oretical analysis, this paper provides a systematic study of the DCG
method in the general context of network flow problem. We show
that searching an entering column in the DCG method is equivalent
to an MWIS problem. The MWIS is a classic problem in combi-
natorial optimization, which is NP-hard in general and by nature
calls for approximation algorithms. For example, [16] studies a
simple greedy algorithm which iteratively removes the vertex (and
its neighbors) having minimal weighted degree each time from the
remaining graph. This method is combined with a linear program-
ming to form an LP-based algorithm [16]. A minimum weighted
vertex cover based approximation algorithm is proposed in [17].
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In this paper, we compare the performances of various embedded
MWIS approximation algorithms in our DCG method, and the re-
sults show the greedy algorithm is the most efficient one.

3. SYSTEM MODEL
In this section, we mainly present the system model in the SR-

SC context. Compared to the MR-MC case, an SR-SC network
provides a less entangled environment for theoretically studying the
performance of DCG. In Section 5, we do show that the theoretical
results obtained in the SR-SC context can be extended to the MR-
MC case.

Consider an SR-SC wireless network as a directed graph G(N ,L)
with node set N and physical link set L. A directed link in a graph
is also termed as an arc. Let |N | and |L| denote the number of
nodes and links, respectively. A link ℓ ∈ L is also denoted by
the pair of transmitter and receiver (a, b) for which the capacity is
w(a,b). To form a link, nodes a and b should be within each other’s
communication range. We consider the nodes are indexed from 1
to |N | and links indexed from 1 to |L|.

We adopt the protocol interference model defined by an interfer-

ence range [21]. We assume that every node has the same interfer-
ence range. Two nodes interfere with each other if they are within
each other’s interference range. Two links conflict with each other
if they have interfering nodes. Under such an interference model,
a link could have a successful transmission only when both the
sender and receiver are free of interference. The interference-free
requirement at the sender side ensures that it can receive the ac-
knowledgement returned by the receiver. The interferences among
the links can be described by an undirected conflict graph. Each
vertex in the conflict graph represents a link in the original net-
work. An edge between two vertices indicates a conflict relation-
ship between the corresponding links in the original network. An
independent set over the conflict graph then represents a set of links
that can transmit simultaneously in the original network.

We consider a slotted system, where time is divided into slots of
unit length. Different ISs share the time for transmission, forming
a scheduling. Let I denote an IS over the conflict graph and M the
set of all the ISs. The convex hull of all the ISs, Co(M), defines
the network capacity region under scheduling. Let r(a,b) denote a
feasible flow allocation over link (a, b) and r the flow rate vector
over all the links. We have r ∈ Co(M).

In the sequel, we use boldface letters in lower case and upper-
case to denote vectors and matrices, respectively. A vector by de-
fault is a column vector. The operator (′) indicates the transpose of
a vector or matrix. We use 0 and 1 to denote the vectors of 0’s and
1’s, respectively, whose dimensions are clear in the context.

4. DELAYED COLUMN GENERATION
In this section, the theoretical performance of DCG is first stud-

ied based on a standard network flow problem with a single flow.
We then extend the results to some other important network flow
problems, such as maximum flow, multi-commodity flow, and MCF
with fairness. Before we present the network flow formulation, let
us look at the basic flow conservation constraint and the IS based
scheduling constraint.

4.1 Flow Conservation Constraint
Consider a network with a single flow f from the source node

s(f) to the destination node d(f). Let g = (g1, g2, · · · , g|N|)
denote the input vector, with gi = 0 for i 6= s(f) and gs(f) =
−gd(f). Define the node-arc incidence matrix H as follows: its
dimensions are |N |×|L| (each row corresponds to a node and each

column corresponds to an arc (i.e., a link)) and its (i, k)th entry hik

is associated with the ith node and the kth link. We let

hik =







1, if i is the start node of the kth arc,
−1, if i is the end node of the kth arc,
0, otherwise.

With the node-arc incidence matrix, the flow conservation con-
straint can be expressed as

Hr = g (1)

Note that the rows of the matrix H sum to the zero vector and
are therefore linearly dependent. In fact, the last flow conservation
constraint at node |N | is a consequence of the flow conservation
constraints at the other nodes, and can be omitted without affecting
the feasible set. A truncated node-arc incident matrix H̃ can be de-
fined, which consists of the first |N − 1| rows of the matrix H. Let
g̃ = (g1, · · · , g|N|−1). According to [11], the flow conservation
constraints without redundancy can be expressed as

H̃r = g̃ (2)

We can index the destination node as the last node and truncate it,
so g̃ consists of only zero and positive values. For convenience, we
later just use H and g to represent the trunked node-arc incidence
matrix and the associated input vector.

4.2 Scheduling Constraint
In wireless network, the link capacity under scheduling is con-

strained by the convex hull of the independent sets. The total flow
allocation over link (a, b) should satisfy its capacity constraint.

r(a,b) ≤
∑

m:(a,b)∈Im

αmw(a,b) (3)

|M|
∑

m=1

αm = 1 (4)

where the real number αm (0 ≤ αm ≤ 1) represents the proportion
of time scheduled to the mth IS.

LEMMA 1. There exists a scheduling (α1, · · · , αu), so that

any feasible flow allocation within the capacity region, i.e., r ∈
Co(M), has an exact scheduling as

r(a,b) =
∑

m:(a,b)∈Im

αmw(a,b), ∀(a, b) ∈ L (5)

|M|
∑

m=1

αm = 1. (6)

PROOF. Consider feasible flow allocation within the convex hull.
A link (a, b) is termed as over-scheduled if

r(a,b) <
∑

m:(a,b)∈Im

αmw(a,b). (7)

We are going to show that the scheduling can be adjusted so that
every over-scheduled link becomes exactly scheduled, and the orig-
inally exactly scheduled links maintain intact.

Pick an over-scheduled link (a, b) and assume there are n inde-
pendent sets, with index (i1, i2, · · · , in), which have positive time
allocation in the scheduling (7). We take the ratio

β =
r(a,b)

∑

m:(a,b)∈Im
αmw(a,b)

=
r(a,b)

∑n

j=1 αijw(a,b)
. (8)
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Let i′ index the independent set that contains the links in Ii/(a, b),
that is, the links of Ii excluding link (a, b). Then we adjust the
scheduling as

α̃ij = βαij , (9)

α̃i′
j
= αi′

j
+ (1− β)αij (10)

for j = 1, · · · , n. We call the operations in (9) and (10) as a split-
ting procedure. With a splitting procedure, it can be seen that link
(a, b) will become exactly scheduled. The scheduled capacities of
other links in Ii/(a, b) do not change, for which the splitting pro-
cedure just redistributes the scheduling time between Ii and Ii′ but
maintains the total time allocation. Note that if an independent set
includes only the link (a, b), the splitting procedure will lead to a
positive time allocation to the empty set, indexed as i′j = 0.

Using the (α̃i1 , α̃i′
1
, · · · , α̃in , α̃i′n

) to update the corresponding
time allocation in the original scheduling, we get another schedul-
ing denoted as α̃. For k /∈ {i1, i

′
1, · · · , in, i

′
n}, we have α̃k = αk.

Further, we can remove the empty set (if it has positive time allo-
cation) from the scheduling with the normalization operations:

α̃k =
α̃k

1− α̃0
, for k = 1, · · · , n.

We can then move on to pick another over-scheduled link and apply
the splitting procedure to make it exactly scheduled. The schedul-
ing α̃ is then updated according to the splitting. Such a procedure
of splitting and schedule updating can be iteratively applied till all
over-scheduled links become exactly scheduled. As a result, the
final scheduling is still valid.

The exact scheduling lemma has benefits in two aspects. a) It
allows a standard linear programming formulation of the network
flow problem over a wireless network, which will facilitate the the-
oretical analysis of DCG performance. b) It reduces computation
complexity in the DCG algorithm. In a non-standard LP problem,
extra computation overhead will be required to handle slack vari-
ables associated with those inequality constraints [11], if we want
to search a new entering column only over the IS columns.

4.3 Delayed Column Generation
Let u denote a vector of link costs. Consider the standard net-

work flow problem P1

minimize u
′
r (11)

subject to:

Hr = g (12)

r = Wα (13)

1
′
α = 1 (14)

r ≥ 0 (15)

α ≥ 0. (16)

where the matrix W consists of all the independent sets (excluding
the empty set), with each column as one different independent set.
Consider that there are M non-empty independent sets can be used
for the optimization problem. Each independent set wm is a vector
of |L| elements, with

wm(i) =

{

wi, if link i is in this set
0, otherwise

The matrix W can be expressed as

W =





| |
w1 · · · wM

| |



 . (17)

In the problem P1, the decision variables are r and α. The ob-
jective function is equivalent to u′r + 0′

α. To get a standard LP
problem, we redefine the decision variables as x = (r′,α′)′. The
cost vector c = (u′, 0′)′. Further we rewrite the condition (13) as

r−Wα = 0 (18)

The problem P1 can then be reformulated as a standard LP problem
P2

minimize c
′
x (19)

subject to:

Ax = b (20)

x ≥ 0 (21)

where

A =





H(|N|−1)×|L| 0(|N|−1)×M

I|L|×|L| −W|L|×M

01×|L| 11×M



 (22)

b = (g′
1×(|N|−1),0

′
1×|L|, 1). (23)

Note that the constraint (20) presents in a compact manner the con-
straints (12), (13), and (14). For the convenience of presentation,
we term the columns in A associated with all the ISs as right sub-

matrix and the other part as left sub-matrix.
The challenge to solve the problem P2 is that the number of

independent sets is in the order of O(2|L|), and it is known that
searching all independent sets is an NP-hard problem. Even if all
the independent sets can be searched, the number of columns is so
large that it is impossible to generate and store the entire matrix A

in memory.
Experience with large problems indicates that, usually, most of

the columns never enter the basis, and we can therefore afford not
to ever generate those unused columns. The delayed column gen-

eration method [11] is a sequence of iterations. At the beginning of
an iteration, we have a basic feasible solution to the original prob-
lem, and an associated basis matrix. We search for a variable with
negative reduced cost, possibly by minimizing c̄i over all i, i.e.,
solving the problem

minimize c̄i; (24)

if none is found, the algorithm terminates. Suppose that we have
found some j such that c̄j < 0. We then form a collection of
columns Ai, i ∈ Q, which contains all of the columns that have
been selected before and the new entering one. We then define the
restricted problem

minimize
∑

i∈Q

cixi

subject to
∑

i∈Q

Aixi = b

x ≥ 0

The solution from the restricted problem is another basic feasible
solution to the original problem and serves as the start point for
next iteration.

Selecting an initial basic feasible solution. We can select an
initial feasible solution by the following algorithm:
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Step 1: Randomly select a link, and then search an MIS starting
from this link.

Step 2: Randomly select another link from the set of links that
have not been included in any of the existing MISs, and
then search an MIS starting from the selected link.

Step 3: Repeat Step 2 until all the links are covered.

If n MISs have been selected, we can get a scheduling that assigns
1/n of the time to each MIS. Then each link will have the capac-
ity at least wl/n, with wl the physical link capacity of link l. In
fact, each link capacity under the scheduling could be exactly de-
termined based on how many MISs it is involved in. Given the
link capacity under scheduling, a feasible commodity flow can be
easily constructed by setting it as the bottleneck capacity of a path
between the source and the destination. The set Q can include all
the columns in left sub-matrix and the columns associated with the
MISs scheduled. As we already constructed a basic feasible solu-
tion over such Q, we know that the restricted problem must have a
solution to start the DCG iterations.

THEOREM 1. The DCG problem to find an entering column

can be mapped to an MWIS problem.

PROOF. Note that when we apply the delayed column genera-
tion method, use matrix B to denote the matrix formed by columns
associated with the basic feasible variables xB = B−1b. Define
p′ = c′BB−1. To find a new column with improved solutions is to
find a column

c̄i = ci − p
′
Ai ≤ 0.

With delayed column generation, the candidate columns are only in
the right sub-matrix of A. For those columns, the associated cost
variables are all 0. To pick the one with the largest value of cost
reduction, the problem is

minimize − p
′
Aj . (25)

Let wj be the independent set vector contained in Aj . The mini-
mization problem (25) is then equivalent to

minimize

|N|+|L|−1
∑

i=|N|

piwj(i− |N |+ 1)− p|N|+|L|.

and further equivalent to

maximize

|L|
∑

i=1

(−pki
)wj(i) (26)

by defining ki = i+ |N | − 1.

Remark: Note that an MWIS algorithm normally considers only
non-negative weights. However, in the MWIS problem shown in
(26), the weight associated with a link (i.e., −pj) may take either
negative or positive values. If some links have negative weights,
we can replace the negative weights with a weight of zero and runs
the MWIS algorithm. For the MWIS identified, we can exclude
those links originally having negative weights from the MWIS and
use the remaining set as our solution. It is not difficult to see that
such a method indeed gives the MWIS to the original problem with
negative weights. The problem that all links have negative weights
is a trivial problem, where the solution is just the link with the
largest weight. The proof of Theorem 2 in the below will show
that the MWIS problem of importance in this paper indeed involves
non-negative weights, so we will not have a trivial issue.

s d

( ),
1

d s
u = -

( ),d s
w = ¥

destination
source

Figure 1: Reformulation of the maximum flow problem as a

standard network flow problem.

4.4 DCG in the Maximum Flow Problem
The maximum flow problem can be reformulated as a standard

network flow problem as follows. We let the cost of every arc be
equal to zero and introduce a new infinite capacity arc (d, s) with
cost u(d,s) = −1, as shown in Fig. 1. Minimizing c′r in the new
network is the same as maximizing the flow x(d,s) on the new arc.
Since the flow on the arc (d, s) must return from s to d through
the original network, maximizing x(d,s) is the same as solving the
original maximum flow problem.

In the transformed network, the problem P2 needs to be updated
as follows. The decision variables are now x = (r(d,s), r

′,α′),
and the cost vector c = (−1,01×(|L|+M)). The truncated node-
arc incidence matrix H needs to add one more column (specifically,
as the first column) to include the new arc (d, s). The scheduling
constraints do not need to be changed. The arc (d, s) is a virtual
arc for modeling purpose. It does not interfere with any wireless
link. Also the virtual link has an infinite capacity, so does not need
an independent set based scheduling. Also, the external input rate
is 0 in the reformulated problem, i.e., g = 0. Thus, the problem
P2 is to be updated into the problem P3, which has

A =





H(|N|−1)×(|L|+1) 0(|N|−1)×M

Î|L|×(|L|+1) −W|L|×M

01×(|L|+1) 11×M



 (27)

b = (0′
1×(|N|−1+|L|), 1) (28)

where

Î|L|×(|L|+1) =
[

0|L|×1 I|L|×|L|

]

. (29)

THEOREM 2. If we apply an approximation algorithm with the

approximation ratio β to solve the MWIS problem when search for

an entering column, the maximum flow solved under such an ap-

proximation algorithm will be at least β of the optimal solution.

PROOF. Note that we apply the delayed column generation method
to the maximum flow problem formulated above. Given a basic fea-
sible solution xB = B−1b, we then have p′ = c′BB−1. Further,
p′b = c′BB−1b = c′BxB = p|N|+|L| ≤ 0, where the last step is
due to c = (−1,01×(|L|+M))

′ and a feasible solution x ≥ 0.
To find a new column with improved solutions is to find a column

ci − p
′
Ai ≤ 0

With delayed column generation, the candidate columns are only in
the right sub-matrix of A. For those columns, the associated cost
variables are all 0. To pick the one with the largest value of cost
reduction, the problem is to

minimize − p
′
Aj .

It is equivalent to

minimize

|L|
∑

i=1

pki
wj(i)− p|N|+|L|

27



and equivalent to

maximize

|L|
∑

i=1

(−pki
)wj(i).

When the algorithm stops, we have

c
′ − p

′
A ≥ 0

′,

where −p|N|+|L| equals the network flow obtained. That is,

|L|
∑

i=1

pki
wj(i)− p|N|+|L| ≥ 0 ∀ independent set

equivalently,

|L|
∑

i=1

(−pki
)wj(i) ≤ −p|N|+|L| ∀ independent set (30)

Thus,

max
j∈M





|L|
∑

i=1

(−pki
)wj(i)



 ≤ −p|N|+|L| (31)

When the MWIS problem is solved by an approximation algo-
rithm with an approximation ratio β (< 1), let m̃ax denote the
maximum value obtained with the algorithm and we can have

βmax
j∈M





|L|
∑

i=1

(−pki
)wj(i)



 ≤ m̃ax
j∈M





|L|
∑

i=1

(−pki
)wj(i)



 (32)

≤ −p|N|+|L| (33)

That is

max
j∈M





|L|
∑

i=1

(−pki
)wj(i)



 ≤ −
1

β
p|N|+|L| (34)

The dual problem of P3 is

maximize p
′
b

subject to p
′
A ≤ c

′.

We now show that the vector p̂ = (p1, · · · , p|N|+|L|−1,
1
β
p|N|+|L|)

is a feasible solution to the dual problem. The vector p is associ-
ated with the optimal solution of the restricted problem, where all
the columns involved are represented as set Q. For a column i ∈ Q
and associated with the basic variables, we have ci − p′Ai = 0;
for a column i ∈ Q and associated with the non-basic variables, we
have ci − p′Ai ≥ 0 (if not, the solution associated with p could
not be the optimal of the restricted problem). Given a vector p that
stops the DCG algorithm, we can see that replacing the last ele-
ment p|N|+|L| with 1

β
p|N|+|L| will not change the value of p′Ai

for left-submatrix columns, since Ai(|N | + |L|) = 0 for those
columns. Further the result in (34) ensures that ci − p̂′Ai ≥ 0 for
all the right-submatrix columns. In summary, ci − p̂′Ai ≥ 0 for
all columns of A and p̂ is a dual feasible solution. Then, by the
weak duality, we have

p̂
′
b =

1

β
p|N|+|L| ≤ c

′
x
∗

(35)

That is

max flow = −c
′
x
∗ ≤ −

1

β
p|N|+|L| (36)

The approximate solution

−p|N|+|L| ≥ β × (max flow) (37)

4.5 DCG in the MCF Problem
Consider there are F commodity flows over the network, with

source-destination pairs (sf , df ) for f = 1, · · · , F , respectively.
The multi-commodity flow (MCF) problem is to maximize the sum-
mation of all the commodity flows. We can also transform the MCF
problem to a standard network flow problem. Specifically, we in-
duce new infinite capacity arcs (df , sf ) for f = 1, · · · , F . We set
the link costs u(df ,sf ) = −1 for f = 1, · · · , F and a cost of zero
for all the other links.

We now need to determine the link flow allocation for every com-
modity. Thus we define for commodity flow f the vector

xf = (r(df ,sf ), r
′
f ) (38)

where rf indicates the flow allocation vector for commodity f over
the original network, i.e., rf is the vector of commodity f flow

allocation rf(a,b) for all links (a, b) ∈ L. The decision variables are

x = (x′
1, · · · ,x

′
F ,α

′). (39)

Define the cost vector cf = (−1,01×|L|). The cost vector for the
transformed network flow problem will be c = (c′1, c

′
2, · · · , c

′
F ,01×M ).

Each commodity flow allocation rf needs to satisfy the flow con-
servation constraint. For flow f , the truncated node-arc incidence
matrix H needs to add one column (specifically, as the first column)
to include the newly induced arc (df , sf ); we use Hf to indicate
this updated matrix. Since the induced links are not confined by the
scheduling constraint, the matrix Î defined in (29) applies to every
commodity flow.

Now the problem P2 is to be updated into the problem P4, which
has

A =



















H1

H2

. . .

HF

Î Î · · · Î −W|L|×M

11×M



















b = (0′
1×(F (|N|−1)+|L|), 1)

We define the first (|L| + 1)F columns of matrix A as left sub-
matrix and the leftover M columns as right sub-matrix. It is not
difficult to see that the DCG algorithm presented in Section 4.3 and
the theoretical analysis regarding the approximated MWIS algo-
rithm in Section 4.4 apply to the problem P4 too. We thus have the
following theorem.

THEOREM 3. If we apply an approximation algorithm with the

approximation ratio β to solve the MWIS problem when search for

an entering column, the MCF solved under such an approximation

algorithm will be at least β of the optimal solution.

4.6 DCG in MCF with Fairness Constraint
Ensuring fairness in resource allocation is an important issue.

According to [1], an MCF problem with fairness constraint can be
formulated as maximizing a factor λ (≤ 1) where at least λ · gsf
amount of throughput can be guaranteed for each commodity flow.
Here, gsf is the traffic requirement of commodity flow f . We also
transform the problem to a standard network flow problem simi-
larly to the construction in Section 4.5. We induce new infinite
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capacity arcs (df , sf ) and set the link costs u(df ,sf ) = −1 for
f = 1, · · · , F , and set a cost of zero for all the other links. With
the fairness constraint, we should have

r(df ,sf ) = λgsf for f = 1, · · · , F. (40)

We still adopt the vectors xf and x defined in (38) and (39). Let
gF = (gs1 , · · · , gsF ) denote the vector of traffic requirements of
all commodities. Define a (|L| + 1) × 1 vector e = (1, 0, · · · , 0).
The constraints in (40) can be expressed in a matrix format as











e′

e′

. . .

e′





















x1

x2

...
xF











,
[

E1 E2 · · · EF

]











x1

x2

...
xF











=λgF , (41)

where each sub-matrix Ef is a F × (|L|+1) matrix, with only one
non-zero element Ef (f, 1) = 1.

With λ included, the new decision variable is defined as

x̃ = (λ,x′
1, · · · ,x

′
F ,α

′), (42)

with the corresponding cost vector c = (−1, 0, · · · , 0). The prob-
lem P2 can then be updated to problem P5 with

A =























−gF E1 E2 · · · EF

H1

H2

. . .

HF

Î Î · · · Î −W|L|×M

11×M























b = (0′
((|N|−1)(F+1)+|L|)×1, 1).

Again, the DCG algorithm and the theoretical analysis regard-
ing the approximated MWIS algorithm presented in previous cases
apply to the problem P5 too. We thus have the following theorem.

THEOREM 4. If we apply an approximation algorithm with the

approximation ratio β to solve the MWIS problem when search

for an entering column, the MCF problem with fairness constraint

solved under such an approximation algorithm will be at least β of

the optimal solution.

5. DCG IN MR-MC NETWORKS
The DCG method can be applied to MR-MC networks based on

the multi-dimensional conflict graph technique developed in [9].
To facilitate understanding, we here briefly summarize the MDCG
technique presented in [9]. We use C to denote the number of
available channels and c a specific channel. Although c is used
as a link cost in previous sections, there will be no confusions of
notation due to the clear context in this section. We use Ma to
denote the number of radios available at node a.

An MR-MC network can be interpreted as a multi-dimensional
resource space, with dimensions defined by links, radios, and chan-
nels. The MDCG is to describe the conflict relationships among
the resource points, each represented as a link-radio-channel tuple.
Specifically, an LRC tuple p is defined in the format:

Link-radio-channel tuple: ((a, b), (ya, yb), c). (43)

The tuple indicates that link (a, b) operates on channel c, using
radios ya and yb at nodes a and b, respectively. Note that link
(a, b) can be mapped to Ma ×Mb ×C LRC tuples in the MDCG.

(A, B)

(1, 1)

1

(A, B)

(1,1)

2

(A, B)

(1, 2)

1

(A, B)

(1, 2)

2

(B, C)

(1, 1)

1

(B, C)

(1, 1)

2

(B, C)

(2, 1)

1

(B, C)

(2, 1)

2

Network

Multi-dimensional 

Conflict graph

B

(2 radios)

A

(1 radio)

C

(1 radio)

Figure 2: An illustration of MDCG construction [9].

There are two types of conflict relationships among LRC tuples in
the MDCG. One is interference conflict indicating that co-channel
transmissions (geometrically separated) conflict with each other
within the interference range. The other is radio conflict indicat-
ing that multiple transmissions (possibly over different channels)
contend for the same radio.

Consider an example of the MDCG. The left side of Fig. 2 shows
a small network with directed links and 2 available channels. The
right side illustrates the MDCG constructed. With the MDCG,
the IS-based scheduling could jointly give the solutions of link
scheduling, routing, channel and radio assignment [9].

For a network flow formulation over an MR-MC network, the
flow conservation constraint presented in Section 4.1 still applies.
The scheduling constraint presented in Section 4.2 needs to be up-
dated according to the MDCG. Let Ip

m denote the mth independent
set over an MDCG and Mp the set of all of the independent sets
over the MDCG. The scheduling constraint is updated as:

r(a,b) ≤
∑

m:(a,b)∈Ip
m

αmw
c((a,b),Ip

m)

(a,b)
(44)

|Mp|
∑

m=1

αm = 1 (45)

where c((a, b), Ip
m) denotes the operating channel of link (a, b)

when it is activated in the IS Ip
m, and wc

(a,b) denotes the channel-
dependent capacity of link (a, b) in the multiple-channel context.
Note that the scheduling constraint (44) can conveniently exploit
the channel diversity to optimally utilize high-quality channels for
the maximum network capacity [9].

With the updated scheduling constraints (44) and (45), it can be
easily checked that all the analysis and theorems developed in Sec-
tion 4 remain valid in the MR-MC context. An implementation de-
tail is that each column of the matrix W now represents a tuple-link
based IS over the MDCG. In the implementation, we assume all
nodes have the same communication range and interference range
over all channels.

6. NUMERICAL RESULTS
In this section, we present numerical results to demonstrate the

performance of DCG. For the convenience of comparison with ex-
isting methods, we focus on the MCF problem with fairness con-
straint in an MR-MC network which is considered in [1] and [9].
Our goals are three-fold. 1) We study the efficiency of the DCG
algorithm by comparing its performance with three existing algo-
rithms — the joint routing, channel assignment and link schedul-
ing (RCL) algorithm proposed in [1], the random search of ISs [4]
over the MDCG (RS-MDCG), and the MDCG based scheduling
index ordering (SIO-MDCG) algorithm proposed in [9]. The per-
formance is measured in terms of achieved network capacity λ∗
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Figure 3: Network topologies.

and the total computation time. 2) We then study the scalability of
our DCG algorithm versus the number of available channels, the
number of radios and the network size. 3) We compare the perfor-
mance of three MWIS approximation algorithms (i.e., the greedy
algorithm in [16], the LP-based algorithm that integrates the greedy
algorithm with a relaxed linear programming in [16], and the SRA
algorithm in [17]) in affecting the performance of the DCG algo-
rithm in Section 6.3.

In the following, all our results with the DCG algorithm are
based on the greedy MWIS algorithm [16], except in Section 6.3
where we explicitly compare the performance of different approx-
imate MWIS algorithms. The DCG algorithm is terminated if the
following two events happen: 1) no new entering column is found
by the MWIS algorithm; 2) the network capacity improvement in
one iteration has held less than 10−6 for 100 iterations. The sec-
ond condition stems from our observation that, after a number of
iterations, the algorithm begins continuously finding new entering
columns which introduce very limited reduced cost (or have lit-
tle impact on the capacity). We set the RS-MDCG algorithm stop
searching for new MISs when it has already found 2× 105 MISs.

We develop Matlab programs for each of the above algorithms.
We use CPLEX [15] within the Matlab environment to solve all
the LPs involved in the above algorithms. In the comparisons, the
computation time of each algorithm is measured as the total time
including independent set searching (not applicable to the RCL al-
gorithm) and LP optimizations. We run the program on a machine
with an 8-core and 3.4GHz CPU and 12GB RAM. Besides, the
codes are optimized to further avoid memory leak when solving
large-scale LPs. For instance, instead of storing the sparse inde-
pendent set matrix W, which is very memory expensive, we only
store the non-zero elements along with their associated positions
in the matrix. Intermediate variables are immediately cleared after
last use in order to save memory.

6.1 Performance Comparison
We consider two networks as shown in Fig. 3, each of which

has 25 nodes deployed within a 900m × 900m area. The commu-
nication range and interference range of each node are 250m and
500m, respectively. In the grid topology, each node is equipped
with 4 radios and there are totally 8 orthogonal channels available
to them; in the random topology, 9 orthogonal channels are avail-
able and each node has 3 radios. We assume that the channel ca-
pacities of all the tuples are the same and are normalized to 1 rate
unit. As marked in both figures, there are 3 commodity flows from
sources s1, s2, s3 to destinations d1, d2, d3, respectively. Each flow
demands a throughput of 3 rate units, i.e., the input to the source
nodes gi = 3. As a reference value, an upper bound of λ∗ is also
calculated by solving an LP relaxation problem proposed in [1].
Note that this upper bound may not be practically feasible. For the
RS-MDCG algorithm, in order to achieve comparable capacity, we
fix the total number of independent sets to be searched at 2× 105.

Table 1 summarizes the comparison results. Generally, our al-
gorithm achieves the most preferable tradeoff between network ca-
pacity and computation time for both topologies. First, we observe
that the DCG algorithm achieves the best capacities with the least
computation time among all the three MDCG based algorithms. In
fact, both RS-MDCG and SIO-MDCG first find a large amount of
maximal independent sets, and then input them into the LP prob-
lem P5 which solves the optimal capacity and scheduling jointly.
During searching for independent sets, RS-MDCG just applies ran-
dom search while the SIO-MDCG does so in a more managed way
by taking critical independent sets into account [9]. However, the
importance of each independent set to the problem has not been
fully explored. Alternatively, the DCG algorithm searches for a
new entering independent set in each round which can definitely
improve the objective. As the table shows, the DCG algorithm
uses only around 1000 ISs (among them 785 and 833 sets are ini-
tial ISs) in both networks, respectively. These numbers are signifi-
cantly smaller than those used by the RS-MDCG and SIO-MDCG
algorithms. Second, although the RCL algorithm takes the short-
est time, its final capacity is significantly low (less than 50% of the
capacity achieved by the DCG algorithm).

6.2 Scalability Evaluation

6.2.1 The impact of number of channels

Consider both networks shown in Fig. 3 with the number of
available channels ranging from 1 to 10. From the results shown
in Fig. 4, we have the following observations. 1) For all the four
algorithms, the network capacity basically increases proportionally
with the number of available channels. 2) The DCG algorithm al-
ways achieves the highest capacity. Moreover, as shown in Fig.
4(b) and 4(d), the computation time of DCG is significantly lower
than that of RS-MDCG (its computation time is longer than 6000
seconds and thus omitted from the figures) and of SIO-MDCG. Al-
though the RCL algorithm takes the shortest time, its achieved ca-
pacity is significantly lower than all the other three algorithms. 3)
The computation time of the SIO-MDCG algorithm is exponential
in the number of channels. However, roughly speaking, both the
DCG and RCL algorithms run in time polynomial in the number of
channels. Such polynomial relationship for the RCL algorithm has
been proved in [1]. For the DCG algorithm, we further explore it
in Section 6.2.3.

6.2.2 The impact of number of radios

Based on the observations above, only the SIO-MDCG algo-
rithm is comparable to our SIO-MDCG algorithm in terms of both
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Figure 4: Impact of multi-channels. (a-b) Grid topology with 4

radios; (c-d) random topology with 3 radios.

network capacity and computation complexity. Therefore, we only
compare the performance of the DCG and SIO-MDCG algorithms
in the following. We consider the random topology with the num-
ber of radios varying from 1 to 4. The results for the grid topol-
ogy are similar and hence are omitted. In addition, in Fig. 5(a)
and 5(b), the results for SIO-MDCG with 4 radios and more than
5 channels are omitted because the algorithm’s computation time
is excessively high while the resultant network capacities are very
close to the curve corresponding to 3 radios.

In Fig. 5, we can observe for both algorithms that when there
are less than 4 channels available, the number of radios does not
have significant impact on the network capacity; in other words, all
the four channels can be exploited even with just one radio. The
explanation is that in that range, the optimal resource allocation for
the highest network capacity is to assign the links within an inter-
ference neighborhood each a different channel [20]. When there
are still more channels available than the number of links in an in-
terfering neighborhood, which can then be exploited by the extra
available channels. In Fig. 5, there are also ranges that the capac-
ity curves become flat, where all the available radios are fully used
and can not exploit the extra available channels. Furthermore, the
exponential growth of the computation time of the MIO-MDCG al-
gorithm is clearly shown in Fig. 5(b). In contrast, the computation
complexity of the DCG algorithm is polynomial in the number of
radios as shown in Fig. 5(d).

6.2.3 The impact of network size

In this evaluation, we generate a number of networks with nodes
randomly deployed within linearly expanded areas, where the node
density maintains the same as that of the random network shown
in Fig. 3(b). There are 5 channels available and each node has 3
radios. We consider 3 commodity flows where their sources and
destinations are randomly chosen in each of the networks. From
the results shown in Fig. 6(a), the network capacities by the two
algorithms are almost flat versus the network sizes, but the DCG
always performs better than the SIO-MDCG. Such flat shapes are
reasonable since the network density is fixed. As the network scale
grows, the computation complexity of the SIO-MDCG algorithm
climbs much faster than that of the DCG algorithm, as shown in
Fig. 6(b).
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Figure 5: Impact of multi-radios. (a-b): SIO-MDCG algo-

rithm; (c-d): DCG algorithm.
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Figure 6: Scalability against network size. Random topologies

with 3 radios and 5 channels.

Since the tuple-based independent sets have been used in the
MR-MC networks, we here more directly demonstrate the algo-
rithm complexity versus the number of tuples. We collect all the
data for the DCG algorithm in Fig. 4(b) and 5(d) and re-present
them in Fig. 7 as a function of the square of the number of tuples.
We can see that the computation time is almost linear to the square
of tuple numbers. In fact, fixing the network topology, the number
of tuples is proportional to the product of the number of channels
(C) and the square of the number of radios ((max{Ma})

2). There-
fore, these results show that our DCG algorithm is polynomial in
time, and the complexity is in the order of O

(

C2(max{Ma})
4
)

.

6.3 Comparison of MWIS Algorithms
With thorough examinations, we find that the major amount of

the computation time in DCG is spent by the embedded MWIS al-
gorithm. Therefore, in this part, we study the impact of the MWIS
algorithm on DCG by comparing the performance with three MWIS
approximation algorithms: the greedy algorithm [16], the LP-based
algorithm [16], and the support ratio algorithm (SRA) [17]. We use
the random network as shown in Fig. 3(b) with 9 available channels
and 3 radios. From Fig. 8, we observe that the simple greedy algo-
rithm converges extremely faster than the other two without sacri-
ficing the network capacity. This is reasonable since both SRA and
LP-based algorithms have higher computation complexity than the
greedy algorithm. Another observation is that by the three algo-
rithms, the network capacity curves all experience a sharp increas-
ing period.
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7. CONCLUSION
The network capacity of a multi-hop wireless network is funda-

mentally determined by independent set based scheduling. Search-
ing all ISs over a conflict graph for scheduling is NP-hard in gen-
eral. In this paper, we systematically study the performance of the
delayed column generation method in solving network flow prob-
lems augmented with IS-based scheduling, and contribute some
original theoretical analysis of the performance of DCG. Exten-
sive numerical results have been presented to demonstrate that the
DCG algorithm achieves the most preferred tradeoff between net-
work capacity and computation time among the RCL, RS-MDCG
and SIO-MDCG algorithms, and is also scalable versus the number
of channels, the number of radios, and the network size. In addi-
tion, as for the embedded MWIS algorithm in DCG, it has been
shown that the greedy approximation algorithm is a good option
for both the performance and the complexity.
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