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ABSTRACT
Smart mobile devices are generating a tremendous amount of data
traffic that is putting stress on even the most advanced cellular net-
works. Delayed offloading has recently been proposed as an ef-
ficient mechanism to substantially alleviate this stress. The idea
is simple. It allows a mobile device to delay transmission of data
packets for a certain amount of time, while it searches WiFi (or sim-
ilarly femtocell) networks to offload the data during the time. When
the time expires, it completes the remaining portion of the delayed
transmission through the cellular network that is available at the
moment. In this paper, we develop an analytical framework using
an embedded Markov process for the delayed offloading system.
We provide a closed-form expression for estimating how much data
generated by the users can be offloaded to WiFi networks from cel-
lular networks even when there are non-Markovian data arrivals
and service interruptions. We conduct extensive numerical studies
with various ranges of delay, service interruption time, arrived data,
and service rate. These numerical studies show that the current de-
ployment of WiFi networks measured from a metropolitan city is
capable of offloading about 80% of the generated data with 30 min-
utes of delay and 1 Mbps of WiFi data rate, but increasing the data
rate does not help improve the amount of offloading. Further stud-
ies using this framework on two new deployment strategies of WiFi
networks give guidance on how to upgrade WiFi networks by re-
vealing that the amount of offloading for 30 minutes of delay and
1 Mbps of data rate can be drastically improved to about 90% or
98% according to the strategy.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion; D.4.8 [Performance]: Queueing theory
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1. INTRODUCTION
Recent advances in mobile devices (e.g., smartphones, tablets)

are fueling the dramatic growth of mobile data traffic all over the
world. A recent report has predicted that the total number of mo-
bile Internet users is projected to surpass desktop Internet users by
2014 [19]. In order to support ubiquitous connectivity from such
mobile devices to the Internet, cellular network providers are strug-
gling to increase the capacity of their cellular networks by reducing
cell sizes, widening the wireless channel bandwidth and upgrading
the communication standards. As a result, in many countries, LTE
and LTE-A (Long Term Evolution Advanced) networks supporting
up to 150 Mbps are being operated with 20 to 40 MHz of channel
bandwidth. However, even with these efforts, it is expected that
the deluge of mobile data traffic will soon catch up and saturate the
capacity of cellular networks [1]. This continued growth of mobile
data traffic is creating challenges to the business model of cellular
network providers who need to incur prohibitively large expenses
for upgrading their networks, while the earnings from their sub-
scribers remain relatively stagnant (at least in developed countries).
To alleviate this problem and aid cellular networks, it has been

proposed that data can be offloaded on available WiFi networks (or
on femtocells in the near future) [4,12,15,17,25]. This is often re-
ferred to as mobile data offloading. The idea is that mobile devices
can offload their data traffic from cellular networks onto WiFi net-
works whenever WiFi networks are available1. Indeed, even now,
most smartphones and tablets use mobile data offloading, by prior-
itizing WiFi networks over cellular networks. According to recent
observations from Lee et al. [17], mobile data offloading already
cuts about 65% of the data traffic burden to cellular networks by
letting the traffic flow through WiFi networks. This 65% reduction
seems surprising but the authors have suggested that the number
can grow as high as 82% when allowing one hour delay for delay-
insensitive data traffic and have named this technique delayed mo-
bile data offloading.
The conceptual operation of delayed mobile data offloading (i.e.,

delayed offloading) is quite simple. Briefly, delayed offloading sets
delay deadlines for data transmission that can be predetermined or
chosen by a user and lets the mobile device find opportunities to
offload the data to WiFi networks until the assigned deadline ex-
pires. To enable delayed offloading in real mobile devices, there
have been efforts to redesign a transmission protocol which can al-
low a delay. The efforts include the bundle protocol [11,20,22] that
keeps a session virtually connected under intermittent connectivity
until its completion.

1Note that the central tenet of mobile data offloading can be di-
rectly applied to femtocell or picocell networks instead of WiFi
networks.
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After its proposal in [3, 17], delayed mobile data offloading has
attracted many researchers, and various extensions [2] have been
pursued including multi-hop offloading [18], social offloading [5],
and offloading with ICN (Information Centric Networking) [9].
However, as of yet, we do not have a rigorous understanding of
the performance of the delayed offloading system. This is because
developing a rigorous analytical framework for delayed offloading
system is quite challenging because as pointed out in [17], the sys-
tem involves “queueing with reneging and service interruptions."
In queueing, reneging means that a customer will leave the queue
when her patience exceeds a certain limit. This resembles the be-
havior of a packet for its chosen deadline in the delayed offloading
system. Service interruption literally means unwilling discontinu-
ity of service in the queue, and this models connection and discon-
nection periods of a mobile device to WiFi networks in the system.
In [17], 15 days of experimental study with about 100 iPhone users
mostly in Seoul, Korea revealed that connection and disconnec-
tion periods showed heavy-tail distributions, especially truncated
Pareto distributions with averages of 50 minutes and 25 minutes,
respectively. Given these heavy-tail distributions of connection and
disconnection periods, mathematical challenges arise in deriving a
closed-form equation from the queueing process (which is obvi-
ously non-Markovian) on how much mobile data can be offloaded
to WiFi networks for a chosen deadline. We propose a general an-
alytical framework that handles such challenges. Our analytical
results are validated by verifying the agreement of the amount of
offloading obtained from our results and that shown in [17] for the
same input traffic and system parameters. Through extensive nu-
merical studies under various environments of WiFi networks in-
cluding those of today and of projections made for the near future,
we show that our framework is useful in designing a new radical
deployment strategy of WiFi networks that achieves a dramatic im-
provement in the amount of offloading. Using our framework, we
further clarify which parameter of WiFi networks most affects the
efficiency of offloading.
Our contributions in this paper are as follows: (i) We develop

an analytical framework for analyzing a queueing system with de-
terministic reneging and service interruptions. (ii) From our frame-
work, we obtain closed-form formulas for key performance metrics
in the delayed offloading system such as offloading efficiency and
mean packet delay. (iii) Our framework is quite general in that it
is capable of handling generally distributed system parameters in-
cluding connection and disconnection periods, packet inter-arrival
time, WiFi data rate, and packet size. (iv) We provide a guidance on
how to upgrade WiFi networks to obtain much higher efficiency in
offloading through extensive numerical studies using our analytical
framework. We believe that our framework can be a stepping stone
towards analyzing the delayed offloading system and its variants.
Our analysis is applicable to generalized queueing systems with
service interruptions and reneging, which can also be extended to
explain the behavior of complex mobile systems.

2. DELAYEDMOBILEDATAOFFLOADING
SYSTEM

In this section, we overview the delayed mobile data offloading
system proposed in [17]. In this paper, we describe the system from
the viewpoint of data uploading from a mobile device to the Inter-
net, but the same framework can be readily used for downloading.
The only difference between delayed offloading for uploading and
downloading is at the network operation in a mobile device. Up-
loading works as pushing while downloading works as pulling. In

Figure 1: Delayed offloading mechanism in a mobile device.

both cases, delayed offloading necessitates a bundle protocol2 at the
network layer which handles the responsibility of fulfilling a data
request even when the connection to the Internet is intermittent.
Thus, in delayed offloading, the session initiated for a data request
is kept virtually alive by the bundle protocol until the requested data
transfer is finished.
Fig. 1 shows a simplified architecture of the delayed offloading

system for the uploading scenario. There are two coupled queues
for data upload at the MAC layer of a mobile device, called WiFi
queue and cellular queue, and both queues are served by a FIFO
(first-in-first-out) discipline. When the user of a mobile device re-
quests to upload data (e.g., photos and videos taken at a park which
need to be synchronized to a cloud backup service like iCloud) with
a certain amount of allowed delay, denoted by Tout, the traffic re-
quest is first inserted into the WiFi queue and waits for the device
to be connected to any WiFi network for up to a maximum of Tout
units of time. If data in the WiFi queue is completely transmitted
through WiFi networks before the time-out Tout has expired, we
say that the data is successfully offloaded. If offloading of data
fails, the system lets the data leave the WiFi queue and be relocated
to the cellular queue in the mobile device for immediate transmis-
sion through 3G or 4G networks. We call such an event a reneging
event.
In this paper, we analyze the ratio of the amount of successfully

offloaded data over the amount of total data requested, which we
call the offloading efficiency of the system. Since a mobile device
is intermittently connected to WiFi networks by the mobility pat-
tern of its owner (i.e., a human or sometimes a vehicle driven by a
human) and the data rate for each connection is random, analyzing
the offloading efficiency is a challenging problem. Further, given
that empirical observations indicate that both the connection and
the disconnection processes to any WiFi network of a mobile de-
vice follow heavy-tail distributions [17], it becomes even harder to
analytically characterize the offloading efficiency for a given Tout.
The detailed technical challenges from a queueing theory perspec-
tive and our proposed approach will be discussed in detail in Sec-
tion 4.

3. MODEL DESCRIPTION

3.1 Queueing System Model
We assume that time axis is divided into unit intervals referred

to as slots, and the slots are indexed by t (t = 1, 2, . . .). We set
the system to start at time 1 so that time slot t covers the time in-
terval [t, t + 1). In the following, we describe our discrete-time
queueing system in detail. We begin by describing the service pro-
cess of the WiFi queue.
Service process of the WiFi queue. Let C(t) be a random vari-
able that denotes the connectivity status of the mobile device to a
WiFi network. We define C(t) := 1 when the mobile device is
2See [11] for a candidate implementation in a mobile device.
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Figure 2: System model.

connected to a WiFi network during time slot t and C(t) := 0
otherwise. Then, the connectivity process {C(t)}∞t=1 is modeled
by an on-off process, where the on-state corresponds to being in a
WiFi zone and the off-state corresponds to being out of the WiFi
zones. Let T onn and T offn denote the nth (n = 1, 2, . . .) on-period
and off-period of the process {C(t)}∞t=1, respectively (See Fig. 2).
We assume that the pair (T onn , T offn ) is i.i.d. (independent and iden-
tically distributed) across n. However, for a fixed n, we allow T onn
and T offn to be dependent. Therefore, the process {(T onn , T offn )}∞n=1

becomes an alternating renewal sequence [21]. Let (Ton, Toff) be
the generic random vector for (T onn , T offn ). Empirical observations
in [17] show that Ton and Toff follow truncated heavy-tail distribu-
tions. Our model assumes general distributions having finite mean
E[Ton] < ∞ and E[Toff] < ∞, and includes such truncated heavy-
tail distributions.
Let S(t) denote the transmission rate provided to the WiFi queue

during time slot t. Then, we have

S(t) =

{
0 if C(t) = 0,

SWiFi(t) if C(t) = 1,
(1)

where SWiFi(t) denotes the transmission rate of the WiFi network
to which the mobile device is connected during time slot t. For
simplicity, we assume that SWiFi(t) is i.i.d. across t (with a generic
random variable R), but our analysis is readily extensible to the
case where {SWiFi(t)}∞t=1 is a Markov process.
Arrival process into theWiFi queue. We next describe the packet
arrival process into the WiFi queue. Let A(t) be a random vari-
able that denotes the number of packets that are generated by the
mobile device at time slot t. Then, the packet generation process
{A(t)}∞t=1 becomes the arrival process into the WiFi queue. Let
Ak denote the kth (k = 1, 2, . . .) inter-arrival time. We assume
that Ak is i.i.d. across k (with a generic random variable A) and
follows a general distribution having finite mean μ := E[A] < ∞,
i.e., the arrival process {A(t)}∞t=1 is assumed to be a renewal pro-
cess.
Packet size. In this paper, we allow the size of a packet to be vari-
able which includes the fixed (deterministic) size as a special case.
LetL be a random variable that denotes the size of a generic packet.
In practice, packet size is bounded by the maximum transmission
unit. Hence, we assume that the packet size distribution has finite
support on the range [1, Lmax].
Queue evolution equation. We now describe the queueing dynam-
ics at the WiFi queue. Let Q(t) be a random variable that denotes
the number of packets in the WiFi queue at the beginning of time
slot t. Then, the queueing process {Q(t)}∞t=1 evolves according to
the following recursion:

Q(t+ 1) = Q(t) +A(t)−DWiFi(t)−DRenege(t).

Here, DWiFi(t) is the number of packets that is completely trans-
mitted through a WiFi network during time slot t, and DRenege(t)
is the number of packets that renege during time slot t. Note that
DWiFi(t) is given by

DWiFi(t) =

{
0, if Q(t) +A(t) = 0 or S(t) = 0,

sup{k :
∑k

i=1 Li(t) ≤ S(t)}, otherwise,

where Li(t) (i = 1, 2, . . . , Q(t) + A(t)) denotes the size of the
ith packet in the WiFi queue at time t. Also, note thatDRenege(t) ≤
Q(t) + A(t) − DWiFi(t). That is, reneging (if any) occurs among
Q(t)+A(t)−DWiFi(t) number of packets in the WiFi queue. Even
for the case S(t) > 0 (i.e., when the service is being carried out
during time slot t), reneging could occur for the head-of-line packet
in the WiFi queue when the transmission rate is not sufficiently fast
to complete the service of the head-of-line packet, i.e., SWiFi(t) <
L1(t).

3.2 Performance Metrics
In this section, we provide formal definitions of the performance

metrics in the delayed offloading system. The primary quantity of
our interest is the offloading efficiency.

DEFINITION 1 (OFFLOADING EFFICIENCY ρ). The offloading
efficiency is defined as the probability that a packet in the WiFi
queue is completely served by WiFi networks before being reneged
to cellular networks.

Note that the offloading efficiency defined here does not take the
packet loss in WiFi networks into consideration, and is statistically
the same with the amount of packets served by WiFi networks di-
vided by the amount of packets inserted in the WiFi queue. The
second quantity of our interest is the mean packet delay of the de-
layed offloading system.

DEFINITION 2 (MEAN PACKET DELAYW ). The mean packet
delay is defined as the average duration of time that a packet gen-
erated by a mobile device stays in the WiFi queue before it is served
or reneged.

The offloading efficiency ρ is determined by the probability for
a packet being reneged PRenege (called the reneging probability), by
the relation ρ = 1 − PRenege. When we set a larger Tout, then ρ
increases and W also increases. Hence, the offloading efficiency
and the mean packet delay are in a trade-off relationship whose
control knob is Tout.

4. TECHNICAL CHALLENGES AND PRO-
POSED APPROACH

4.1 Technical Challenges
Our queueing system is characterized by three factors: (i) server

vacation with non-exhaustive service, (ii) heavy-tailed vacation and
non-vacation periods, and (iii) impatient customers with determin-
istic reneging times. Here, the server vacation system with non-
exhaustive services refers to a queueing system in which the server
stops service and can have a vacation even when there is a cus-
tomer in the queue. These three factors cause significant technical
challenges, as described below.
First, the heavy-tail distributions and the server vacation make

the queueing system non-Markovian as well as non-work-conserving.
Furthermore, from the viewpoint of Kendall’s notation, the resul-
tant service times also follow a heavy-tail distribution and are cor-
related across each packet. Hence, factors (i) and (ii) yieldG/G/1
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queue with correlated and heavy-tailed service time. The third fac-
tor requires us to track the waiting time of each packet in the queue.
Moreover, due to reneging, the queue length is affected by the wait-
ing time, while, in turn, the waiting time is affected by the queue
length. Thus, both the queue length and the waiting time need to be
jointly investigated. In conclusion, we need a mathematical tech-
nique that enables us to handle the joint queue length and waiting
time simultaneously for non-Markovian queueing system having
correlated and heavy-tailed service times.
There have been several queueing papers that consider reneg-

ing customers or server vacation exclusively. Regarding reneging
(without server vacation), there have been studies on queues with
deterministic impatience timeD (See [24] and references therein).
In [6] and [7], Barrer studied M/M/1 + D and M/M/n + D
queues and obtained the customer loss probability. In [24], Xiong et
al. studied the M/G/1 + D queue using level crossing analy-
sis, but analytical solution is given only for M/H2/1 + D queue
having two-stage hyper-exponential service times, and a numerical
approach is presented for the more general M/G/1 + D queue.
Recently, Kim et al. [13] studied M/PH/1 + D queue having
phase-type distributed service times. Regarding the server vaca-
tion (without the reneging), there also have been extensive studies,
e.g., [10,23]. In [10], Doshi provided a survey for queueing systems
with vacations. In [23], Takagi worked on mathematical modeling
and analysis for a broad class of server vacation systems. However,
to the best of our knowledge, there was no analytic work on the
queueing system that is addressed in this paper.

4.2 Proposed Approach
We take a three-step approach to obtain the offloading efficiency

and the mean queueing delay.
Step 1 (Analysis at an embedded point). First, by noting that the
sequence of on/off periods {(T onn , T offn )}∞n=1 is a renewal sequence,
we observe the system only at a subset of time slots when the on-
period begins. At such time instants, called embedded points, we
define a state vector in such a way that it is capable of capturing
queue length, waiting time of each packet, and residual inter-arrival
time with a minimum number of states. The details are provided in
Section 5.1.
Step 2 (Analysis at an arbitrary time). Next, we derive the lim-
iting distribution at an arbitrary point in time using the result on
the embedded process. The key idea of our derivation is motivated
by the Renewal Reward Theorem [8,21] (which considers i.i.d. re-
wards across cycles). In our analysis, rewards are not necessarily
i.i.d. across cycles, so we introduce a notion of conditional rewards
to extract an i.i.d. subsequence of rewards. The details are provided
in Section 5.2.
Step 3 (Derivation of performance metrics). Finally, from the
limiting distribution at an arbitrary point in time, we can derive the
analytic formulas for the offloading efficiency and the mean packet
delay in the WiFi queue. The details are provided in Section 5.3.
Our contributions in the proposed analytical technique are as fol-

lows. We provide a mathematical approach to analyze a queue-
ing system with deterministic reneging and heavy-tailed service in-
terruption. In particular, our approach incorporates discrete-time
Markov chain theory and a version of the Renewal Reward Theo-
rem. In non-Markovian queueing systems, a judicious selection of
embedded points makes the analysis tractable at times (often with
Markov chain theory). In our case, in addition to the use of embed-
ded points, we also strategically define a set of state variables in or-
der to build up a foundation to the next step analysis using renewal
reward type of arguments. Also, we develop an extended version

of the Renewal Reward Theorem that is applicable even when the
reward is not i.i.d. but correlated across cycles. Our framework
explicitly derives the offloading efficiency by solving a system of
matrix equations obtained from Markov chain theory. While be-
yond the scope of the current paper, our exact analysis could also
be used to derive simple analytical approximations that might be
tight in certain asymptotic regimes.

5. ANALYTICAL FRAMEWORK

5.1 Analysis at an Embedded Point
We observe the system only at the time instants when the mobile

device that has been out of the WiFi coverage is switched to be
connected to any WiFi network. We take such a time instant as our
embedded point. That is, the nth (n = 1, 2, . . .) embedded point
corresponds to the beginning of the nth on-period. Let tn denote
the time at which the nth embedded point is located. Refer to Fig. 2
for a depiction of the embedded point. We assume that initially the
mobile device is connected to a WiFi network, i.e., C(1) = 1.
Then, from Fig. 2, we have

tn =

{
1 n = 1,

tn−1 + T onn−1 + T offn−1 n ≥ 2.

At each embedded point (i.e., at time tn), we observe the following
four state variables: (i) LetQn := Q(tn) be the number of packets
in the WiFi queue at time tn. (ii) LetWn := W (tn), whereW (t)
for t = 1, 2, . . . is the waiting time of the head-of-line packet in
the WiFi queue at time t. If Qn = 0, thenWn = 0 holds. Under
the FIFO policy,Wn represents the age of the oldest packet among
the packets present in the WiFi queue at time tn. (iii) Let Un :=
U(tn), where U(t) for t = 1, 2, . . . is the size of the head-of-line
packet in the WiFi queue at time t. If Qn = 0, then Un = 0
holds. Thus, Un represents the amount of unfinished work on the
oldest packet at time tn. (iv) Let En := E(tn), where E(t) for
t = 1, 2, . . . is the elapsed time from the moment when the last
packet in the WiFi queue arrives to time t. When Qn = 1, we
have En = Wn. Finally, we let S be the set of states which can
be expressed by the tuple (Qn,Wn, Un, En). Using the tuple, we
define a state vector at the nth embedded point as follows:3

Xn := (Qn,Wn, Un, En).

We call the process {Xn}
∞
n=1 the embedded process. Note that

the embedded process can be viewed as a sampling of the process
{X(t)}∞t=1 := {(Q(t),W (t), U(t), E(t))}∞t=1 at every t = tn,
giving the relation {X(tn)}

∞
n=1 = {Xn}

∞
n=1. Our sampling of

embedded points results in a nice analytical property, as shown in
Lemma 1.

LEMMA 1. The embedded process {Xn}
∞
n=1 is a discrete-time

Markov chain with state space S .

PROOF. Due to space limitation, we provide an outline of the
proof, and the detailed proof is given in Appendix B in our technical
report [14]. For ease of understanding, we suppose that Qn ≥ 1.
Then, Wn and En represent the ages of the oldest packet and the
youngest packet, respectively, among the Qn packets in the WiFi
queue. Hence, given the pair (Wn, En), we can infer the age of
each packet in the WiFi queue from the inter-arrival time distribu-
tion P(A ≤ x). In addition to the age distribution, we also need in-
formation on the size of each packet in the WiFi queue. Since only
the head-of-line packet has a different packet-size distribution from
3Throughout this paper, we use a bold font for a vector notation.
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the other packets (since it may be partially served), we observe the
information via Un. Finally, in order to predict the possibility of
packet generation at time tn, we need the elapsed time En from
the latest packet generation. Therefore, using the triple informa-
tion on ages, packet sizes, and probability of packet generation at a
given time n, we can analyze howXn̂ will behave in the future for
n̂ > n, i.e., the process {Xn}

∞
n=1 becomes a Markov chain.

If the packet size follows a geometric distribution, then Un also
follows the geometric distribution due to the memoryless nature.
Hence, if we set the state vector as

X
′
n := (Qn,Wn, En),

then {X ′
n}

∞
n=1 is a discrete-time Markov chain. Furthermore, if

the arrival process is Bernoulli, then by the memoryless nature
again, we can further shorten the state vector as

X
′′
n := (Qn,Wn).

Then, {X ′′
n}

∞
n=1 is a discrete-time Markov chain.

In the following, we derive the transition probability matrix of
the Markov chain {Xn}

∞
n=1. Let the ith and the jth elements of

state space S be denoted by i and j, respectively. We define

P on
i,j := P(X(t+ 1) = j |X(t) = i, C(t) = 1),

P off
i,j := P(X(t+ 1) = j |X(t) = i, C(t) = 0).

(2)

Note that the probabilities P on
i,j and P off

i,j are concerned with transi-
tion across adjacent slots: P on

i,j is the probability of being in state
j at the beginning of time slot (t + 1), provided that the system
is in state i at the beginning of time slot t and a WiFi network is
available during time slot t. A similar interpretation applies to the
probability P off

i,j . The formulas for P on
i,j and P off

i,j are given in Ap-
pendix. We define

P̂i,j := P(Xn+1 = j |Xn = i).

Note that now P̂i,j is concerned with transition across adjacent em-
bedded points. Let M := [P̂i,j ] denote the one-step transition
probability matrix of the Markov chain {Xn}

∞
n=1. Since P̂i,j is

rewritten as P̂i,j = P(X(tn+1) = j |X(tn) = i), by incorporat-
ing the duration between the points tn and tn+1, we can compute
the matrix M = [P̂i,j ] from the probabilities P on

i,j and P off
i,j , as

shown below in Lemma 2.

LEMMA 2. Let Mon := [P on
i,j ] and Moff := [P off

i,j ]. Then, the
transition probability matrixM = [P̂i,j ] is obtained by

M =
∑

a≥1,b≥1

(Mon)
a(Moff)

b P(Ton = a, Toff = b).

PROOF. The key idea of our derivation relies on the Chapman-
Kolmogorov’s Theorem [16] that the k-step (k = 1, 2, . . .) transi-
tion probability matrix of a discrete-time Markov chain is the kth
power of the one-step transition probability matrix; and the k-step
we consider corresponds to the length of the interval [tn, tn+1).
Due to space limitation, we omit the details. For the detailed proof,
please refer to Appendix D in our technical report [14].

From the transition probability matrix M , we can analyze the
limiting behavior of the Markov chain {Xn}

∞
n=1 as follows. For

each i ∈ S , we define

πi := lim
n→∞

P(Xn = i) = P(X∞ = i),

which denotes the probability of the system being in state i at an
arbitrary embedded point. Let π := (πi) denote the limiting dis-
tribution vector. If the Markov chain {Xn}

∞
n=1 is ergodic, then the

limiting distribution π exists and is obtained by solving the follow-
ing system of matrix equations:

πM = π, πe = 1,

where e is a vector of ones. A sufficient condition for ergodicity is
existence of a constant Amax such that P(A ≤ Amax) = 1. Under
this condition, the elapsed time E(·) is bounded by Amax, and thus
the space S becomes finite. Since an irreducible Markov chain with
finite state space is positive recurrent [16], we can show ergodicity.
The condition P(A ≤ Amax) = 1 is reasonable in the delayed
mobile data offloading system since it is targeted for users who
actively generate data.

5.2 Analysis at an Arbitrary Time
In the previous section, we have analyzed the distribution of the

random vector X(tn) at an arbitrary embedded point tn as n →
∞, i.e.,X∞ = X(t∞). In this section, we analyze the distribution
ofX(t) at an arbitrary time t as t → ∞, i.e.,X(∞). To this end,
we derive formulas for the following probabilities for i ∈ S :

ξoni := lim
t→∞

P(X(t) = i, C(t) = 1),

ξoffi := lim
t→∞

P(X(t) = i, C(t) = 0).
(3)

Then, the limiting probability ξi := limt→∞ P(X(t) = i) is ob-
tained by ξi = ξoni + ξoffi .
The key idea of our derivation is motivated by the Renewal Re-

ward Theorem [8], which states the following: consider a renewal
process {N(t)}t≥0 having cycle lengths {Ck}

∞
k=1. Suppose that a

reward Rk is earned during the kth cycle, and assume that the pair
(Ck, Rk) is i.i.d. across k (with a generic random vector (C,R)).
If we let R(t) = R1 + . . .+RN(t) denote the total reward earned
by time t, then with probability 1, we obtain

R(t)

t
→
E[R]

E[C]
as t → ∞, (4)

provided that E[R] < ∞ and E[C] < ∞. The theorem says that the
long-term average reward is just the expected reward earned during
a cycle, divided by the expected time of a cycle.
In our queueing model, the sequence {(T onn , T offn )}∞n=1 is an al-

ternating renewal sequence. Hence, we can view the joint nth
on/off-periods as the nth cycle having length T onn + T offn . To com-
pute the distribution ξoni , we count the total number of slots with
state (X(t), C(t)) = (i, 1) during the nth cycle and set the result
as our reward Ron

n,i. Then, the long-term average reward becomes
the time average probability of being in state (X(t), C(t)) = (i, 1),
which is equal to the ensemble average probability under ergodicity
condition. Note that Ron

n,i in this setting is not necessarily indepen-
dent, but identically distributed across n for a fixed i ∈ S . There-
fore, we cannot apply the formula (4) directly so we take a detour
to analyze the long-term behavior. To our surprise, we reach the
same conclusion that the long-term average reward is just the ex-
pected reward earned during a cycle, divided by the expected time
of a cycle, as shown in Lemma 3.

LEMMA 3. Suppose that the embedded process {Xn}
∞
n=1 is

ergodic. Then, the limiting distributions ξoni and ξoffi defined in (3)
exist and are obtained by

ξoni =

∑
j∈S πjμ

on
j,i

E[Ton + Toff]
, ξoffi =

∑
j∈S πjμ

off
j,i

E[Ton + Toff]
, (5)
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where

μonj,i := E
[ tn+1−1∑

s=tn

1{X(s)=i,C(s)=1}

∣∣∣Xn = j
]
,

μoffj,i := E
[ tn+1−1∑

s=tn

1{X(s)=i,C(s)=0}

∣∣∣Xn = j
]
,

and where 1{·} denotes the indicator function.
PROOF. The proof consists of two parts. In the first part, we

analyze the time average probability that the system stays in state
i (i ∈ S) with WiFi being available. We define

Ron
i (t) :=

t∑
s=1

1{X(s)=i,C(s)=1},

which denotes the total amount of rewards earned by time t. Then,
the time average 1

t
Ron

i (t) converges with probability 1 as follows:

Ron
i (t)

t
→

1

E[Ton + Toff]

∑
j∈S

πjμ
on
j,i as t → ∞. (6)

In the second part, we show that the time average probability on the
right-hand side of (6) is equal to the ensemble average probability
due to the ergodicity of the process {Xn}

∞
n=1. Hence, we obtain

lim
t→∞

P(X(t) = i, C(t) = 1) =
1

E[Ton + Toff]

∑
j∈S

πjμ
on
j,i.

For details, refer to Appendix E in [14].

Note that in Lemma 3, μonj,i and μoffj,i represent the expected re-
ward earned during a cycle, conditioned that the cycle starts from
state j. We call μonj,i and μoffj,i the conditional rewards. Since πj

represents the probability that a cycle starts from state j, the nu-
merator in (5) results in the expected reward earned during a cycle.
The denominator in (5) represents the expected time of a cycle.
The formulas for μonj,i and μoffj,i remain to be derived. For a matrix

M , let [M ]j,i denote the (j, i)th element of M . Then, the condi-
tional rewards can be obtained from the matricesMon = [P on

i,j ] and
Moff = [P off

i,j ] as follows:

μonj,i = E
[ Ton∑
k=1

[(Mon)
k−1]j,i

]
,

μoffj,i = E
[ Toff∑
k=1

[(Mon)
Ton(Moff)

k−1]j,i
]
.

(7)

The proof of (7) is given in Appendix F in our technical report [14].
Combining (7) and Lemma 3 in a matrix form yields the following:

ξon := (ξoni ) =
πE

[∑Ton
k=1(Mon)

k−1
]

E[Ton + Toff]
,

ξoff := (ξoffi ) =
πE

[
(Mon)

Ton
∑Toff

k=1(Moff)
k−1

]
E[Ton + Toff]

,

from which we finally obtain the limiting distribution of the process
{X(t)}∞t=1 as

ξ :=
(
P(X(∞) = i)

)
= ξon + ξoff. (8)

5.3 Offloading Efficiency andMean Packet De-
lay

By using the limiting distribution ξ = (ξ(q,w,u,e)) in (8), we
can derive the formulas for our performance metrics ρ andW . We
begin by providing the formula for ρ.

THEOREM 1. The offloading efficiency ρ under the delayed
mobile data offloading system is obtained by

ρ = 1− λ−1
∑

q≥1,u≥1,e≥1

(
ξoff(q,Tout,u,e)

+ ξon(q,Tout,u,e)P(R < u)
)
.

PROOF. Here, once again, we provide an outline of the proof
due to space limitation. For a given time t, a packet reneges (if
any) due to one of the following two reasons: (i) Suppose that there
is a packet in the WiFi queue at time t, and that the mobile device is
not connected to any WiFi network, i.e., Q(t) ≥ 1 and C(t) = 0.
In this case, a reneging event occurs for the head-of-line packet in
the WiFi queue if its age becomes Tout, i.e.,W (t) = Tout. (ii) Now
suppose that there is a packet in the WiFi queue at time t, and that
the mobile device is connected to a WiFi network, i.e., Q(t) ≥ 1
and C(t) = 1. In this case, a reneging event occurs for the head-
of-line packet in the WiFi queue if its age is Tout and the service
rate of the WiFi network is less than the size of the packet, i.e.,
W (t) = Tout and S(t) = SWiFi(t) < U(t).
Since the above two cases are exclusive, summing up the reneg-

ing probabilities occurred by reasons (i) and (ii) leads to PRenege.
Two reasons correspond to the first and the second term in Theo-
rem 1, respectively. Please refer to Appendix G in our technical
report [14] for the detailed proof.

Now we provide the formula forW .

THEOREM 2. The mean packet delay W under the delayed
mobile data offloading system is obtained by

W = λ−1
∑

q≥1,w≥1,u≥1,e≥1

q · ξ(q,w,u,e).

PROOF. The average number of packets in the WiFi queue, de-
noted by Q, is obtained as

Q =
∞∑
q=1

qP(Q(∞) = q) =
∑

q≥1,w≥1,u≥1,e≥1

q · ξ(q,w,u,e).

Hence, by applying Little’s Law [21], we haveW = λ−1Q.

6. NUMERICAL STUDY
In this section, we verify the correctness and accuracy of our

analytical framework by performing extensive numerical studies,
which also provide us some useful insights. For the verification,
we develop an event-driven simulator that mimics the behavior of
the delayed offloading system shown in Fig. 1.

6.1 System Setup and Parameters
Our analytical framework and simulator are capable of taking

generalized input parameters. In the huge space of combinations
of such system parameters, we focus on practical values observed
in [1, 17] and candidate values expected for near future as shown
below.
User Traffic. Based on [1], we assume that a mobile device will
roughly generate 7 GB of data per month in the near future, whose
inter-arrival process follows a truncated Pareto distribution with 3
minutes and 6 hours for its lower and upper truncation. When mul-
timedia recording and viewing are frequently performed in a de-
vice, 7 GB/month is a reasonable number given that the full HD
video is recorded and played at up to 30 Mbps. To capture wider
range of user behaviors including behaviors of near future, we also
consider 3.5 GB/month and 14 GB/month of data generation. Since
it is unclear how much portion of the total data volume is subject
to realtime demand in the near future, we assumed that the entire
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traffic is delay tolerant. Extension of our framework that can ac-
commodate various deadlines for different traffic types including
zero delay tolerance is left as future work.
WiFi Data Rate. From the measurement study on WiFi data rates
in [17] showing that 1.2 Mbps on average is empirically achiev-
able, we set the capacity of WiFi networks as either of 0.1 Mbps,
1 Mbps, 2 Mbps, 10 Mbps, and 50 Mbps. Given three factors: (i)
the average data rate of WiFi networks in a region may highly vary
(e.g., by the factor of development of a city), (ii) there exist high-
speed WiFi standards in the market (such as 802.11ac providing up
to 600 Mbps as its nominal speed), and (iii) WiFi APs are mostly
located in crowded areas, considering up to 50 Mbps for individual
WiFi data rate is rational (even when considering near future).
WiFi Deployment. The availability of WiFi networks in a city can
be captured by the distributions of disconnected periods (i.e., inter-
connection time) and connected periods (i.e., connection time) to
any WiFi AP. In the measurement study of [17], the average inter-
connection and connection times are shown to be (25, 50) minutes
respectively in Seoul, Korea. Based on this status quo of WiFi
deployment, we vary the inter-connection time and the connection
time to have (15, 45) minutes and (4, 12) minutes on average for
modeling possible WiFi environments in the near future (with more
WiFi APs). We assume that both the connection time and the inter-
connection time conform to a truncated Pareto distribution.
Deadline. We vary the deadline for offloading from 3 minutes to
1 hour and observe the impact of the system parameters on major
performance metrics.

6.2 Numerical Analysis vs. Simulation
We validate our analytical framework by comparing its results

for various parameter settings with those from short-term and long-
term simulations. Figs. 3 (a) and (b) show the offloading effi-
ciency and the queueing delay for various deadlines with 1 Mbps
of WiFi data rate, 7 GB/month of input traffic, 25 minutes of inter-
connection time, and 50 minutes of connection time. As expected,
our framework provides almost the same results with those from
long-term simulation and the average of a number of short-term
simulations. Given that long-term simulations require much longer
simulation time as well as more memory for their computations,
our framework has its unique value. Note that the offloading ef-
ficiency from our framework for the deadline of 1 hour coincides
with the result shown in [17] for the same parameter setting.

6.3 Offloading Scenarios and Lessons
Using our framework, we analyze diverse offloading scenarios

that reflect the current network situation and possible near future
environments through combinations of average inter-connection and
connections times of (25, 50), (15, 45), and (4, 12) minutes. (25,
50) setting is considered as current deployment of WiFi networks
while (15, 45) setting is chosen as a wider deployment of WiFi net-
works with substantially reduced amount of inter-connection time
and slightly decreased amount of connection time. (4,12) setting is
selected to model a completely different type of WiFi deployment
in which WiFi APs are imagined to be installed in the middle of
paths of movement such as on traffic lights or street lights that will
result in much shorter inter-connection and connection time. We
call it prevalent deployment. Note that (4,12) and (15,45) settings
have the same connection ratio. We compare the wider deployment
and the prevalent deployment over the current deployment to obtain
guidance on how to upgrade WiFi networks in terms of achieved of-
floading efficiency, and the discussion on the mean packet delay is
omitted due to space limitation.
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Figure 3: The results from our framework compared with those
from short-term and long-term simulations under data rate of 1
Mbps and input traffic of 7 GB/month. Short-term simulations
are performed 20 times and their 95% confidence intervals are
depicted.

For a comprehensive comparison, we vary the average data rate
of WiFi networks, total amount of generated data per month per
user, and deadline for offloading. Figs. 4 (a), (b), and (c) show the
offloading efficiency from the current deployment of WiFi network
for input traffic of 3.5 GB/month, 7 GB/month, and 14 GB/month,
respectively, for various deadlines. Fig. 4 (a) shows that the offload-
ing efficiency varies from 0.3 to 0.87 according to the deadline. It
is very interesting to see that the average data rate of WiFi networks
has almost no effect to the offloading efficiency when the data rate
is beyond 1 Mbps. It is mainly because the arriving traffic does
not come in large enough chunks to exploit data rates of greater
than 1Mbps. This observation implies that upgrading WiFi APs for
a newer standard provides diminishing returns from the point of
view of the offloading efficiency. Figs. 4 (b) and (c) reconfirm that
the effect of increased data rate is negligible. Figs. 4 (a), (b) and (c)
commonly show that the offloading efficiency with the deadline of
1 hour is bounded by 87% under the current deployment.
The results from the wider deployment depicted in Figs. 5 (a),

(b), and (c) show that the offloading efficiency can be significantly
improved by altering the deployment. For instance, with a dead-
line of 30 minutes, the wider deployment achieves about 89% of
offloading efficiency which is nearly 10% higher than that of the
current deployment. To our surprise, 89% is the level of offloading
efficiency that was not achievable even with 60 minutes of deadline
and higher data rate up to 50 Mbps. This implies that installing
more WiFi APs, resulting in reducing the average inter-connection
time gives far greater gains in offloading efficiency, as compared
to increasing the data rate carried on the existing WiFi APs. Even
in the wider deployment, data rates beyond 1 Mbps result only in
a small improvement, except for the case of extremely short dead-
lines (e.g., 3 minute).
To purse higher offloading efficiency, we further test the preva-

lent deployment which may necessitate a larger number of WiFi
APs than in the wider deployment. However, note that the installa-
tion cost of the prevalent deployment can be similar to that of the
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Figure 4: Offloading efficiency obtained from the current deployment setting for various data rates and deadlines.
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Figure 5: Offloading efficiency obtained from the wider deployment setting for various data rates and deadlines.
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Figure 6: Offloading efficiency obtained from the prevalent deployment setting for various data rates and deadlines.

wider deployment if we manage installation only with low-grade
WiFi APs of slower data rate and low-speed wireless backhaul that
substantially cuts construction cost. With the wireless backhaul, it
is possible to deploy a number of WiFi APs at traffic lights or street
lights on frequently visited roads at a manageable cost. Figs. 6
(a), (b), and (c) show impressive offloading performance as high as
98% even with 1Mbps at 30 minutes of deadline. This extreme effi-
ciency is not achievable in the current deployment and in the wider
deployment no matter how fast the WiFi data rate is. Fig. 7 empha-
sizes the benefit of the prevalent deployment by directly comparing
the offloading efficiency to other deployments under 15 minutes of
deadline with various WiFi data rates. The prevalent deployment
strategy dominates the wider deployment strategy for the whole
range of WiFi data rates. Also, the offloading efficiency of the
prevalent deployment with 0.3 Mbps already exceeds that of the
wider deployment with 50 Mbps (or even higher).
The overall observations made from our framework imply that

changing the paradigm of choosing installation locations of WiFi
APs is worth considering. For instance, additional installation of
WiFi APs can be recommended in the new locations that break
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Figure 7: Offloading efficiency from three different deployment
settings for the same deadline of 15 minutes and input traffic of
7 GB/month.

down long inter-connection times into shorter ones such as road
sides rather than in the conventional crowded areas such as depart-
ment stores.
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7. CONCLUDING REMARKS
In this paper, we provide an analytical framework that closely

captures the realistic behavior of the delayed mobile data offload-
ing system which can offload mobile traffic from cellular networks
to WiFi networks (or similarly to femto/picocell networks). The
analysis of the offloading system involves technical challenges due
to its non-Markovian characteristics mainly resulting from the al-
ternating heavy-tailed service and interruption periods as well as
the deterministic reneging behavior. We address the challenges
by uniquely designating the service activation events as embedded
points, which transforms the system to a Markovian one. Using the
redefined embedded process, we rigorously develop closed-form
equations for the performance metrics of interest in the delayed of-
floading system, including offloading efficiency and mean packet
delay. We expect that our analytical framework and the closed-
form equations shown to almost perfectly predict the behaviors of
the system, would significantly advance understandings on the of-
floading system and its variants. We also anticipate that the reverse
engineering of the analytical framework would lead to optimization
on the system as well as its control.
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APPENDIX
In Tables 1 and 2, we summarize the formulas for the transition
probabilities P off

i,j and P on
i,j , respectively. In the table, we use the

following notations. First, fX(x) := P(X = x) denotes the prob-
ability mass function of a discrete random variable X. Remind
that L and R are random variables that represent the packet sizes
and the WiFi data rates, respectively. Next, the functions g1(·, ·),
g2(·, ·, ·), and g3(·, ·) are concerned with work load in the WiFi
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Table 1: Probability ofX(t+ 1) = j conditioned thatX(t) = i and C(t) = 0
Case I Case II Case III Case IV Case V
q1 = 0 q1 = 1, w1 < Tout q1 = 1, w1 = Tout q1 ≥ 2, w1 < Tout q1 ≥ 2, w1 = Tout

i = (0, 0, 0, e1) i = (1, w1, u1, w1) i = (1, Tout, u1, Tout) i = (q1, w1, u1, e1) i = (q1, Tout, u1, e1)

j = (0, 0, 0, e1 + 1) 1 − fÃ(e1) 0 0 0 0
j = (1, 1, u2, 1) fÃ(e1)fL(u2) 0 fÃ(Tout)fL(u2) 0 0

j = (0, 0, 0, Tout + 1) 0 0 1 − fÃ(Tout) 0 0
j = (1, w1 + 1, u1, w1 + 1) 0 1 − fÃ(w1) 0 0 0

j = (2, w1 + 1, u1, 1) 0 fÃ(w1) 0 0 0
j = (q1, w1 + 1, u1, e1 + 1) 0 0 0 1 − fÃ(e1) 0
j = (q1 + 1, w1 + 1, u1, 1) 0 0 0 fÃ(e1) 0

j = (q1−1, w2, u2, e1+1) 0 0 0 0 (1−fÃ(e1))

·fL(u2)fV2(i)(w2 − 1)

j = (q1, w2, u2, 1) 0 0 0 0 fÃ(e1)fL(u2)

·fV2(i)(w2 − 1)

Table 2: Probability ofX(t+ 1) = j conditioned thatX(t) = i and C(t) = 1
Case I Case II Case III
q1 = 0 q1 = 1, w1 < Tout q1 = 1, w1 = Tout

i = (0, 0, 0, e1) i = (1, w1, u1, w1) i = (1, Tout, u1, Tout)

j = (0, 0, 0, e1 + 1) 1 − fÃ(e1) 0 0
j = (1, 1, u2, 1) fÃ(e1)fL−R(u2) 0 0
j = (0, 0, 0, 1) fÃ(e1)P(L ≤ R) 0 0

j = (1, w1 + 1, u2, w1 + 1) 0 (1 − fÃ(w1))fR(u1 − u2) 0
j = (0, 0, 0, w1 + 1) 0 (1 − fÃ(w1))P(R ≥ u1) 0
j = (2, w1 + 1, u2, 1) 0 fÃ(w1)fR(u1 − u2) 0

j = (1, 1, u2, 1) 0 fÃ(w1)g2(u1, u2, 1) 0
j = (0, 0, 0, 1) 0 fÃ(w1)P(R − L ≥ u1) 0

j = (0, 0, 0, Tout + 1) 0 0 1 − fÃ(Tout)

j = (1, 1, u2, 1) 0 0 fÃ(Tout)P(R−L<u1)

j = (0, 0, 0, 1) 0 0 fÃ(Tout)P(R−L≥u1)

Case IV Case V
q1 ≥ 2, w1 < Tout q1 ≥ 2, w1 = Tout

i = (q1, w1, u1, e1) i = (q1, Tout, u1, e1)

j = (q1, w1 + 1, u2, e1 + 1) (1 − fÃ(e1))fR(u1 − u2) 0
j = (q2, w2, u2, e1 + 1) (1 − fÃ(e1))g2(u1, u2, q1 − q2)fVq1−q2+1(i)(w2 − 1) 0

j = (0, 0, 0, e1 + 1) (1 − fÃ(e1))g3(q1, u1) 0
j = (q1 + 1, w1 + 1, u2, 1) fÃ(e1)fR(u1 − u2) 0

j = (q2, w2, u2, 1) fÃ(e1)g2(u1, u2, q1 − q2 + 1)fVq1−q2+2(i)(w2 − 1) 0

j = (1, 1, u2, 1) fÃ(e1)g2(u1, u2, q1) 0
j = (0, 0, 0, 1) fÃ(e1)g3(q1 + 1, u1) 0

j = (q1−1, w2, u2, e1+1) 0 (1 − fÃ(e1))g1(u1, u2)fV2(i)(w2 − 1)

j = (q2, w2, u2, e1 + 1) 0 (1 − fÃ(e1))g2(u1, u2, q1 − q2)fVq1−q2+1(i)(w2 − 1)

j = (0, 0, 0, e1 + 1) 0 (1 − fÃ(e1))g3(q1, u1)

j = (q1, w2, u2, 1) 0 fÃ(e1)g1(u1, u2)fV2(i)(w2−1)

j = (q2, w2, u2, 1) 0 fÃ(e1)g2(u1, u2, q1 − q2 + 1)fVq1−q2+2(i)(w2−1)

j = (1, 1, u2, 1) 0 fÃ(e1)g2(u1, u2, q1)

j = (0, 0, 0, 1) 0 fÃ(e1)g3(q1 + 1, u1)

queue and the data rates, and are defined as

g1(u1, u2) := P(R < u1)fL(u2),

g2(u1, u2,m) := P(u1+Laggm−1+L−R=u2, L ≥ u2),

g3(q, u) := P(u+ Laggq−1 ≤ R),

(9)

where Laggm := R1 + . . . + Rm and Rk are i.i.d. copies of R.
The closed-form formulas for the functions in (9) are determined
by the distributions of L and R. Finally, the random variables Ã
and Vs(i) = Vs((q,w, u, e)) are related to the packet arrival time

and are distributed as follows:

fÃ(e) = P(A = e |A ≥ e),

fVs(i)(v) =
P(Aagg

s−1 = w − v)P(Aagg
q−s = v − e)

P(Aagg
q−1 = w − e)

,

where Aagg
m := A1 + . . .+Am and Ak are i.i.d. copies of A. The

closed-form formulas for fÃ(·) and fVs(i)(·) are determined by the
packet inter-arrival time distribution. For more details, please refer
to Appendix C in our technical report [14].
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