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ABSTRACT

Different from energy harvesting which generates dynamic ener-
gy supplies, the mobile charger is able to provide stable and reli-
able energy supply for sensor nodes, and thus enables sustainable
system operations. While previous mobile charging protocols ei-
ther focus on the charger travel distance or the charging delay of
sensor nodes, in this work we propose a novel Energy Synchro-

nized Charging (ESync) protocol, which simultaneously reduces
both of them. Observing the limitation of the Traveling Salesman

Problem (TSP)-based solutions when nodes energy consumptions
are diverse, we construct a set of nested TSP tours based on their
energy consumptions, and only nodes with low remaining energy
are involved in each charging round. Furthermore, we propose the
concept of energy synchronization to synchronize the charging re-
quests sequence of nodes with their sequence on the TSP tours.
Experiment and simulation demonstrate ESync can reduce charger
travel distance and nodes charging delay by about 30% and 40%
respectively.

1. INTRODUCTION
To address the energy constraints of sensor nodes [1–6], the con-

cepts and implementations of adopting mobile chargers to replenish
nodes energy supply in rechargeable sensor networks have attracted
a lot of attentions in the research community recently [7–12]. Dif-
ferent from traditional energy harvesting sensor networks [13–17],
where the harvested energy is dynamic in both the spatial and tem-
poral dimensions, the mobility-assisted energy replenishment pro-
vides a stable and reliable energy supply for sensor nodes and thus
enables truly sustainable operations of sensor networks [18–20].

Due to the limited mobility of the charger, the scheduling of
charging tasks for sensor nodes in the network plays a critical role
in achieving a high charging efficiency. The Traveling Salesman
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Problem (TSP)-based charging protocols are a family of classic so-
lutions to the mobile charging problem [10, 18, 21], with which in
general, the mobile charger periodically carries out the charging
process following a pre-optimized tour. As a result, the charging of
nodes can be accomplished with a short charger travel distance and
thus a short time duration.

However, the limitation of TSP-based solutions is that when n-
odes energy consumptions are diverse, it may lead to the unnec-
essary visits of energy-sufficient nodes. This not only increases
the charger travel distance when performing the charging tasks of
sensor nodes, but also prolongs the waiting time before the energy-
hungry nodes can be charged. To address this issue, in this paper,
we investigate the on-demand mobile charging scenario where n-
odes are charged only when necessary. Specifically, sensor nodes
send out charging requests to the mobile charger when their ener-
gy levels are low, and the charger replenishes their energy supply
according to those received requests. We aim to design a novel mo-
bile charging protocol that is able to leverage on the advantages of
existing designs while minimizing the impact of their limitations.

The most significant feature in our design is synchronizing the

energy supply of sensor nodes based on a set of nested TSP tours.
Upon achieving such energy synchronization, we can realize the
ideal mobile charging paradigm that the charger can simply travel
according to the TSP tours to reduce its travel distance, and when-
ever a sensor node runs short of energy, the charger will happen to

be traveling towards it. Our major intellectual contributions in this
paper are three-fold:

• To the best of our knowledge, our work is the first to jointly
improve the charging process for both sensor nodes and the
mobile charger, while existing designs only adopt either one
of them as the design objective.

• At the macro-level of the mobile charging process, to lever-
age the advantage of the TSP-based solutions while minimiz-
ing the impact of their limitations when node energy con-
sumptions are highly diverse, we construct a set of nested
TSP tours based on the energy consumption rates of sensor
nodes. Then for each round of the charging process, a nov-
el tour selection algorithm is designed to only involve the
energy-hungry nodes into the charging schedule during that
round.

• At the micro-level focusing on the charging schedule dur-
ing individual rounds, observing that nodes charging requests
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sequence may significantly affect the charging performance,
we propose the concept of energy synchronization among n-
odes to proactively match nodes charging requests sequence
to the selected TSP tour in each charging round, which is
achieved by carefully selecting the node to be charged next
and controlling the amount of energy charged to individual
nodes. As a result, both the charger travel distance and the
charging delay of sensor nodes are reduced.

• We evaluate the performance of ESync through both experi-
ment and simulations, and the results demonstrate that ESync

can reduce the charger travel distance and charging latency
by 30% and 40% respectively.

The paper is organized as follows. Section 2 briefly reviews the
literature. We introduce the problem statement in Section 3. Our
design on the nested TSP tours is presented in Section 4, and the
design on the energy synchronization among nodes is introduced in
Section 5. Section 6 and Section 7 present the evaluation results ob-
tained through both experiment and simulations, and we conclude
in Section 8.

2. RELATED WORK
The mobility-assisted energy replenishment provides stable and

reliable energy supply for sensor nodes, and has attracted increas-
ing attentions from the research community recently [7–10,18–21].
The mobile charging process can be evaluated from the perspective
of the charger and sensor nodes respectively. For the charger, the
optimization objective is to minimize its travel distance when per-
forming the charging tasks [9, 20]. The most intuitive approach is
to periodically charge nodes along an optimal TSP tour construct-
ed based on network deployment [10]. The idea is extended to the
case of charging multiple nodes simultaneously in [18].

Several other designs tackle the mobile charging problem from
the perspective of individual sensor nodes [7, 8, 22]. A scheme
jointly exploring the routing and charging of individual nodes is
proposed in [7], which proactively guides the routing activities in
the network and delivers energy to where it is needed. A greedy
charging algorithm that always charges the node with the short-
est remaining lifetime to its full capacity is proposed in [8], and is
further improved by incorporating the remaining energy levels of
other nodes when determining which node to charge next and how
much energy to charge to. Another way to greedily performing
the charging tasks is to always select the nearest requesting node
to charge, i.e., the Nearest-Job-Next discipline. The performance
of Nearest-Job-Next is analytically evaluated in [23, 24]. Although
asymptotically promising, the worst-case performance of Nearest-
Job-Next is difficult to guarantee.

With the concept of energy synchronization among nodes based
on a set of nested TSP tours, we propose a novel mobile charg-
ing protocol that leverages on the advantages of both the existing
designs while minimizing the impact of their drawbacks. Our de-
sign reduces the charger travel distance by scheduling based on the
nested TSP tours, and reduces the charging delay of sensor nodes
with the concept of energy synchronization within each round of
selected tours.

3. PRELIMINARIES

3.1 Problem Statement
With the advancement of the energy transferring technologies,

the time to replenish the energy supply of sensor nodes has been

dramatically reduced [20,25]. Zhu et al. have implemented an ener-
gy sharing system with capacitor-array powered sensor nodes [17],
in which the energy supply in the network is transferred from energy-
sufficient nodes to energy-hungry nodes. From the empirical results
reported in [16], the time to charge a 10 F capacitor from empty
to a voltage of 2.5 V is in the order of 10 s normally. This greatly
shortened charging time indicates that adopting mobile chargers to
replenish nodes energy supply is a promising direction for stable
and sustainable network operations.

In this work, we investigate the on-demand mobile charging prob-
lem in rechargeable sensor networks, where a mobile energy charg-
er travels within the deployment field, and replenishes the energy
supply of nodes via short-distance or direct-contact charging tech-
nologies such as inductive charging [26]. The mobile charger is
controllable in both its travel trajectory and the amount of energy
charged to individual sensor nodes.

When the remaining energy levels of sensor nodes are low, the
nodes initiate charging requests to the mobile charger either by the
communications (potentially in multiple hops) between themselves
and the charger [27,28] or with the assistance of a sink [7,8] 1. Our
objective is to design an efficient mobile charging protocol for the
charger to effectively serve the received charging requests. Here
by serving a charging request, we mean the charger travels to the
requesting sensor node and replenishes its energy supply to the de-
sired level. The mobile charging process can be evaluated from two
aspects.

• Charging Delay For the requesting sensor nodes, the charging
process is evaluated based on their charging delay, defined as the
time since they send out their charging requests to the time their en-
ergy is replenished by the charger. A shorter charging delay implies
a higher charging efficiency.

• Charger Travel Distance For the mobile charger, the charging
efficiency is evaluated in terms of its travel distance to carry out the
charging tasks of nodes. A shorter travel distance indicates a higher
charging efficiency.

Most existing works choose only one of the two aspects above as
the design objective. For example, reducing the charging latency of
sensor nodes is emphasized in [7,8,22], while the charging process
is optimized by shortening the charger travel distance in [10,18]. To
the best of our knowledge, our work is the first attempt to jointly
tackle these two objectives.

3.2 State-of-the-Art and Limitations
The TSP-based solutions are a classic family of the designs on

the mobile charging problem [10,18,21]. In general, with the TSP-
based solutions, the mobile charger periodically travels along a pre-
optimized TSP tour to replenish the energy supply of nodes in each
round of the charging process, and thus the charger travel distance
in replenishing the energy of all nodes is minimized. However, to
take advantage of the pre-optimized TSP tour in the on-demand
mobile charging scenario, there are two facts that would signifi-
cantly degrade the charging performance.

3.2.1 Diversity in Nodes Energy Consumption

The efficiency of the TSP-based solutions degrades when nodes
energy consumption rates are highly diverse, which is unfortunate-

1A remaining energy level threshold can be adopted for sensor n-
odes to initiate their charging requests. For the ease of description,
we assume a threshold of 0% in this paper. Furthermore, as both
the time for the charger to travel to the requesting node and the
time to replenish nodes energy supply are normally much longer
than the communication delay, we assume a negligible time to de-
liver charging requests from nodes to the charger, similar to [29].
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Figure 1: Diverse nodes remaining energy (original data is pro-

vided by [30]).

ly true in most cases for multihop sensor networks [29]. The high
energy consumption diversity may cause highly diverse nodes re-
maining energy levels, and as a result, traveling along the pre-
optimized tour leads to the unnecessary visits of energy-sufficient
nodes. This not only increases the charger travel distance but also
prolongs the charging delay of energy-hungry nodes.

To clearly demonstrate the potentially unnecessary visits of energy-
rich nodes, Figure 1 presents the voltage readings of six sensors at
a specific time in a data trace provided by Intel Berkeley Research
Lab, which is collected with the granularity of 1 second between
February 28th and April 5th, 2004 [30]. We can observe the obvi-
ous voltage diversity among the nodes. In this case, if the charger
carries out the charging process based on the TSP tour construct-
ed according to these six nodes, it would arrive at node-55 and
node-58 only to find out that they have little demand for energy
replenishment.

3.2.2 Sequence of Nodes Charging Requests

A charged

E requests

A requests

E charged

charges {B, C, D} if necessary before E

0 time
charging delay of E

A

B C

E D

Figure 2: Requests sequence affects the charging performance

significantly: the charging delay of E is long if E requests

charging when the charger has already passed it in the current

charging round.

Furthermore, in the on-demand charging scenario, even if nodes
have similar energy consumptions, indicating they may all need to
be charged in a given round, their charging requests sequence plays
a critical role in determining the performance of the periodic charg-
ing process, which must be considered if we want to utilize the ad-
vantage of the TSP-based solutions in minimizing the charger travel
distance. Figure 2 demonstrates an example on how the charging
requests sequence affects the charging performance. Consider the
network shown in the upper-right corner of the figure, where the
charger periodically carries out the charging tasks according to the
optimal TSP tour shown with the dashed lines. If node E requests
charging when the charger has just charged A, meaning the charger
has already passed E in this round, the charger would first charge
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Figure 3: Requests sequence mismatches nodes sequence along

the tour.

node B, C, and D if necessary. In this way, the energy of E will
not be replenished until the charger reaches it in the next round,
which leads to a large charging delay of E.

The fundamental reason for E’s long charging delay in the above
example is that the charging requests sequence mismatches with the
node sequence on the optimal TSP tour. To examine whether the
mismatching between the two sequences exists in practice, we sim-
ulate a small environment monitoring sensor network consisting of
20 sensor nodes with similar energy consumptions. We construct
a near-optimal TSP tour based on the nodes deployment with the
open source TSP solver Concorde [31], and index nodes according
to their sequence along the tour. We record the charging requests
sequence of nodes, and the first 100 requests are shown in Fig. 3.
We can see the indexes of requesting nodes are quite random with
regard to the nodes requesting sequence, which would lead to the
undesired case shown in Fig. 2.

It is possible to avoid the undesired case shown in Fig. 2 by re-
moving the periodic property from the charging process, e.g., per-
forming charging tasks according to the classic Nearest-Job-Next
discipline [23]. However, removing the periodic property may lead
to the zig-zag travel of the charger and cause unfairness issue a-
mong sensor nodes. Our evaluation results show that our design
outperforms Nearest-Job-Next by about 30%-40%, as will be ex-
plained in Section 6 and Section 7.

3.3 Design Overview
In this paper, focusing on the scenario where the energy con-

sumption rates are diverse among sensor nodes, we propose the
Energy Synchronized Charging (ESync) protocol, which address-
es the above two limitations by first constructing a set of nested

TSP tours and then synchronizing nodes energy according to the

tours. The motivation of the nested TSP tours is to only involve
nodes with low remaining energy levels in each charging round to
reduce the charger travel distance. The motivation for the energy
synchronization among nodes is to proactively adjust nodes charg-
ing requests sequence to synchronize it with the TSP tour selected
in each round, and thus reduce the charging delay of sensor nodes.

4. CONSTRUCTION OF NESTED TOURS
The limitation of the TSP-based solutions with diverse node en-

ergy consumptions inspires us to cluster nodes according to their
energy consumption rates, and then based on these clusters, we
construct multiple TSP tours in a nested manner. We further present
a corresponding tour selection algorithm to guide the charging pro-
cess in each round.

4.1 Nodes Clustering
Before introducing the design of our clustering algorithm, we

first use a simplified example as shown in Fig. 4 to present our
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Figure 4: Clustering nodes according to their energy consumption rates, and then a set of nested TSP tours is constructed. One of

these TSP tours is selected to guide the charging tasks in each charging round.

idea. The energy consumption rates of nodes represented by the
squares are twice of the triangle nodes and four times of the circle
nodes. Denote the lifetime of square nodes when fully charged by
T . Consequently, the triangle and circle nodes have a 2T and 4T
lifetime when fully charged, respectively 2.

If we take these three categories of nodes as three clusters, then
when the square nodes deplete their energy after an operation time
of T , the charger only needs to charge the square cluster as both the
triangle and circle nodes still have sufficient energy supply (Fig. 4(1)).
The nodes remaining energy levels after the charging of the square
nodes are shown in Fig. 4(2) 3. After another operation time of
T , both the square and triangle nodes deplete their energy, and this
time the charger needs to charge the two corresponding clusters as
shown in Fig. 4(3). When an operation time of 4T is passed, the
charger needs to replenish the energy supply of all nodes, as shown
in Fig. 4(7), and the process repeats afterwards.

In this example, the nodes clusters can accurately separate the
energy-hungry nodes from the energy-rich nodes in each charg-
ing round, and thus the charger only needs to consider the nodes
clusters, instead of individual nodes, to carry out the charging pro-
cess. The fundamental property leads to this effect is that nodes in
the same cluster have similar energy consumptions. Based on this
observation, we propose a novel power-α clustering algorithm to
group nodes according to their energy consumptions.

Assume all nodes are initially fully charged, we begin our design
from the time that at least one charging request has been received
from each node. This ensures the charger has certain knowledge
on the energy consumption conditions of all nodes, based on which
the estimation on their energy consumption rates is feasible [32].

2To highlight the motivation of our design, the nodes energy con-
sumption rates in this example are intentionally set to be diverse.
However, our design is also applicable to scenarios where nodes
have similar energy consumptions.
3The time to finish the charging of these nodes is assumed to be
negligible for the ease of demonstration, which is further investi-
gated in Section 7.

The charger can adopt any existing charging protocols before this
time [7, 23, 24].

Denote rmax and rmin as the maximal and minimal nodes energy
consumption rate, respectively. We construct a total number of m
intervals and

m = ⌈logα(
rmax

rmin
)⌉+, (1)

where ⌈x⌉+ returns the first integer that is larger than x 4, and α
is an integer design parameter that is larger than 1. With the as-
cending order of energy consumption rates, these m intervals are:
[rmin,

rmax

αm−1 ], ( rmax

αm−1 ,
rmax

αm−2 ], · · · , ( rmax

α2 , rmax

α1 ], ( rmax

α1 , rmax].
Note that the length of each interval increases exponentially with
α. For each node s, it is clustered into the i-th cluster if its energy
consumption rate r(s) falls into the i-th interval. For example, if
rmax = 6, rmin = 1, and α = 2, then m = ⌈log2

6
1
⌉+ = 3

intervals are constructed. The three intervals are [1, 1.5], (1.5, 3],
and (3, 6], respectively. For clarity, we refer to the interval with
the highest consumption rate (i.e., (3, 6]) as the 1-st interval and
the corresponding cluster as the 1-st cluster. Similarly, the interval
(1.5, 3] and [1, 1.5] are referred to as the 2-nd and 3-rd intervals,
and the corresponding clusters as the 2-nd and 3-rd clusters, respec-
tively.

With this clustering approach, the ratio between the maximal and
the minimal energy consumption rates of nodes in the same cluster
is upper bounded by α. Clearly, α plays a critical role in deter-
mining the charging performance. We will elaborate the optimal
setting of α in Section 4.4, and our evaluation results in Section 7
indicate that an α of 2 leads to the best performance in most cases.

Note that in event-driven sensor network applications such as
target tracking, the energy consumption rates of individual sensor
nodes may vary over time. In this case, we need to dynamically ad-
just the clustering of nodes (and the constructed TSP tours as will
be introduced below) to guarantee the energy similarity of nodes in
the same cluster. An important observation on these event-driven

4Note its difference with the traditional operator ⌈x⌉ when x is an
integer.
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applications is that although the energy consumptions for individ-
ual nodes may not be constant, their activities demonstrate certain
periodicity and predicability [33], which can be used to dynamical-
ly adjust the clustering of sensor nodes.

4.2 Nested Tour Construction
The next step is to construct TSP tours according to the m clus-

ters in a nested manner. We construct m TSP tours based on the
first i clusters (i = 1, 2, · · · ,m), and denote these tours as {T 1

tsp,
T 2
tsp,· · · , Tm

tsp}. Because the tours are constructed in a nested man-
ner, their length satisfies the following relationship

|T 1
tsp| ≤ |T 2

tsp| ≤ |T 3
tsp| ≤ · · · ≤ |Tm

tsp|. (2)

In the example shown in Fig. 4, three nested TSP tours are con-
structed based on these three nodes clusters. The shortest tour T 1

tsp

is shown in Fig. 4(1), the second shortest tour T 2
tsp is shown in

Fig. 4(3), and the longest tour T 3
tsp is shown in Fig. 4(7).

4.3 Tour Selection for Each Round
With the nested TSP tours, the mobile charger periodically car-

ries out the charging tasks by selecting one of these nested tours in
each round, and charges the nodes involved in the tour if necessary.
Thus, the next question we need to decide is which tour the mobile
charger should select for a given round of the on-demand charging
process.

4.3.1 Key Observation

Again, before introducing our design on the tour selection algo-
rithm, we first use the example shown in Fig. 4 to present our basic
idea. With the Power-α clustering algorithm and the tour construc-
tion method introduced above, we obtain three node clusters (i.e.,
square, triangle, and circle) and three nested TSP tours (i.e., T 1

tsp,
T 2
tsp, and T 3

tsp as in Fig. 4(1), Fig. 4(3), and Fig. 4(7)). For the
mobile charger, it is desirable to select the shortest TSP tour con-
taining all the energy depleted nodes in each charging round. In the
1-st round of the charging process, only the square nodes deplete
their energy supply, and thus the charger would prefer to select the
shortest tour containing the square nodes, i.e., T 1

tsp, as the tour to
guide the charging process (Fig. 4(1)). Similarly, in the 2-nd round,
the charger would prefer to select the shortest tour containing the
square and triangle nodes, i.e., T 2

tsp, to follow (Fig. 4(3)). T 1
tsp is

selected again in the 3-rd round since now only the square nodes
are out of energy supply (Fig. 4(5)). Then in the 4-th round, all
nodes deplete their energy supply, and the TSP tour containing al-
l of them is selected (Fig. 4(7)). From this example, we can see
the tour selection algorithm is expected to identify the shortest T-
SP tour containing all the energy-hungry nodes in each charging
round, and the following observation inspires us the solution.

For any given α and m, every j ∈ {0, 1, · · · , αm−1} can be
represented in the form of

j =

m−1
∑

i=0

cji · α
i, (3)

where cji ∈ {0, 1, · · · , α−1}. To clearly demonstrate the relation-
ship between the selected tour in j-th round and j’s sum expres-
sion in (3), let us define an ordered set Cj =<cj0, c

j
1, · · · , c

j
m−1>.

For the ease of description, further define C0 =<0, 0, · · · , 0> and
|C0| = m − 1. Then with α = 2 and m = 3, the sum expression-
s and the corresponding Cj for the first four rounds of the mobile
charging process are shown in Fig. 5.

We can see that in the 1-st round, the only element in C1 that
is larger than the corresponding element in C0 is the 1-st element,

0 = 0× 2
0
+ 0× 2

1
+ 0× 2

2 → C0 =< 0, 0, 0 >,

1 = 1× 2
0
+ 0× 2

1
+ 0× 2

2 → C1 =< 1, 0, 0 >,

2 = 0× 2
0
+ 1× 2

1
+ 0× 2

2 → C2 =< 0, 1, 0 >,

3 = 1× 2
0
+ 1× 2

1
+ 0× 2

2 → C3 =< 1, 1, 0 >,

4 = 0× 2
0
+ 0× 2

1
+ 1× 2

2 → C4 =< 0, 0, 1 > .

Figure 5: Tour selection based on the sum expression in (3).

and from the example in Fig. 4, we know the 1-st tour (i.e., T 1
tsp)

is desirable to be selected in the 1-st round. For the second round,
the 2-nd element in C2 is larger than the 2-nd element in C1, and on
the other hand, the second tour T 2

tsp is desirable to be selected in
the 2-nd round. This agreement holds for the 3-rd and 4-th rounds
as well. For the 3-rd round, the 1-st element in C3 is larger than
that in C2, and the desirable tour is T 1

tsp. For the 4-th round, the
3-rd element in C4 is larger than that in C3, and the desirable tour is
T 3
tsp.
This relationship between the tour selected in the j-th round and

j’s sum expression inspires us the design of the tour selection algo-
rithm.

4.3.2 Tour Selection Algorithm Design

For a given round index j ∈ {1, 2, · · · , αm−1}, we first identify
the corresponding Cj . Then we compare it with Cj−1, and find the
k (k = 0, 1, · · · ,m− 1) such that cjk is larger than cj−1

k . It can be
proved that one and only one such k can be found for every round
index j, which is not included here due to the space limit. As a
result, the charger takes the (k + 1)-th tour in the j-th round. The
sequence of the adopted tours repeats every αm−1 rounds.

We can see that with the proposed tour construction and selec-
tion algorithms, for each round of the charging process, the charger
always selects the shortest TSP tour that contains all the sensor n-
odes with low remaining energy levels. As a result, the charger
travel distance during the charging process is reduced.

4.4 Determining the Optimal Power Factor
We have introduced how to construct the nested TSP tours and

which tour to select for each charging round with a given power
factor α. Next we explain how to identify the optimal setting of
α. The optimal α is jointly determined by nodes energy consump-
tion rates and their locations. This means identifying the optimal
α before network deployment is challenging. However, once at
least one charging request has been received from each node, both
the estimated energy consumption rates and nodes locations can be
made available to the charger, e.g., by piggybacking these informa-
tion in the charging requests, based on which the optimal α can be
identified.

For the ease of description, we extend our previous notation on
T i
tsp by denoting the i-th TSP tour obtained with a specific α as

T i
tsp(α). Denote mα as the number of clusters obtained with power

factor α. With the proposed tour selection algorithm, the sequence
of adopted tours will repeat every αmα−1 rounds. The worst-case
charger travel distance during these rounds Yα is

Yα = |Tmα

tsp(α)|+

mα−1
∑

i=1

αmα−i−1|T i
tsp(α)|,

and thus an upper bound Zα of the asymptotic average travel dis-
tance for each round is

Zα = Yα/(α
mα−1).

251



Then the mobile charger can adopt the α with the minimum Zα

to carry out the charging tasks

α̂ = {α : min{Zα}}

Note that when α > rmax

rmin

, only one cluster containing all the
nodes will be formed, and ESync regresses to the simple case where
only the TSP tour containing all nodes is involved in the charging
process. Thus the charger only needs to check the potential value
of α in [2, rmax

rmin

] to determine its optimal setting.

4.5 Time Complexity
We needs a time of O(mαCtsp) to accomplish the node clus-

tering and tour construction with a specific α, where Ctsp is the
time complexity to obtain the near-optimal TSP tour. As men-
tioned earlier, the charger needs to check at most ( rmax

rmin

− 1) pos-
sible values of α to determine the optimal setting. As a sum-
mary, the computation complexity in constructing the nested T-
SP tours is O(Ctsp

rmax

rmin

log rmax

rmin

). The charger needs a time of

O(logα
rmax

rmin

) to select the tour in each round.

5. ENERGY SYNCHRONIZATION AMONG

NODES
With the nested TSP tours and the tour selection method, only

energy-hungry nodes are involved in each charging round. In this
section, we further improve the charging process by synchroniz-
ing the energy supply of nodes to proactively adjust their charging
requests sequence. As a result, the charging requests sequence of n-
odes is synchronized with their sequence on the TSP tours. Specif-
ically, if the charging requests from two neighboring nodes are sent
out according to their sequence on the selected TSP tour, we say
these two nodes are energy synchronized in the charging process.
This energy synchronization among nodes is achieved by carefully
controlling the amount of energy charged to individual nodes.

In generally, the mobile charger needs to address two questions
to carry out the charging process in each round: which node to
charge next, and then how much energy to charge to the node.

5.1 Which Node to Charge Next
In our design, the node to be charged next is determined accord-

ing to the selected TSP tour in each round. Specifically, after com-
pleting the charging of the current node, the mobile charger selects
the requesting node that is closest to its current location along the
TSP tour as the next node to charge.

Although our method demonstrates greedy feature, which may
cause the unfairness issue among sensor nodes. Because we on-
ly applies the greedy feature based on the TSP tour, the potential
unfairness issue is significantly alleviated.

5.2 How Much to Charge
To achieve the energy synchronization among nodes, the charger

does not always fully charge individual nodes, and next we explain
how to determine the amount of energy charged to the selected n-
ode. In our design, we determine the amount of energy charged to
individual nodes with the objective of synchronizing their energy
supplies. Thus given the selected charging node, we first need to
identify the node to which to synchronize its energy, i.e., its syn-

chronization target.
Assume the mobile charger is currently working in the j-th round

following tour T
f(j)
tsp , where f(j) is the tour index returned by the

tour selection algorithm. To find the synchronization target of a
given node s in this round, which belongs to the i-th cluster, we

first identify the round j′ in which s is involved the next time by

j′ = j + αi−1 (i = 1, 2, · · · ,m). (4)

The adopted tour in the j′-th round, T
f(j′)
tsp , can be calculated by

the tour selection algorithm. Then we find the previous node of s

along T
f(j′)
tsp as the synchronization target of s in the j-th round,

which is denoted as u for the ease of description. This is because
the desired effect we want to achieve is when s requests energy
replenishment the next time, the mobile charger has just accom-
plished the charging of u in the j′-th round, meaning the energy of
s is synchronized with u in the j′-th round.

Two pieces of information are needed to calculate the amount
of charged energy to achieve the energy synchronization between
s and u: the energy consumption rates of s and u, and the time
duration until u is charged in the j′-th round.

The nodes energy consumption rates can be estimated based on
the history of charging requests. As an example, the energy con-
sumption rate of a specific node can be estimated based on its op-
eration time with a single full charging [32]. We emphasize that
the perfect estimation is extremely challenging. Our design does
not require the perfect estimation of nodes energy consumption
rates, and we will further discuss and investigate the charging per-
formance under varying estimation errors in Section 7. Through
our extensive simulation, we observe that our design can tolerate
up to 30% estimation errors, which can be easily guaranteed by the
state-of-the-art power monitoring solutions [34, 35].

Next we explore the time duration until u is charged in the j′-th
round. The number of rounds that u is involved between the j-th
and j′-th round can be calculated in a similar manner as (4), and
denote it as q. The total amount of energy charged to u in these q
rounds is at most qE, and thus the time from now till u requests

charging in the j′-th round is at most
qE+er(u)

r(u)
, where er(u) is the

current remaining energy of u and r(u) is its energy consumption
rate.

As a result, the amount of energy charged to s is calculated ac-
cording to

e(s) = r(s)

(

qE + er(u)

r(u)
+ tc

)

− er(s), (5)

where tc is the worst-case charging time to fully replenish nodes
energy supply (i.e., the longest possible time to charge u in the j′-

th round), and thus ( qE+er(u)
r(u)

+ tc) is the time before the charger

arrives to charge s the next time. Note that e(s) ∈ [0, E − er(s)].
Determining the amount of charged energy according to (5) in-

dicates that the charger would not always fully charge individual
nodes. However, this occasionally partially charging of nodes facil-
ities the energy synchronization among nodes, and thus the overall
charging performance outperforms that when the charger always
fully charge nodes. Specifically, from our evaluation results in Sec-
tion 7, we observe a 30% and 40% reduction in the charger travel
distance and the charging delay of sensor nodes, respectively.

During the charging process in each round, the charger need-
s a time of O(n) to determine the next node to charge, and an-
other time of O(logα

rmax

rmin

) is needed to determine the amount of
charged energy.

5.3 Charger Energy Replenishment
Although usually the mobile charger has a much larger energy

capacity than sensor nodes, the energy replenishment of the charg-
er itself also needs to be considered in practical implementations,
especially when the deployment field or the number of deployed n-
odes is large. ESync can seamlessly incorporate the energy replen-
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Table 1: Average energy consumption rates.

Node #1 #2 #3 #4 #5 #6 #7 #8 #9

ri 4 2 4 2 1 4 1 4 2

Table 2: Scale-down a realistic network for the experiment

Envisioned Network Experiment

Network Area 1, 000× 1, 000 m2 3× 3m2

Nodes Lifetime 10–40 hours 100–400 s

Fully Charge Time 20 min 3.33 s

ishment of the charger into the charging process. Assume there is
an energy tank from which the charger energy can be replenished.
Whenever the energy level of the charger is low, we treat it as a
virtual charging request initiated by the energy tank. The energy
tank can be included into the nested tours construction based on the
charger’s operation time with a single charge, just as a usual sen-
sor node. As a result, the charger’s energy replenishment can be
handled in the same way as the sensor nodes.

#7: (0, 1)

#6: (0.4, 0.1)

#5: (1, 0)

#4: (0.8, -0.3)
#3: (-0.2, -0.3)

#1: (-0.5, 0)

#9: (-1, 0.8)

#2: (-1, -0.7)

#8: (-0.1, 0.5)

high rate node

mild rate node

low rate node

Figure 6: Nodes locations.

6. EXPERIMENT EVALUATION
We evaluate the performance of ESync through both experiments

and simulations. The experiment results are presented in this sec-
tion, and the insights obtained through large-scale simulations will
be introduced in the next section.

In our experiment, we randomly deploy 9 sensor nodes in an
open field of 3×3m2, and a LEGO Mindstorms NXT robot with an
average travel speed of 0.1 m per second is adopted as the mobile
charger. The locations of these nodes are shown in Fig. 6.

Figure 8 shows the relationship between battery voltage and the
charging time obtained with our empirical measurements. The bat-
tery can be rapidly charged in the early charging stage, during
which the battery voltage and the charging time demonstrate clear
linear relationship (as shown in the box in Fig. 8). However, as the
battery approaches its full voltage, the charging speed significantly
slows down. Similar charging curves are reported in the data sheet-
s of off-the-shelf battery products [36]. Based on this observation,
we implement a simple linear charging model to emulate the charg-
ing of nodes. Specifically, the time to accomplish the charging of a

specific node s is calculated by
e(s)
E

tc where e(s) is the amount of
energy charged to s, E is the full energy capacity of nodes, and tc
is the time to fully charge an energy depleted node. This simplified

charging model is sufficient for our evaluation purpose, especially
when not all the nodes are fully charged in our energy synchronized
charging design (which avoids the non-linear portion of the charg-
ing curve). Specifically, we emulate a scenario where E = 100
units and the charging rate of the charger is 30 units per second,
indicating the worst-case charging time tc = 100

30
≈ 3.3 s. The

average energy consumption rates of nodes are shown in Table 1.
The rationale behind these settings is because of our limited

testbed size (i.e., 3×3m2 as stated above), we need to scale-down
a realistic network in both the spatial and temporal dimensions.
Specifically, we envision a network area of 1, 000 × 1, 000 m2

where the average nodes lifetime is about 10− 40 hours upon fully
charged. The charger needs a charging time of about 20 minutes to
fully charge an energy-depleted node, as with the commercial fast
charger for AA batteries commonly adopted on sensor nodes. Then
we map the considered network area to our experiment field, and
scale-down other settings accordingly, as shown in Table 2.

These 9 sensor nodes are organized into 3 clusters based on their
energy consumption rates (i.e., {1, 3, 6, 8}, {2, 4, 9}, and {5, 7}),
and 3 nested TSP tours are constructed accordingly, as highlighted
in Fig. 7. Sensor nodes send out charging requests to the charger
when their energy supply is depleted, and the charger carries out
these charging tasks according to ESync.

We evaluate the performance of ESync and compare it with t-
wo classic baselines: TSP [24] and Nearest-Job-Next [23], upon
which most existing designs are based [10,18]. For TSP, the charg-
er travels and charges nodes following the TSP tour, and its travel
is independent of whether the charging request from the node has
been received. For Nearest-Job-Next, the charger always select-
s the geographically nearest requesting node as the next node to
charge. Both these two baselines adopt the full charging of nodes
throughout the charging process.

To capture the fact that nodes energy consumption rates are usu-
ally dynamic in practice, we introduce an estimation error param-
eter ǫ to generate the actual energy consumption of nodes in each
second. Specifically, the energy consumption of node-i in each sec-
ond is randomly generated in

[(1− ǫ)ri, (1 + ǫ)ri], (6)

where ri is the average energy consumption rate of node-i as shown
in Table 1. 5

A mobile charging process of 15 minutes is performed in each
experiment, and the requests charging delay and charger travel dis-
tance during these charging processes are recorded for evaluation.
To better visualize the mobile charging process, Figure 9 shows the
recorded charger travel trajectory during a particular experiment.
Note that the charger trajectory is not straight lines due to the ki-
netic constraints.

The charger travel distance and requests charging delay resul-
tant with ǫ varing from 0–30% are shown in Fig. 10 and Fig. 11,
respectively. We can see the charger travel distance resultant by
ESync is about 30% and 20% shorter than those obtained by TSP
and Nearest-Job-Next, and the request charging delay is reduced by
about 50%. Furthermore, we can see that although the performance
of ESync degrades with a larger estimation error on nodes energy
consumption rates, it still noticeably outperforms both TSP and N-
JN even with an ǫ as large as 30%, indicating a good tolerance of
ESync on the energy consumption variance of sensor nodes.

To clearly illustrate the evolution of nodes remaining energy dur-
ing a mobile charging process of 15 minutes, we show the energy
level of node-1, node-2, and node-5 in Fig. 12, one for each of the

5However, we assume a perfect estimation on nodes energy con-
sumption rates for TSP and Nearest-Job-Next.
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Figure 7: Overview of the experiment set-
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Figure 8: Typical battery charging curve

over time.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

X (m)

Y
 (

m
)

 

 

Charger Trajectory

Figure 9: Charger trajectory during the

mobile charging process.
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Figure 10: Charger travel distance with
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Figure 12: Nodes energy during experi-

ment.

three nodes clusters. We can see node-1 is always charged to its
full capacity because it has the highest energy consumption rates
(and thus the shortest lifetime) in the network, while node-2 and
node-5 are only partially charged. Furthermore, the frequencies for
the three nodes to be charged decrease with the order of node-1,
node-2, and node-5. This is because node-1 is involved in all three
nested TSP tours while node-5 is only involved in the 3rd tour, as
shown in Fig. 7.

7. SIMULATION EVALUATION
In this section, we evaluate the performance of ESync through

extensive simulations.

7.1 Simulation Setup
We simulate an environment monitoring sensor network with

20–200 randomly deployed nodes. The sensing field size varies
from 60 m × 60 m to 160 m × 160 m, and a sink is located at
the field center. The nodes energy capacity is 1, 000 mAH . The
energy consumption rate for the sensing tasks is 0.75mA×2 V =
1.5 mW , which is typical for a light sensor [37]. The communi-
cation energy costs of sensor nodes are set based on the data sheet
of MICA2 node: with transmitting and receiving current draw of
25mA and 8mA respectively, the corresponding energy consump-
tion rates are 25mA× 2 V = 50mW and 8mA× 2 V = 16mW
with a typical voltage of 2 V . After nodes deployment, a routing
structure is constructed based on the TinyOS standard CTP [38].
Then the environment information, after captured by individual n-
odes, is transmitted to the sink through multi-hop communication-
s. Sensor nodes send out charging requests to the charger when
their remaining energy approaches zero. The charger travel speed
is 1 m/s unless otherwise specified [29]. We simulate a network
operation period of 500, 000 s, and record the total distance the mo-

bile charger traveled and the total charging delay of sensor nodes.
We adopt Concorde [31], an open source TSP solver with verified
efficiency, to obtain the near-optimal TSP tours in our simulation.
The mobile charging process is simulated with Matlab.

7.2 Visualizing the Effect of Energy Synchro-
nization

Before evaluating the performance of ESync, we first run ESync

on the same setting as in Fig. 3 to visualize the effect of energy
synchronization when only a single TSP tour is constructed. With
a simulated time of 500, 000 s, during which a total number of 948
charging requests are served, the last 100 requests in the simulation
are shown in Fig. 13. We can see although the realization of energy
synchronization is not perfect due to the dynamics in the charging
process, the requests sequence greatly matches the TSP tour, and
thus our design is validated. Furthermore, we observe that the effect
of energy synchronization begins to show as early as from the 200-
th to 300-th requests, indicating a short time to achieve the energy
synchronization.

7.3 Performance Evaluation

7.3.1 Impact of Network Scale

To investigate the scalability of ESync, we evaluate its perfor-
mance with different network scales w.r.t. the number of deployed
sensor nodes. The resultant charger travel distance and charging
delay of sensor nodes are shown in Fig. 14(a) and Fig. 14(b) re-
spectively, where the number of nodes varies from 20 to 200. Note
that due to the large gap among the results returned by the three
charging protocols, the y-axis in the figures is in log-scale. We can
see ESync achieves the best performance for all the network scales
investigated. For example, the charger travel distance (charging
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Figure 14: Impact of nodes number n.
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Figure 15: Impact of power factor α.
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Figure 16: With random consumptions.
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Figure 17: Advantage of partial charging.

delay of nodes) resultant with ESync is about 58.78% (67.11%) of
that returned by Nearest-Job-Next when 100 nodes are deployed.
When compared with TSP, the two ratios are further reduced to
11.73% and 11.03% respectively. The charging performance de-
grades as the network scale increases. Thus multiple chargers may
be needed in large-scale networks. We will further investigate the
collaborative mobile charging process in our future work.

7.3.2 Impact of Power Factor

From our simulation results, we observe that a power factor of 2
is adopted for most of the time. To further investigate the impact
of α, we fix the network scale at 100 nodes in a 100 m × 100 m
field, and explore ESync with α varying from 2 to 6. The results
are shown in Fig. 15(a) and Fig. 15(b). A clear increasing trend of
the travel distance and the charging delay can be observed as α be-
comes larger, which agrees with our observation, and thus validates
our method in determining the optimal α.

7.3.3 Energy Spatial Randomness

It is intuitive that for multi-hop sensor networks where the sink
is located at the center, ESync achieves promising performance be-

cause nodes near the sink have higher energy consumption rates. To
investigate whether ESync performs well in networks without this
spatial-correlated energy consumption pattern, we modify the sim-
ulation by randomly generating nodes energy consumption rates,
and the results returned by ESync, Nearest-Job-Next, and TSP are
shown in Fig. 16(a) and Fig. 16(b). We can see that even when n-
odes energy consumptions are irrelevant with their spatial location-
s, ESync still outperforms Nearest-Job-Next and TSP significantly.
The advantages of ESync over different network scenarios verify its
versatility.

7.3.4 Ratio of Partial Charging

To facilitate the energy synchronization, sometimes nodes may
be only partially charged. To investigate whether this occasionally
partially charging of nodes degrades the overall charging perfor-
mance when compared with always fully charging nodes, we mod-
ify ESync by making the charger always charge sensor nodes to
their full capacity, and compare the resultant charging performance
with that obtained by the proposed ESync. The results are shown
in Fig. 17(a) and Fig. 17(b). We can see that although only a small
ratio of the requesting nodes are partially charged, they can sig-
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nificantly improve the charging performance when compared with
always fully charging. Specifically, the charger travel distance and
the charging delay of nodes are reduced by around 25% and 20%,
respectively.

8. CONCLUSIONS
In this paper, we have proposed ESync, a novel mobile charging

protocol for rechargeable sensor networks. Observing the ineffi-
ciency of the classic TSP-based mobile charging solutions, we have
proposed a power-α clustering algorithm to cluster nodes based on
their energy consumption rates and then a set of nested optimal T-
SP tours is constructed accordingly. A tour selection algorithm has
been presented accordingly. As a result, only energy-hungry nodes
are involved in the selected TSP tour in each charging round, and
thus the charger travel distance is reduced. Furthermore, we proac-
tively adjust the requests sequence of sensor nodes to synchronize
it with the selected TSP tour in each charging round, which reduces
the charging delay of sensor nodes. The efficiency of ESync is ver-
ified through both experiments and simulations.
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