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ABSTRACT
We consider the problem of broadcasting a message in a mo-
bile ad hoc network (MANET) with the objective of mini-
mizing the broadcast latency. Due to the mobility of network
nodes, the coordination among nodes is hard and expensive.
Thus it is much desired to design efficient, one-sided broad-
cast protocols where each node acts according to its own
state solely. Although random scheduling is a popular and
effective one-sided approach for leveraging the broadcast na-
ture of wireless medium while coping with transmission colli-
sions, both critical for reducing the broadcast latency, in this
paper, we show that when nodes move very fast, the perfor-
mance of pure random scheduling must be sub-optimal, no
matter how the forwarding probabilities are specified. Fur-
thermore, we propose a novel one-sided broadcast protocol
named R2, which first splits the message into a certain num-
ber of mini-messages and then couples a fine-grained random
scheduling with random linear network coding for broadcast-
ing the mini-messages. Theoretical analyses demonstrate
that R2 performs optimally in order sense, no matter how
fast network nodes move around, although different mobility
has distinct effect on the speed of message broadcast.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols
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Mobile Ad Hoc Networks, Broadcast, Random Linear Net-
work Coding, Random Scheduling
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1. INTRODUCTION
With the fast development of wireless and social network-

ing technologies, there has been increasing interest on the
use of mobile ad hoc networks (MANETs) for data commu-
nication. A typical MANET is self-configured and formed
by a collection of wireless nodes which act not only as hosts
but also as relays, storing and forwarding data for other
nodes in the network. The nodes in a MANET can move
around at their will, which on one hand, brings the poten-
tial to improve the network performance, e.g., capacity [18]
and throughput-delay tradeoff [39], but on the other hand,
raises great challenges for protocol design and performance
optimization, as the network topology may change rapidly
and unpredictably.

Network-wide broadcast, i.e., delivering a message from
a source node to all other network nodes, is a fundamental
operation in MANETs. For many important applications
of MANETs, like military communication, it is essential to
design an efficient broadcast scheme with low broadcast la-
tency (i.e., the time it takes for all the network nodes to
receive a copy of the message), so that the end-to-end delay
for higher-level applications could be stringently guaranteed.

Towards minimizing the broadcast latency in MANETs,
two key features of wireless communications should be care-
fully addressed. One is the broadcast nature of wireless
medium, i.e., a transmission of a message could be heard
simultaneously by multiple neighboring nodes, which can
speed up the broadcast process. The other is wireless in-
terference/collision, i.e., a node cannot receive a message if
more than one neighboring nodes are transmitting at the
same time, which can thus limit the diffusion of the mes-
sage. In static wireless ad hoc networks, the two features
are usually incorporated by constructing a broadcast tree
together with a collision-free broadcast schedule [15, 25, 33,
14]. However, in a MANET, the network topology is dy-
namic over time, making the construction and maintenance
of a broadcast tree prohibitive and also the coordination
among nodes expensive, especially when the network nodes
move very fast. Therefore, it is much desired if we could
design an efficient one-sided broadcast protocol where each
node acts according to its own state solely, avoiding the co-
ordination among nodes.
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The simplest one-sided broadcast scheme is flooding, where
each node that has received the message keeps on forwarding
the message to all its current neighboring nodes. Although
the flooding scheme can enjoy the broadcast nature of wire-
less medium, it can also lead to severe collisions, making the
broadcast latency intolerably high. One popular and effec-
tive approach to cope with these collisions while preserving
the one-sided property of flooding is random scheduling, i.e.,
each node that has received the message forwards the mes-
sage only with a certain probability [3, 41, 21]. In general,
the forwarding probability at each time is chosen mainly ac-
cording to the number of nearby nodes that have received
the message. However, due to the node mobility as well as
the underlying randomness of broadcast process, such num-
ber may vary significantly over different nodes, and can also
be hard to estimate, making the optimization of forwarding
probabilities difficult.

Instead of focusing on the optimization of forwarding prob-
abilities for random scheduling based broadcast directly, we
theoretically demonstrate that, when nodes move very fast,
no matter how the forwarding probabilities are specified,
i.e., varying over different nodes and time instances, the
performance under pure random scheduling must be sub-
optimal. The underlying reason is that the pure random
scheduling suffers from the bottleneck in completing the
broadcast process due to the very late receptions of the mes-
sage by a few nodes.

In contrast to the above pessimistic result about pure ran-
dom scheduling based broadcast, we further propose a novel
one-sided broadcast protocol named R2, which achieves the
optimal broadcast latency asymptotically by coupling a fine-
grained Random scheduling with Random linear network
coding (RLNC). Specifically, in the R2 protocol, the message
to be broadcast is firstly split into a certain number of mini-
messages, such that random scheduling can be applied on a
mini-message level and a uniform forwarding probability is
enough for the efficiency of random scheduling. The mini-
messages are then transmitted in an RLNC fashion, i.e.,
all nodes forward coded mini-messages formed from random
linear combinations of all previously received mini-messages,
which makes nodes easier to accumulate useful information,
and thus mitigates the bottleneck due to the application of
random scheduling. As demonstrated by our theoretical ar-
guments, R2 can achieve an order-optimal broadcast latency
no matter how fast nodes move around the network, even
though different mobility of network nodes has distinct effect
on the speed of message broadcast.

The contribution of the paper is two-fold:

• We first show that pure random scheduling is insuffi-
cient to achieve the optimal broadcast latency when
nodes move very fast;

• We further propose a novel one-sided broadcast proto-
col R2 which couples a fine-grained random scheduling
with random linear network coding, and show that R2

performs optimally no matter how fast nodes move
around.

The reminder of the paper is organized as follows. In
Sec. 2, we introduce the network model and the lower bounds
of the broadcast latency. In Sec. 3, we present the protocols
and main results, followed by proofs given in Sec. 4-6. Liter-
ature reviews are provided in Sec. 7. Finally, the conclusion
and open questions are presented in Sec. 8.

2. THE MODEL
We consider a mobile ad-hoc network (MANET) consist-

ing of n mobile nodes distributed uniformly on a
√
n×√

n
square. A source node, say s, wants to disseminate a mes-
sage m with l bits to all the other nodes in the network.
The broadcast latency is defined as the length of time in-
terval between the starting time of the broadcast operation
and the first time when all network nodes receive a copy of
m. Our main task is to minimize the broadcast latency by
leveraging the broadcast nature of wireless medium as well
as node mobility, while overcoming the interference due to
concurrent transmissions. Keeping this in mind, we begin
with the detailed introduction of the node mobility model
and the communication model.

2.1 Mobility Model
The whole network region is partitioned into sub-squares

of side length ρ each, resulting in a
√
n
ρ

×
√
n
ρ

torus. For
ease of presentation, we refer to the formed sub-squares as
ρ-cells and ρ as the velocity of each mobile node. The time
is divided into slots of equal duration, and at the beginning
of each time slot, each node independently moves to a new
position inside its current ρ-cell or eight adjacent ρ-cells uni-
formly at random. Here we mean two ρ-cells (or two r-cells
which are defined later) are adjacent if they touch each other
by a side or by a corner. This mobility model can be viewed
as a discrete version of the random walk mobility model,
and has been widely used in literatures, e.g., [9, 5]. In par-
ticular, when ρ =

√
n/3, this model degenerates to be the

well-known i.i.d. mobility model [36].

2.2 Communication Model
All network nodes communicate over a common wireless

channel, and the network topology in time slot t is mod-
eled by a random geometric graph [37] G = (V,A), where
V = {1, 2, . . . , n} is the set of nodes and At = {(i, j) :
dt(i, j) ≤ r} is the set of arcs. Here dt(i, j) denotes the
Euclidean distance between nodes i and j in time slot t,
and r is the common transmission radius. In other words, a
pair of nodes are neighbors if their distance is no larger than
r. To further characterize a successful reception of a trans-
mission, we consider the classical protocol model [20], i.e., a
transmission from node i to node j is successful if for any
time t within the duration of the transmission, dt(i, j) ≤ r
and each node i′ except i with dt(i

′, j) ≤ (1 + Δ)r is not
transmitting simultaneously, where Δ > 0 is a transmission
guard constant independent with n.

Regarding the communication model, we make the follow-
ing assumptions.

• We assume that the capacity of the wireless channel
is l bits per time slot, so that the whole message m
can be transmitted completely over a time slot. When
the channel capacity is larger than l, our protocol still
works and remains to be optimal asymptotically. In
the opposite case where the channel capacity is smaller
than l, the message to be broadcast can be considered
as multiple messages each with length equal to the
capacity. One might transmit the messages with our
proposed protocol in a sequential manner, but how to
transmit them efficiently in a concurrent manner re-
quires further exploration.
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• We assume that the transmission radius r is above the
critical radius [19], which is on the order of

√
log n.

In this case, the network topology at any time is con-
nected almost surely, and thus the broadcast process
can be complete even if the network is static, i.e.,
ρ = 0. On the other hand, r should be kept small
enough for the purpose of energy saving. Regarding
these considerations, we always assume r = c

√
log n

for a sufficiently large constant c > 0. Besides, we
also assume that all the nodes have common knowl-
edge about n and r.

• Since the processing of wireless signals takes time, we
assume that the information received by any node in
some time slot can only be used for transmissions from
the node in later time slots other than the same time
slot.

2.3 Lower Bounds
As demonstrated in [7, 8], node velocity plays an impor-

tant role in the speed of message dissemination, thus we
consider two cases accordingly. One is named low mobility
regime, where ρ = O(r) = O(

√
n). For this case, we have

Lemma 1. When ρ = O(
√
log n), the broadcast latency

under any protocol is Ω
(√

n
logn

)
with probability 1−O(n−1).

The other is referred to as high mobility regime, where ρ =
ω(r) = ω(

√
log n). For this case, we have

Lemma 2. When ρ = ω(
√
log n), the broadcast latency

under any protocol is Ω
(√

n
ρ

+ log n
log log n

)
with probability 1−

O(n−1).

The above lemmas could be proved similarly to [7, 40] in
spirit, with a slight more effort with Shannon measures. The
details are thus omitted. From Lemma 2, we can see that,

when the velocity is very large, say ρ = ω
( √

n
log n

)
, the lower

bound of the broadcast latency could be sub-logarithmic in
n, i.e., o(log n). This implies that many approaches cannot
achieve the lower bound in the high mobility regime as they
require at least Ω(log n) time slots. For instance, in gossip-
based protocols (e.g., [5]), each node forwards one message
to only a single neighboring node which is chosen randomly
in each time slot. Since the number of nodes that have re-
ceived the message can grow by two times in each time slot,
thus no matter how the gossip-based protocols are speci-
fied, it requires at least Ω(log n) time slots to complete the
broadcast process. In contrast, our proposed R2 protocol
can achieve the lower bounds in either mobility regime, im-
plying that the lower bounds given in Lemma 1 and Lemma 2
are tight.

3. PROTOCOLS AND RESULTS
In this section, we introduce the broadcast protocols as

well as the results about their performance. The proofs of
these results are deferred to the next sections.

3.1 Pure Random Scheduling Protocol
Random scheduling is an efficient technique for exploiting

the broadcast nature of wireless medium while coping with
interference in wireless networks [3]. Using random schedul-
ing solely, a general broadcast protocol can be formalized as
follows:

Pure Random Scheduling (PRS) Protocol:
In every time slot t, each node v that has received message
m broadcasts it to all its neighboring nodes independently
with probability pt(v), while other nodes keep silent.

Though the description of the PRS protocol is rather sim-
ple, it is a difficult task to optimize pt(v) so as to minimize
the broadcast latency. What is worse, no matter how proba-
bilities pt(v) are specified, the performance of the PRS pro-
tocol must be sub-optimal in some cases, as revealed by the
following theorem.

Theorem 3. When ρ =
√
n/3, the broadcast latency un-

der the PRS protocol is Ω(log n) with probability 1−O(n−1),
no matter how probabilities pt(v) in the PRS protocol are
specified.

As we will see later, when ρ =
√
n
3
, the optimal latency

is Θ
(

log n
log logn

)
. Therefore, there exists a Ω(log log n) factor

gap between the performance of PRS and the optimum.

3.2 The R2 Broadcast Protocol

3.2.1 Inspirational Example
Before introducing our broadcast protocol R2, we first

show how the RLNC is inspired via a simplified scenario.
In this scenario, there are k nodes, say vi, i = 1, 2, . . . , k,
need to get message m. Assume that with random schedul-
ing, in each time slot, each vi can succeed to receive m
independently with a constant probability 0 < p < 1. Now
we analyze the time it takes for all vi to receive a copy of m
with a failure probability of ε. Denoting the time as T d(ε),
we have

1− ε ≤
(
1− (1− p)T

d(ε)
)k

≤ e−(1−p)Td(ε)k,

which gives

T d(ε) ≥ − ln k − ln(− ln(1− ε))

ln(1− p)
= Ω(ln k). (1)

Comparing to the expected time for a single vi to receive m
which is just a constant, the total latency is much higher.
This is mainly due to the very late reception of m by a few
nodes.

Now suppose that message m is split into a number (de-
noted by f) of mini-messages and each time slot is also
split into the same number of mini-slots, so that each mini-
message could be transmitted in a mini-slot. Then transmit
these mini-messages in an RLNC fashion such that every
coded mini-message received by vi is a random linear combi-
nation of all original mini-messages. Once vi has collected f
coded mini-messages with linearly independent coding vec-
tors, it can recover m by Gaussian elimination. Assume
that in each mini-slot and for each vi, the probability that
vi can receive a coded mini-message remains to be a con-
stant p′. Also, for ease of illustration, every coding coeffi-
cient is assumed to be chosen from a binary field F2 uni-
formly at random (this assumption does not hold in gen-
eral networks). Let Tnc(ε) be defined similarly to T d(ε). If
f ≥ 2(ln(2k)− ln ε), then according to [43], when vi has re-
ceived 2f coded mini-messages, the probability that it can
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recover the original f mini-messages is

f−1∏
j=0

(
1− 2j−2f

)
≥
(
1− 2−f

)f
≥ 1− f

2f
≥ 1− ε

2k
. (2)

Meanwhile, by a standard Chernoff bound argument [34],
we can show that in �4/p′� time slots, the probability that
vi receives at least 2f coded mini-messages is at least

1− e−
f
2 ≥ 1− ε

2k
. (3)

Combining (2) and (3) and applying the union bound, we
can see that the probability that vi can recover m in �4/p′�
time slots is at least 1 − ε

k
. By applying the union bound

again over all k pairs, we thus have

Tnc(ε) ≤ ⌈4/p′⌉ . (4)

Note that the latency achieved by the RLNC approach is
just a constant. The key insight is that the use of message
split and RLNC makes nodes easier to accumulate useful
information, relieving the bottleneck problem that cannot
be avoided by the former approach.

3.2.2 The R2 Protocol and Performance
Now we formally introduce R2, a broadcast protocol that

couples a fine-grained random scheduling with RLNC. In
R2, the message m is partitioned into c2 sub-messages with
equal length, and the sub-messages are then broadcast in a
sequential manner. (The reason for such partition will be
explained at the end of Sec. 6.1.) In order to broadcast a
sub-message,

• the sub-message, say sm, is split by the source node
into τ = log nmini-messages, denoted bymm1, . . . ,mmτ ,
each with l/(c2τ ) bits, and

• every time slot is also split into γ = r2 = c2τ mini-
slots with equal duration, thus the transmission of a
mini-message can be completed in a mini-slot.

Based on the above basic operations, the approach as the
core of R2 for broadcasting sub-message sm can then be
described as follows:

R2 for broadcasting sm:
Source node:

• In the first time slot that contains γ mini-slots, it
disseminates the mini-message mmi, i = 1, 2, . . . , τ ,
to all its neighboring nodes in the i-th mini-slot. It
remains silent in the left mini-slots.

• In later time slots, it works the same as other nodes.

Any other node in each time slot:

• If it has not received any mini-message, then it keeps
silent in the whole time slot.

• Otherwise, in each mini-slot, it does the following
with probability 1/γ (random scheduling):

– (RLNC) it first picks out every mini-message re-
ceived in previous time slots independently with
probability 1/2, and then combines them into a
coded mini-message by XORing them all.

– it then broadcasts the generated mini-message
to all its neighboring nodes.

In the above procedure, each generated mini-message is
a linear combination of mm1, . . . ,mmτ . For the sake of
decoding, τ linear coefficients (referred to as the coding vec-
tor), each of which costs one bit, should also be appended
into the mini-message for transmission. We can omit the
coding vector overhead here to ease the presentation under
a quite loose condition of l = Ω(log2 n) which can hold for
large message. To see this under the assumption, we can
adjust the number of sub-messages by a constant factor so
that in the broadcast of a sub-message with R2, a coded
mini-message with coding vector appended has exactly l

c2τ
bits and thus can be transmitted in one mini-slot. This does
not affect the performance in order sense (some remarks on
the chosen of parameters in R2 are also given at the end of
Sec. 6.1).

Once a node receives enough coded mini-messages, say
with τ linearly independent coding vectors, it can recover the
whole sub-message sm by Gaussian elimination. Note that
the generation of coded mini-messages in R2 is well-known
as RLNC with operations executed over a binary field F2.
While the use of larger finite field may have the potential
to improve the performance, it also incurs higher compu-
tational cost for encoding and decoding operations. On the
other hand, the use of a binary field employs the simple XOR
as a basic arithmetic operation, and also leads to minimum
overhead due to coding vectors. Moreover, the binary field
F2 is sufficient for the R2 protocol to achieve asymptotic
optimality in terms of broadcast latency, as shown by the
following theorems.

Theorem 4 (Low Mobility Regime). When ρ =
O
(√

log n
)
and l = Ω(log2 n), the R2 protocol achieves a

broadcast latency of O
(√

n
log n

)
with probability 1−O(n−1).

Theorem 5 (High Mobility Regime). When ρ =
ω
(√

log n
)
and l = Ω(log2 n), the R2 protocol achieves a

broadcast latency of O
(√

n
ρ

+ log n
log logn

)
with probability 1 −

O(n−1).

Comparing Theorem 4 with Lemma 1 and Theorem 5 with
Lemma 2, we can see that, as long as l = Ω(log2 n), R2

performs optimally in order sense no matter how large the
velocity ρ is.

4. PRELIMINARIES
Before proving Theorem 3, Theorem 4 and Theorem 5, in

this section, we introduce some preliminaries.

4.1 Network Region Partition
We partition the whole square region into small sub-squares

(referred to as r-cells), each with side length ar, where a is

a suitable constant such that 1

4
√

2
≤ a ≤ 1

2
√

2
and

√
n
ar

is an

integer. For an r-cell R, we use N (R) to denote the set of
all r-cells that are adjacent to R including R itself. Clearly,
any pair of nodes in the same r-cell are neighbors. Also,
for a node v lying in R, every node in N (R) is within the
transmission range of v.

A well-known result is that every r-cell in the region con-
tains Θ(r2) nodes throughout the broadcast process almost
surely [2]. Formally, let �R(t) denote the number of nodes
lying in r-cell R during time slot t, then
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Fact 1. There exists positive constants η1 and η2 which
only depend on a, such that

Pr{Dn} ≥ 1− n−4,

where Dt denotes the event of η1r2 ≤ �R(t′) ≤ η2r
2 for every

r-cell R and every time slot t′ ≤ t.

Hence, to prove a result with probability 1 − O(n−1), it is
sufficient to show the same result conditioning on Dn. In the
rest of the paper, unless otherwise specified, it is implicitly
assumed that Dn holds.

Now we introduce a simple but very useful concept about
r-cells. Two r-cells are said to be isolated if the distance
between any pair of points each in one r-cell is larger than
2(2 + Δ)r, and a collection of r-cells are said to be isolated
if any pair of r-cells are isolated. Under this definition, the
success or not of any mini-message transmissions from/to
nodes in one r-cell R are irrespective of those events in other
r-cells that are isolated with R at any certain time.

Fact 2. For any set S of r-cells, there exists some subset
S ′ ⊆ S such that |S ′| ≥ |S|/φ and all the r-cells in S ′ are
isolated, where φ = (2(2 + Δ)/a+ 1)2.

Proof. We construct S ′ from an empty set by the fol-
lowing iterative algorithm: in each iteration, an arbitrary
r-cell R is picked out from S and included into S ′, and all
r-cells in S that are not isolated with R are removed away
from S ; the iteration terminates when S becomes empty.
Evidently, all r-cells in S ′ are isolated. Also, by some sim-
ple geometric arguments, it is easily shown that there are at
most φ− 1 r-cells each of which is not isolated to R. There-
fore, |S| is decreased by at most φ in each iteration, which
implies that the number of iterations is at least |S|/φ and
thus |S ′| ≥ |S|/φ.

4.2 Projection Analysis
Projection analysis [22] is a newly developed technique for

analyzing RLNC-based protocol. For the sake of complete-
ness, we summarize its core concept and result as follows.

Definition 1. We say that node v knows about 
μ ∈ F
τ
2 or

v is 
μ-informed, if 
μ = 
0, or there is a vector 
ν in the coding
vector subspace of v such that 
μ · 
ν 
= 0, where the coding
vector subspace is induced by the coding vectors of all coded
mini-messages in hand.

Lemma 6. If a node knows about 
μ ∈ F
τ
2 and broadcasts

a coded mini-message to a set of nodes successfully, then the
probability that all nodes in the set know about 
μ afterwards
is at least 1/2. Moreover, a node can recover all the τ mini-
messages once it knows about all vectors in F

τ
2 .

With the help of projection analysis, we can claim that
the latency of broadcasting a sub-message is upper bounded
by T with probability 1 − O(n−1), if for any 
μ ∈ F

τ
2 , the

probability that all nodes know about 
μ at time T is at least
1 − O

(
n−12−τ

)
= 1 − O(n−2). This is because under the

assumption, we can apply the union bound over all 2τ = n
vectors in F

τ
2 to show that at time T , the probability that

all nodes know about all vectors in F
τ
2 , or equivalently all

nodes can recover the original τ mini-messages according to
Lemma 6, is 1−O(n−1).

5. SUB-OPTIMALITY OF PRS: PROOF OF
THEOREM 3

In the proof of Theorem 3, we only use the condition that
Dt0 holds for some suitable t0 ≤ n, which will be clear soon.
For any time t ≤ t0 and any node v, the communication
range of v, i.e., the circle centered at v with radius r, is

covered by at most ξ =
(⌈

2r
ar

⌉
+ 2
)2

=
(⌈

2
a

⌉
+ 2
)2

r-cells.

Since each r-cell contains at most η2r
2 nodes, each node is

adjacent to at most ξη2r
2 nodes at one time, which implies

that the number of nodes that receive m can increase by
at most ξη2r

2 times in one time slot. Let U(t) be the set
of nodes that have not received m in the first t time slots.
Then there must be some time t0, such that

n

2ξη2r2
≤ n− |U(t0)| < n/2.

Lemma 7. For any t > t0 such that |U(t − 1)| ≥ √
n,

there exists some constant χ < 1 such that

Pr{|U(t)| ≥ χ|U(t− 1)|} ≥ 1−O(n−2). (5)

Proof. A key observation is that in time slot t, the move-
ment of a node v ∈ V \ U(t − 1) and whether v broad-
casts m or not are both stochastic, and independent with
each other. Thus, it is equivalent if the chronological order
between the exposure on the randomness of movements of
nodes in V \ U(t − 1) and the exposure on the randomness
of whether these nodes broadcast m or not are exchanged.
Let B ⊆ V \ U(t − 1) be the set of nodes that broadcast m
in time slot t. We will show that, for any possible value B
of B, there exists some constant χ < 1 independent with B
such that

Pr{|U(t)| ≥ χ|U(t− 1)||B = B} ≥ 1−O(n−2). (6)

Then by the law of total probability, we can get (5) straight-
forwardly.

Now we prove (6). Assume that B = B holds. We consider
some set of isolated r-cells in the network region, say S , such
that |S| ≥ n

φ(ar)2
. According to Fact 2, such S exists. For

any r-cell R ∈ S , let IR be an indicator variable such that
IR = 1 if in time slot t, all nodes lying in R and belonging
to U(t − 1) do not receive m successfully, and IR = 0 if
otherwise. Define XR to be the number of nodes in B and
lying in R in time slot t. According to the i.i.d. mobility
model, XR follows a binomial distribution, i.e.,

XR ∼ Binom

(
|B|, (ar)

2

n

)

with mean value λ = |B|(ar)2
n

. To cope with the dependency
among XR, we apply the technique of Poisson approxima-
tion [34], where each XR is approximated by an independent
Poisson random variable YR with the same mean value λ.
Also define IPR similarly to IR in the Poisson case.

We first consider the Poisson case. Let E1 be the event
that there is not any node in B lying in R or r-cells that are
not isolated to R. Then,

Pr{E1} =Pr{YR = 0}
∏

R′:not isolated with R
Pr{YR′ = 0}

≥
(
e−λ

)φ
= e−λφ.
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Let E2 be the event that R contains at least two nodes in B
in time slot t. Then,

Pr{E2} = 1− e−λ − λe−λ.

If either E1 or E2 holds, then IPR = 1. Therefore,

Pr{IPR = 1} ≥ Pr{E1}+Pr{E2}
≥ e−φλ + 1− e−λ − λe−λ

≥
{
e−φ if λ < 1

1− 2
e

if λ ≥ 1

≥ some constant β,

where β < 1. Due to the mutual independence of all IPR for
R ∈ S , we can use the Chernoff bound to obtain

Pr

{∑
R∈S

IPR ≤ β|S|/2
}

≤ e−β|S|/8 = O(n−3).

According to [34], this implies that, in the actual binomial
case,

Pr

{∑
R∈S

IR ≤ β|S|/2
}

≤ (|n−U(t−1)|)·O(n−3) = O(n−2).

In other words, with probability 1 − O(n−2), there are at
least a β

2φ
fraction of all the r-cells in which nodes belonging

to U(t − 1) can not receive m in time slot t. Meanwhile,
by some standard Chernoff bound argument, we can show
that the number of such nodes is at least β

4φ
|U(t − 1)| with

probability 1− O(n−2). By setting χ = β
4φ
< 1, we get (6).

The proof is accomplished.

Finally, according to Lemma 7, we can apply the union
bound to see that, starting from time t0 when |U(t0)| ≥ n/2,
the number of time slots required so that |U(t)| becomes

less than
√
n is at least logχ

√
n

n/2
= Ω(log n) with probability

1−O(n−1), which implies Theorem 3 directly.

6. OPTIMALITY OF R2: PROOFS OF THE-
OREMS 4 AND 5

In this section, we present the proofs of Theorem 4 and
Theorem 5. Note that the broadcast latency under the R2

protocol has the same order as the latency for broadcasting
a sub-message as the number of sub-messages is a constant.
In the following, we focus on the latency for broadcasting a
sub-message.

Let 
μ be an arbitrary non-zero vector in F
τ
2 . We will an-

alyze the knowledge spreading process of 
μ to derive the
time T it takes for all nodes to know about 
μ with proba-
bility 1−O(n−2), which implies that T is a upper bound on
the latency for broadcasting a sub-message according to the
theory of projection analysis.

6.1 Basic Property of R2

We first introduce an elementary property of the R2 pro-
tocol.

Lemma 8. Let W be a set of 
μ-informed nodes lying in a
same r-cell at the beginning of time slot t. Then there exists
some constant θ > 1 which does not depend on c, such that
the probability that there exists some node in W making all

its neighboring nodes 
μ-informed during time slot t is at least
1− θ−|W|.

Proof. According to the protocol model, we can show
by some simple geometric argument that all nodes that can
cause interference with nodes in W must be contained by at

most
⌈
2+Δ
a

⌉2
+1 � φ2 r-cells. This implies that the number

of such nodes is at most φ2η2r
2. Therefore, in each mini-slot

of t, the probability that there exists some node in W that
can successfully broadcast a coded mini-message to all its
neighboring nodes is at least

|W| 1
γ

(
1− 1

γ

)φ2η2r
2

≥
(
1

4

)φ2η2 |W|
γ

since r2 = γ, which implies that the probability that there
exists some node in W that can make all its neighboring

nodes 
μ-informed is at least
(
1
2

) (
1
4

)φ2η2 |W|
γ

according to
Lemma 6. As there exists γ mini-slots in time slot t, there-
fore, the probability that no node in W can make all its
neighboring nodes 
μ-informed during time slot t is at most(

1−
(
1

2

)(
1

4

)φ2η2 |W|
γ

)γ
≤ e−(

1
2 )(

1
4 )

φ2η2 |W| = θ−|W|,

where θ � e(
1
2 )(

1
4 )

φ2η2
> 1, which is independent with c.

The desired result follows immediately.

Here we present some remarks on the setting of some pa-
rameters in R2. According to the proof of Lemma 8, the
scheduling probability is chosen to be 1/γ which guarantees
that the above constant θ is independent with c. Mean-
while, RLNC operations are executed over mini-messages in
a sub-message other than all mini-messages of the original
message, so that the upper bound of the failure probability
required by the means of projection analysis is also indepen-
dent with c. Both independencies allow us to choose a large
enough constant c for the convenience of analysis. From
now on, all constants defined in the rest of the section, if
not specified explicitly, are independent with c.

6.2 Low Mobility Regime
Now we prove Theorem 4. For an r-cell R, we say it is

completely 
μ-informed at time t if all nodes within R at t
are 
μ-informed. Regarding this concept, a straightforward
result is as follows.

Lemma 9. Let R∗ be the r-cell that contains the source s
in the first time slot. Then, R∗ is completely 
μ-informed at
the end of the first time slot.

Proof. According to the R2 protocol, all nodes except
for the source s keep silent when t = 1. Thus s can succeed
to broadcast the whole sub-message sm to all nodes in R
successfully, making all of them 
μ-informed.

A key result is that a completely 
μ-informed r-cell can
make all its adjacent r-cells completely 
μ-informed in one
time slot almost surely. It is formally presented as follows.

Lemma 10. Let R be an r-cell which is completely 
μ-
informed at the end of time slot t. Then, any r-cell R′ ∈
N (R) will become completely 
μ-informed at the end of time
slot t+ 1 with probability 1−O(n−4).
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Proof. We will show that R′ fails to become completely

μ-informed with probability O(n−4). Note that the move-
ments of nodes are dependent on condition of Dn, which is
assumed to be always true. However, due to the fact that
Pr{·|Dn} ≤ 2Pr{·|Dt} [8, pp. 615], it is sufficient to show
the same result on condition that Dt holds but the move-
ments of nodes in time slot t+ 1 are independent.

For each node v lying in R during time slot t, let α be the
probability that it will remain in R in t+1. By considering
the circle centered at v with radius ρ within which v will
stay in time slot t + 1 with probability π/9, we can show
that

α ≥
{
π
9
· 1
4
= π

36
if ρ ≤ r,

πr2/4

πρ2
· π

9
= πr2

36ρ2
if ρ > r.

Since ρ = O(r), we conclude that α ≥ β for some constant
β > 0. Let X be the number of 
μ-informed nodes in R at
the beginning of time slot t+ 1. Thus,

E[X] ≥ βη1r
2.

By the Chernoff bounds, we further have

Pr{X ≤ βη1r
2/2} ≤ e−βη1r

2/8 = O(n−4),

as long as c is sufficiently large. Besides, according to Lemma 8,
conditioning on X ≥ βη1r

2/2, the probability that all these
X 
μ-informed nodes fail to make their respective neighbor-
ing nodes 
μ-informed, which include all the nodes in R′,
is at most θ−βη1r

2/2 = O(n−4). We thus get the result as
desired.

Starting with one completely 
μ-informed r-cell as given in
Lemma 9, we can apply Lemma 10 iteratively and also the
union bound over r-cells and time slots to show that at time√
n
ar

= O
(√

n
log n

)
, all r-cells are completely 
μ-informed with

probability 1−O(n−2). This finishes the proof of Theorem 4.

6.3 High Mobility Regime
Now we prove Theorem 5. Since ρ = ω(r), we can choose

a suitable constant 1

4
√

2
≤ a ≤ 1

2
√

2
, so that ρ

ar
is an integer

and thus each ρ-cell is composed exactly by ρ
ar

× ρ
ar
r-cells.

In the following, we focus on the evolution process of the
number of 
μ-informed nodes in each ρ-cell.

For a ρ-cell C, we denote the set of C and all its adjacent
ρ-cells as N (C) and the number of 
μ-informed nodes in C at
the end of time slot t as KC(t). We then have the following
immediate result.

Lemma 11. Let C∗ be the ρ-cell that contains the source
s when t = 1. Then KC∗(1) ≥ η1r

2.

Proof. The proof is very similar to the one of Lemma 9,
and is thus omitted.

Regarding the increment of KC(t), we have the following
result.

Lemma 12. Let C be some ρ-cell such that KC(t) ≥ η1r
2.

Then there exists positive constants ϕ and ψ such that, with
probability 1−O(n−3), every ρ-cell C′ ∈ N (C) satisfies

KC′(t+ 1) ≥ min{ϕr2KC(t), ψρ
2}.

Proof. We distinguish two cases. We first consider the
case ρ = Ω(r2). Let Z be the number of r-cells that contain

one or more 
μ-informed nodes after the move phase of time
slot t + 1. According to [9], there exists some constants ϕ1

and ψ1 such that

Pr

{
Z ≥ min

{
ϕ1KC(t),

ψ1ρ
2

r2

}}
≥ 1−O(n−3).

Now consider some subset S of these r-cells in which all the
r-cells are isolated, and also

|S| ≥ Z/φ.

According to Fact 2, such S exists. Let Y be the number of
r-cells in S in which all nodes get 
μ-informed at the end of
time slot t+1. According to Lemma 8, for any r-cell R ∈ S ,
the probability that all nodes in R get 
μ-informed at the
end of time slot t + 1 is at least 1 − θ−1 = ζ. This implies
that

E[Y ] ≥ ζ|S| ≥ ζ

φ
Z.

Finally, thanks to the isolation between r-cells in S , we can
apply the Chernoff bounds to show

Pr

{
Y ≤ ζ

2φ
Z
∣∣∣E} ≤ exp

(
− ζ

8φ
Z
∣∣∣E) = O(n−3),

where condition E is defined as the event of Z ≥ min{ϕ1KC(t),
ψ1ρ

2/r2} = Ω(r2) = Ω(log n). The desired result then fol-
lows by the fact that each r-cell contains at least η1r

2 nodes.
Now consider the opposite case ρ = o(r2). We will show

that KC′(t + 1) ≤ ψρ2 with probability O(n−3) for some
constant ψ. Without loss of generality, we assume that
KC(t) = η1r

2. Note that the movements of nodes are depen-
dent on condition of Dn. Again, according to the fact that
Pr{·|Dn} ≤ Pr{·|Dt} [8, pp. 615], it is sufficient to show
the lemma on condition that Dt holds but the movements
of nodes in time slot t+ 1 are independent.

In the following, we say a node is of type 1 if it is 
μ-
informed and was in C at time t, and of type 2 if otherwise.
By a standard Chernoff bound argument, it is straightfor-
ward to show that the event that each r-cell contains Θ(r2)
nodes of type 2 in time slot t + 1 holds with probability
1 − O(n−3). Thus we can assume that this event holds ex-
actly. Now define XR to be the number of nodes of type 1 in
R for each r-cell R in N (C). Clearly, XR follows a binomial
distribution, i.e.,

XR ∼ Binom

(
KC(t),

(ar)2

9ρ2

)
.

Note that XR’s are dependent as their sum over all R in
N (C) is equal to KC(t). To deal with the dependency, we
apply the Poisson approximation technique again by approx-
imating each XR with a Poisson random variable YR with

the same mean value λ = (ar)2KC(t)

9ρ2
= η1a

2r4

9ρ2
. For r-cell R

in C′, we define IR (IPR) to be a 0-1 random variable so that
it equals to 0 if if all nodes in R will become 
μ-informed at
the end of time slot t + 1 or equals to 1 if otherwise in the
actual binomial (Poisson) case. To characterize IPR, we first
show that for each R in C′,

Pr{YR ≤ η2r
2} ≥ 1−O(n−4). (7)

Let Y ′ be a Poisson random variable with mean value λ′ =
η2
2
r2. Since ρ = ω(r), we have λ < λ′. Using the coupling
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technique based on the Knuth’s algorithm [27], we can easily
infer that

Pr{YR > η2r
2} ≤ Pr{Y ′ > η2r

2}.
On the other hand,

Pr{Y ′ > η2r
2} = Pr{Y ′ > 2λ′} ≤

( e
4

)λ′
= O(n−4),

where the second step follows due to a tail inequality for
Poisson distribution [42] and the last step follows since r =
c
√
log n for a sufficiently large c. By combining the above

two inequalities, we get (7).
Now consider a set S of isolated r-cells in C′ so that |S| ≥
ρ2

φ(ar)2
whose existence is guaranteed by Fact 2. Let ER be

the event that all r-cells that are not isolated to R contain
no more than η2r

2 nodes of type 1. Thus according to (7),

Pr{ER} ≥ 1−O(n−4).

Similarly to Lemma 8, we can show that there exists some
constant θ2 > 1 such that for any i = 1, 2, . . . , η2r

2,

Pr{IR = 1|ER, YR = i} ≤ θ−i2 .

Therefore,

Pr{IPR = 1}
≤Pr{ER}+Pr{IPR = 1|ER}

≤Pr{ER}+
η2r

2∑
i=0

Pr{IPR = 1|ER, YR = i}Pr{YR = i}

+ Pr{YR > η2r
2}

=

η2r
2∑

i=0

θ−i2

e−λλi

i!
+O(n−4)

≤e−(1−1/θ2)λ +O(n−4)

≤2e−(1−1/θ2)λ,

where the last step follows since ρ = ω(r) and thus λ =
o(r2) = o(log n). This implies

E

[∑
R∈S

IPR

]
≤ 2|S|e−(1−1/θ1)λ = o(|S|),

as ρ = o(r2) and thus λ = ω(1). By the Chernoff bound, we
further have

Pr

{∑
R∈S

IPR > |S|/2 +E

[∑
R∈S

IPR

]}

≤ exp

(
− |S|2
12E

[∑
R∈S I

P
R
]
)

≤ exp
(
−|S|e(1−1/θ2)λ/24

)
≤ exp (−|S|(1− 1/θ2)λ/24)

≤ exp

(
− ρ2

24φ(ar)2

(
1− 1

θ2

)
λ

)

= exp

(
− (1− 1/θ2)η1

216φ
r2
)

= O(n−4).

According to [34], this implies that in the actual binomial
case we have

Pr

{∑
R∈S

IR >

(
1

2
+ o(1)

)
|S|
}

≤e
√
KC(t) · O(n−4)

=O(n−3).

In other words, there are at least (1/2−o(1))|S| ≥ (1−o(1))ρ2
2φ(ar)2

r-cells, within which all nodes will get 
μ-informed in time
slot t + 1 with probability 1 − O(n−3). Recall that each
r-cell contains Θ(r2) nodes of type 2. The proof is thus
accomplished.

The key observation from Lemma 12 is that with proba-
bility 1 − O(n−3), the number of 
μ-informed nodes in any

ρ-cell will become at least η1r
2 in

√
n

2ρ
+ 1 time slots, and

then increase to ψρ2 in another no more than logϕr2
ψρ2

η1r2
=

O
(

log ρ
log r

)
time slots. Therefore, at time O

(√
n
ρ

+ log ρ
log r

)
, all

ρ-cells will have at least ψρ2 
μ-informed nodes with prob-
ability 1 − O(n−2). Once this event holds, the knowledge
spreading process of 
μ will be finished in one time slot al-
most surely, as stated in the following result.

Lemma 13. For any ρ-cell C, if KC(t) ≥ ψρ2, then the
probability that all nodes in any C′ ∈ N (C) will get 
μ-informed
at the end of time slot t + 1 is at least 1 − O(n−3). There-
fore, if KC(t) ≥ ψρ2 for every ρ-cell C, then all nodes in
the network will become 
μ-informed at time slot t + 1 with
probability 1−O(n−2).

Proof. Consider an arbitrary r-cell R within C′. Let X
be the number of 
μ-informed nodes that move from C to C′

at the beginning of the time slot t + 1, and E be the event
that all nodes in R will get 
μ-informed at the end of t+ 1.
It can be easily shown that there exists some constant ψ1

depending on ψ such that

Pr{X < ψ1r
2} < O(n−4).

According to Lemma 8, we then have

Pr{E} ≥ Pr{X ≥ ψ1r
2}Pr{E|X ≥ ψ1r

2}
≥ (1−O(n−4))(1− θ−ψ1r

2

)

≥ 1−O(n−4).

By the union bound over all r-cells in N (C), we get the
desired result.

Finally, we have that at time O
(√

n
ρ

+ log ρ
log r

)
, all nodes

in the network will become 
μ-informed with probability 1−
O(n−2). Note that when ρ = ω(r),

√
n

ρ
+

log ρ

log r
= Θ

(√
n

ρ
+

log n

log log n

)
.

This completes the proof of Theorem 5.

7. RELATED WORK
As a fundamental operation in wireless/mobile ad hoc net-

works, broadcast has been very extensively studied in the
literature. Here we mainly present a brief review of recent
research much related to our work.

Broadcast in Static Wireless Networks: Starting
with the pioneering work [6], there has been a large body
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of work in designing efficient broadcast protocols with low
latency in static radio networks [3, 10, 30, 16, 31, 17]. While
the interference of wireless communications is captured by
the radio network model, the network topology of a radio
network could be arbitrary. In contrast, the topology of a
wireless network is usually captured by the proximity of net-
work nodes. With this restriction on the network topology,
the broadcast latency could be further improved. Specifi-
cally, a series of approximation algorithms have been pro-
posed for wireless ad hoc networks [15, 25, 33, 14]. Most
of these works followed a general approach by constructing
a broadcast tree as well as a deterministic or randomized
conflict-aware transmission scheduling. However, such ap-
proach is hardly to be applied in mobile ad hoc networks,
since the network topology may change unpredictably over
time, and the coordination among nodes are expensive.

Broadcast in MANETs: Some recent works have stud-
ied the impact of node mobility on the broadcast latency.
They can be grouped into two categories according to whether
the transmission radius is above the critical radius or not. In
the sparse regime, where the transmission radius is below the
critical radius, the broadcast latency was investigated over
a rich set of mobility models [26], including the well-known
i.i.d. mobility model [29], the random walk model [38], etc.
In the dense regime where the transmission radius is above
the critical radius, Clementi et al. did several work under an
almost the same network model as studied in our work [7, 8,
9]. They established a lower bound on the broadcast latency,
and analyzed the broadcast latency under the flooding ap-
proach without taking the interference into account. Tang
et al. established a new lower bound [40], which is comple-
mentary to the one given by Clementi et al. when nodes
move very fast. However, both the work of Clementi et al.
and Tang et al. did not take the interference into account,
albeit the lower bounds still work. Chen et al. [5] intro-
duced a gossip-like approach, which deals with interference
by power controlling; however, it cannot exploit the broad-
cast nature of wireless medium, resulting in a logarithmic
factor gap from the optimum.

RLNC-based Information Dissemination: In the sem-
inar work of Ahlswede, Cai, Li and Yeung [1], network cod-
ing was demonstrated to achieve the capacity bounds of dif-
ferent destinations simultaneously. Following this work, Li
et al. [32] showed that linear coding is enough for multicast.
Koetter and Medard [28] then presented polynomial time
algorithms for encoding and decoding operations. Further,
Ho et al. introduced RLNC [23, 24], making network cod-
ing easily applicable to networks with unknown topologies
and with packet loss. RLNC was first introduced by Deb et
al. [11, 13, 12] for multi-message information dissemination.
Following this, some works focused on the characterization
of the performance of RLNC-based protocols in different set-
tings in terms of network parameters [35, 4]. Later, Haeu-
pler [22] proposed a powerful tool named projection analysis
for analyzing RLNC-based protocols. While these works in-
vestigated the power of RLNC in some sense, they mainly
focused on wired networks, which are significantly different
from MANETs. In contrast, it remains unknown how to
efficiently incorporate RLNC and how RLNC performs in
MANETs.

8. CONCLUDING REMARKS
In this paper, we sho that the pure random scheduling is

insufficient to achieve optimal broadcast latency when nodes
move very fast. We further proposed a novel broadcast pro-
tocol R2, which couples a fine-grained random scheduling
with random linear network coding. Theoretical analyses
show that R2 can achieve an optimal broadcast latency in
order sense, no matter how fast nodes move around the net-
work.

Several interesting issues regarding the broadcast prob-
lem are still open and to be further investigated. In the
current work, the message length is assumed to be Ω(log2 n)
so that the RLNC overhead due to the coding vectors would
not affect the performance asymptotically. Thus the first
question is, whether the overhead of R2 could be reduced
or eliminated so that it remains to be optimal even when
the message length is Θ(log n) which holds in general as the
message usually contains the identity of the source node,
which costs Ω(log n). Another question is to derive similar
results under more realistic models, e.g., the physical com-
munication model [20].
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