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ABSTRACT
Localization in mobile networks is of paramount importance
to a variety of pervasive applications. Due to the limitations
of GPS, such as high deployment cost, many researchers
have devised a variety of di↵erent localization schemes based
on the measurements of connectivity or distance between
neighboring nodes. The existing schemes su↵er seriously
from either low localization precision or overlong compu-
tation time. In this paper, we present a novel localization
scheme based on matrix completion, MALL, that utilizes the
collected connectivity and distance information to achieve
high-precision localization. Since MALL only involves con-
vex optimization and low-complexity non-convex optimiza-
tion, it can localize mobile nodes at a fast pace. Further-
more, MALL leads to low communication cost. Through
intensive simulation and testbed experiments, we found that
MALL outperforms the state-of-the-art localization schemes.
An in-depth analysis of the time complexity and communi-
cation cost of MALL is also included in this paper.

Categories and Subject Descriptors
C.2.1 [Computer Communication Network]: Network
Architecture and Design—Wireless communication

General Terms
Algorithm, Performance
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1. INTRODUCTION
Localization in mobile networks is of paramount impor-

tance to a variety of pervasive applications, thus having
attracted much research e↵ort over the past decades.The
Global Position System (GPS) [1] has been widely used to
locate individual nodes in mobile networks. However, GPS
requires the line of sight to the satellites and therefore stops
working when the line of sight is not available (e.g. in-
doors or in a downtown canyon). In addition, it is often
too expensive to equip every mobile node with a GPS. The
limitations of GPS have motivated many researchers to de-
vise a variety of di↵erent localization schemes based on the
measurements of connectivity or distance between neighbor-
ing nodes. Most existing localization schemes that utilize
the connectivity or distance information are designed for
static networks [2][3][4][5]. There are only a limited num-
ber of up-to-date localization schemes for mobile networks
[6][7][8][9][10][11].

The existing mobile localization schemes can be classified
into two categories: centralized and decentralized mecha-
nisms. With centralized mechanisms, a control center col-
lects and processes the connectivity/distance information in
order to locate all nodes in the network. Due to the avail-
ability of the connectivity/distance information about all
mobile nodes, centralized mechanisms tend to result in high-
precision localization. However, they su↵er seriously from
overlong computation and poor scalability because the sin-
gle control center has to determine the locations of all mobile
nodes. TSLRL, TSL, and LRL [10] are three centralized al-
gorithms that need to have the measured distances about
the nodes in the network. These schemes also make use of
the fact that the coordinate matrix, a matrix consisting of
the coordinates of mobile nodes over a period of time, is a
low rank matrix that exhibits the temporal stability feature
(i.e. the coordinate change of a mobile node tends to be
temporally stable).

With decentralized localization mechanisms, each mobile
node collects the connectivity/distance information about
its neighbors and determines its own location independently.
Since only the information about a limited set of nodes
is gathered and processed, decentralized algorithms usually
lead to fast computation and excellent scalability. However,
their localization results tend to be less precise than those
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of centralized approaches. Monte Carlo Localization (MCL)
[6], MSL* [7], and IMCL [8] are three typical decentralized
schemes.

In this paper, we present a novel decentralized localization
scheme based on matrix completion for mobile networks,
which is formally called “MAtrix-completion LocaLization
(MALL)”. With MALL, each mobile node uses a 2-step
procedure to localize itself precisely at a fast pace in a de-
centralized manner. The first step uses a matrix completion
algorithm inspired by [12]. In [12], Recht et al. proposed
a matrix completion technique to fill the unknown entries
in a matrix if the rank of the matrix is low and the known
entries are randomly sampled. In our research, although
the matrix to be completed in the first step exhibits the
low rank feature, the available entries are not random sam-
ples. To complete the matrix successfully, we designed an
algorithm based on convex optimization that associates dif-
ferent weights with the available entries and incorporates
the temporal stability feature.

The second step of MALL employs an e↵ective matrix
completion algorithm to localize mobile nodes. Technically,
it takes advantage of the matrix completed in the first step
to significantly reduce the computation complexity. In ad-
dition, a light-weight constraint that requires the location
of each mobile node to be compatible with the locations of
its neighoring node is incorporated in the algorithm to im-
prove its precision. As a result, although the algorithm still
involves non-convex optimization, it achieves low computa-
tion complexity and high precision.

Our experimental results indicate that, MALL outper-
forms the state-of-the-art decentralized localization schemes
in terms of localization error. Compared with the latest
centralized schemes, it scales much better and achieves sim-
ilar localization precision. In comparison to both the exist-
ing decentralized and centralized schemes, MALL incurs low
communication cost and computation complexity.

The detailed contributions of this paper are summarized
as follows. i) We propose a novel localization scheme, MALL,
that formulates mobile network localization as a series of
matrix completion problems with several carefully-designed
constraints. This approach ensures that MALL results in
the same high level of precision as centralized localization
mechanisms. ii) MALL only involves convex optimization
and low-complexity non-convex optimization. As a result,
MALL can achieve high-precision localization at a fast pace.
iii) MALL only makes use of the information from anchor
nodes within two hops and normal nodes within one hop.
Consequently, MALL leads to high localization precision at
a low communication cost.

The rest of the paper is organized as follows. The lo-
calization problem in mobile networks is formulated math-
ematically in Section 2. Section 3 describes the details of
MALL and Section 4 presents our simulation results. The
experimental results based on our testbed are summarized
in Section 5. Finally, Section 6 concludes the paper.

2. PROBLEM FORMULATION
In this section, we formulate the problem of mobile net-

work localization mathematically. Specifically, there are M
mobile nodes in the network under investigation. These
nodes move in a d-dimension Euclidean space. Note that
MALL is a generic method that can be used in multidimen-
sional scenarios. In this paper, each of the mobile nodes is

assigned a global ID in the range of 1 to M . The majority
of the nodes are not equipped with built-in GPS and need
to be localized using our localization scheme. We call the
nodes without GPS “normal nodes” in this paper. The rest
of the nodes are called “anchor nodes” because they can use
the built-in GPS to determine their precise locations.

In this paper, the concept of neighboring is extended.
Specifically, node i is a 1-hop neighbor of node j if it is in j’s
transmission range. If node i is not j’s 1-hop neighbor, but
in the transmission range of one of j’s 1-hop neighbors, then
i is a 2-hop neighbor of node j. In this manner, multiple-hop
neighbors can be defined. In the rest of the paper, we use
d
max

to denote the transmission range of a mobile node.
With MALL, each normal node collects the location-related

information (i.e. connectivity, distances, and coordinates)
from its neighborhood to derive its own location. Specifi-
cally, each normal node gathers the information from the
neighboring anchor nodes within two hops and from the
neighboring normal nodes within one hop. The detailed col-
lection method is presented in Section 3. Note that the co-
ordinates of the neighbouring anchors are determined by the
built-in GPS while those of the neighboring normal nodes
are approximated by MALL. Furthermore, a normal node
and its neighbouring nodes (including normal neighbors within
one hop and anchor neighbors within two hops) that pro-
vide the location-related information form a network, which
is formally called the “local subnet” of the normal node.

In this paper, time is divided into equal-sized time slots:
t1, t2, ... , t

final

. We use t and t
c

to refer to any time
slot and the current time slot respectively. To achieve high-
precision localization, each normal node uses a few matrices
(including distance and coordinate matrices) to store the
location-related information about its neighbors during the
current T -slot time window t

cw

. Note that t
cw

includes the
current slot and the past T -1 slots. In our research, T is set
to 8 for MALL.

With these data matrices, each normal node uses MALL
to fill the unknown entries of an object matrix, which con-
tains the coordinates of the nodes in the local subnet of the
normal node over the most recent T

r

-slot time window t
rw

.
Note that t

rw

includes the current slot and the past T
r

-1
slots. In addition, T

r

should be an integer that is much
smaller than T . In our research, T

r

is set to 3 for MALL.
Since the coordinates of the normal node at t

c

correspond
to part of the unknown entries of the object matrix, the nor-
mal node can easily localize itself once the object matrix is
completed.

Formally, we use the following notations in this paper:

• G(:, i, t) denotes the d-dimensional Euclidean coordi-
nates of node i at time slot t. Note that the matrix-
related notation adopted in this paper is consistent
with that used in MATLAB for simplicity purposes.

• G(k, i, t) denotes the k-th dimension Euclidean coor-
dinate of node i at time slot t. Note that 1  k  d.

• N
i,tc denotes the node set consisting of the nodes in

node i’s local subnet at the current time slot t
c

.

• N
c

= |N
i,tc | denotes the number of nodes in N

i,tc .

• N
i,Tr =

S
tc�Tr+1ttc

N
i,t

denotes the node set consist-

ing of all the nodes that have ever appeared in node
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i’s local subnet over t
rw

. Here N
i,t

denotes the node
set consisting of the nodes in node i’s local subnet at
the time slot t. Note that node i’s neighbors might
change over time. N

i,Tr contains each node that has
ever appeared as node i’s neighbour over t

rw

even if
the node was node i’s neighbour during only one slot
within t

rw

.

• N
r

= |N
i,Tr | denotes the number of neighbor nodes

that have appeared in node i’s local subnet during t
rw

.

• N
i,T

=
S

tc�T+1ttc

N
i,t

denotes the node set consist-

ing of all the nodes that have ever appeared in node
i’s local subnet over t

cw

.

• N = |N
i,T

| denotes the number of the neighbor nodes
that have appeared in node i’s local subnet during t

cw

.

In mobile networks, as a node moves around, the set of its
neighbors is likely to change over time. That is, the node set
consisting of the current and past neighbors tends to grow
with time (i.e. N

i,tc ✓ N
i,Tr ✓ N

i,T

). Consequently, we
can arrive at the following conclusion in typical scenarios:
N

c

 N
r

 N .
In addition to the notations defined previously, the follow-

ing three matrices are used in this paper:
Distance Matrix: For normal node i, there are N

c

nodes
in i’s local subnet at t

c

. Each of them is assigned a local
ID that is in the range of 1 to N

c

. In our research, each
normal node i uses an N

c

⇥N
c

matrix D to store the squared
Euclidean distance between all nodes in i’s local subnet at
t
c

.
Formally, an entry of D, D(m,n), can be calculated the-

oretically using Eq. (1):

D(m,n) = kG(:, j, t
c

)�G(:, l, t
c

)k2 (1)

where k · k denotes the Euclidean norm of a vector and k · k2
represents the square of the Euclidean norm; m and n are
the local IDs used to identify two nodes in i’s local subnet
(note that 1  m,n  N

c

); j and l are the corresponding
global IDs of m and n respectively.
Coordinate Matrix: For each normal node i, N

i,T

consists
of N nodes that have been node i’s neighbors over t

cw

. In
our research, node i uses a 2-dimension coordinate matrix
X to store the coordinates of the nodes in N

i,T

.
Globally, we use G(k, j, t) to represent the k-th dimension

Euclidean coordinate of a node in N
i,T

, where j is the global
ID of the node, t is the global slot number, and 1  k  d.
Locally, node i assigns a unique local ID jX , which is in
the range of 1 to N , to each node in N

i,T

. Note that each
local ID jX corresponds to a unique global ID j for t

cw

. In
addition, each slot in the T -slot window t

cw

is given a local
slot number tX , which is in the range of 1 to T . Note that
each tX corresponds to a unique t for t

cw

. Furthermore, node
i uses X3(k, j

X , tX) to locally represent the k-th dimension
Euclidean coordinate of a node in N

i,T

. Obviously, each
X3(k, j

X , tX) corresponds to a unique G(k, j, t) for t
cw

.
Note that X3 is a 3-dimension array. To take advantage

of matrix completion techniques, we can convert X3 into a
2-dimension coordinate matrix by collapsing the first two
dimensions of X3 into one dimension. The final coordinate
matrix is denoted as X=matricize(X3). Formally, X can
be obtained using Eq. (2):

X(jX + (k � 1)N, tX) = X3(k, j
X , tX) (2)

Note that X consists of N · d rows and T columns.
Object Matrix: Each normal node i also maintains a 2-
dimension object matrix Y , which contains the coordinates
of the nodes in N

i,Tr (note that N
i,Tr contains all the nodes

that have appeared in i’s local subnet over t
rw

). In a manner
similar to that used to define jX , tX , and X3, we can define
jY , tY , and Y3. Note that 1  jY  N

r

and 1  tY  T
r

.
Then Y is equal to matricize(Y3). Formally, we have:

Y (jY + (k � 1)N
r

, tY ) = Y3(k, j
Y , tY ) (3)

Note that Y has N
r

· d rows and T
r

columns, where N
r

=
|N

i,Tr |.
As mentioned previously, N

i,Tr ✓ N
i,T

. Hence, the object
matrix Y is a submatrix of the coordinate matrix X. In this
paper, we use f(·) to denote the operation of constructing a
matrix by choosing the rows corresponding to the nodes in
N

i,Tr from another matrix. Consequently, Y and X can be
related using Eq. (4):

Y = f(X(:, T � T
r

+ 1;T )) (4)

)):1(:,( TTTXfY rX

1st dimension 
coodinates

2nd dimension 
coodinates

Figure 1: Relationship between X and Y

Fig. 1 illustrates the relationship between X and Y using
the object and coordinate matrix kept by a normal node i in
an example 2-dimension mobile network. Since the network
is 2-dimensional, there only exist the 1st and 2nd dimension
coordinates. In addition, as mentioned previously, T and T

r

are set to 8 and 3 respectively for MALL. As a result, X
and Y always contain 8 and 3 columns respectively. Fur-
thermore, we assume that N=7 and N

r

=3 for the example
normal node. Consequently, X has N⇥ 2 dimensions = 7⇥2
=14 rows and Y includes N

r

⇥2 dimensions = 3⇥2 = 6 rows.
For clarity purposes, the 1st dimension coordinates of the
nodes in N

i,Tr are placed consecutively in Fig. 1. The 2nd

dimension coordinates are organized in a similar manner. In
practice, the consecutive arrangement is not required.

With MALL, each normal node i uses the collected con-
nectivity, distance, and coordinate information to calculate
Y . Since node i is a node in its local subnet during t

rw

, i’s
current coordinates are also included in Y . Once Y is avail-
able, node i can localize itself easily by retrieving its current
coordinates from Y .

3. MALL: A MATRIX COMPLETION AP-
PROACH

MALL is a decentralized localization scheme based on
matrix completion. With MALL, every node detects the
connectivity and measures the distance between itself and
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its 1-hop neighbors at the current time slot t
c

. Then the
connectivity/distance information is spread in its current
local subnet. Furthermore, during the current time slot,
each normal node i also forwards its previous coordinates
to the nodes in its current local subnet (note that node i’s
current coordinates are not available yet and will be de-
termined by MALL); each anchor node floods its current
local subnet with its current coordinates determined via
GPS. As a result, each normal node can collect the con-
nectivity/distance/coordinate information during the time
window t

cw

. With the collected information, each normal
node i determines its coordinates at the current time slot
by calculating the unknown entries in the object matrix Y
with a 2-step procedure. An overview of the procedure is
presented as follows:

• Step 1: Approximate X(:, 1 : T � 1) using a novel
matrix completion method that only involves convex
optimization. As mentioned previously, the matrix-
related notation adopted in this paper is consistent
with that used in MATLAB for simplicity purposes.
Therefore, X(:, 1 : T � 1) denotes a submatrix of the
coordinate matrix X, which consists of the first T � 1
columns of X.

• Step 2: Calculate the unknown entries in the object
matrix Y using a carefully-designed matrix completion
method that utilizes the approximated X(:, 1 : T �
1). The method results in a high-quality estimation of
Y . Once the estimation is available, the coordinates
of the normal node at t

c

can be easily retrieved from
the estimated Y . Although this method involves non-
convex optimization, its complexity is very low.

To find the coordinates at the next time slot, each normal
node simply executes the 2-step procedure once again. Note
that, when the network is initialized, no normal node knows
its current location. To get the localization process started,
we can assign some random coordinates to normal nodes.
After a short period of time, the normal nodes will start to
locate themselves precisely.

It is worth noting that, in this paper, the distance ma-
trix D and the coordinate matrix X are used to denote the
matrices that store the precise distance and coordinate in-
formation (i.e. the theoretical distances and coordinates)
respectively. A key component of the 2-step procedure is
to use the collected connectivity/distance/coordinate data
to approximate D and X. Once the approximated matri-
ces are available, each normal node uses them to determine
the object Y . To di↵erentiate the priority of the collected
data, each normal node uses four N

c

⇥ N
c

matrices, Dmd,
Dot, Qmd, and Qot, to store the connectivity/distance in-
formation gathered at t

c

. Furthermore, every normal node
employs four matrices (whose size is the same size as X),
Xnc, Xac, Pnc, and P ac, to store the coordinate informa-
tion collected during t

cw

.
To construct Dmd, Dot, Qmd, and Qot, each normal node

i needs to form a weighted undirected graph using the nodes
in its current local subnet and the connectivity/distance in-
formation gathered at t

c

. In detail, the connectivity infor-
mation is first used to create a link between each pair of
1-hop neighbors. Secondly, if the distance between a pair
of 1-hop neighbors can be measured, then the distance is
used as the weight for the corresponding link. If the dis-
tance between them is not available, then the transmission

range of the mobile nodes is used as the weight. Based
on the undirected graph, Dmd is a matrix that stores the
information about the directly measured distance. Specif-
ically, if an entry in Dmd corresponds to a node pair who
are 1-hop neighbors and whose distance can be measured
directly, then the entry contains the square of the measured
distance. Otherwise, the entry in Dmd is filled with a place-
holder zero. In addition, Dot is a matrix that stores the
information about other types of distances. Specifically, if
Dmd(m,n)=0, then Dot(m,n) is equal to the length of the
shortest path between vertex m and n in the undirected
graph. Note that the length of the shortest path is an ap-
proximated distance. If Dmd(m,n) 6=0, then Dot(m,n)=0.
The reason why we use two matrices to store these distances
separately is that the directly measured distances are more
accurate than the approximated distances. Therefore, the
measured distances should be given a higher weight in the
optimization problem presented in the following sections.
Furthermore, Qmd and Qot are two matrices used to in-
dicate the non-zero entries in Dmd and Dot. In detail, if
Dmd(m,n)=0, then Qmd(m,n)=0. If Dmd(m,n) 6=0, then
Qmd(m,n)=1. Qot is defined in a similar manner.
With these definitions, we can use the non-zero entries in

Dmd and Dot to approximate D. The resulting D is denoted
as eD. Formally, eD can be generated using Eq. (5):

eD(m,n) =

⇢
Dmd(m,n) if Dmd(m,n) 6= 0
Dot(m,n) otherwise

(5)

Finally, we use eDmd and eDot to denote eD.⇤Qmd and eD.⇤Qot

respectively, where .⇤ denotes the element-wise product.
To construct Xnc, Xac, Pnc, and P ac, each normal node

i needs to collect the coordinate information from its local
subnet during t

cw

. The size of these matrices is the same
as the coordinate matrix X. Specifically, Xnc stores the
received coordinates from the normal nodes in node i’s lo-
cal subnet during t

cw

. Since the neighbors of node i could
change from one time slot to another during t

cw

, the coordi-
nates of a node in N

i,T

might not be available for some time
slots within t

cw

. When the coordinates are not available,
the corresponding entries are filled with zero. In addition,
Xac stores the received coordinates from the anchor nodes
in node i’s local subnet during t

cw

. Due to a similar rea-
son, Xac could also contain some zeros that correspond to
the unavailable coordinates. Furthermore, Pnc and P ac are
used to indicate the non-zero entries in Xnc and Xac re-
spectively. Specifically, if Xnc(m,n)=0, then Pnc(m,n)=0.
If Xnc(m,n) 6=0, then Pnc(m,n)=1. P ac is defined in a
similar fashion. Based on these matrices, the details of the
2-step procedure are presented in the following sections.

3.1 Approximating X(:,1:T-1)
Since the nodes in mobile networks keep moving around,

the nodes in a normal node’s local subnet could change over
time. Namely, a node that is not part of the local subnet
during one time slot could be included in the local subnet
during another slot. Therefore, X tends to include many
unknown entries. As mentioned previously, X(:, 1 : T �1) is
a submatrix of X, which consists of the first T � 1 columns
of X. Thus X(:, 1:T�1) is likely to be incomplete too. Step
1 of MALL uses Xnc and Xac to approximate the unknown
entries in X(:, 1 : T � 1). Technically, it takes advantage
of the the low rank and temporal stability features of X(:
, 1 : T � 1) and employs a novel matrix completion method
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that only involves convex optimization to accomplish the
approximation. The approximated X(:, 1 : T � 1) will be
utilized by Step 2 of MALL.

As mentioned previously, X is a low-rank matrix that ex-
hibits the temporal stability features when the whole net-
work is considered the local subnet (i.e. all nodes in the
network are included in the local subnet). Thus, for node i,
(G(k, i, t+1)�G(k, i, t))�(G(k, i, t)�G(k, i, t�1)) approaches
zero. When the local subnet only includes the anchor nodes
within two hops and normal nodes within one hop, X still
has the low-rank and temporal stability features because the
X in this scenario is a submatrix of the X in the previous
case. As a submatrix of X, X(:, 1 : T�1) also exhibits the
low rank and temporal stability features in this scenario.

Considering that the low rank and temporal stability fea-
tures of X(:, 1:T�1), we devised a novel matrix completion
method that only involves convex optimization to approxi-
mate X(:, 1 : T �1). In detail, we assume that the rank of
X(:, 1:T�1) is r1 and X(:, 1 : T�1) can be decomposed into
two matrices, L

X

and R
X

. We further assume that L
X

has
N ·d rows and r1 columns; R

X

has T -1 rows and r1 columns.
In addition, X(:, 1 : T � 1) = L

X

RT

X

. As mentioned previ-
ously, X(:, 1 : T �1) has the low rank and temporal stability
features. In addition, X(:, 1 : T � 1) should be consistent
with Xac(:, 1 : T � 1) and Xnc(:, 1 : T � 1). Note that
Xac(:, 1 : T � 1) and Xnc(:, 1 : T � 1) include the received
coordinates from the anchor and normal nodes respectively.
Thus, approximating X(:, 1 : T � 1) can be converted to
the following minimization problem that takes both the low
rank and temporal stability features into consideration:

minimize
��(L

X

RT

X

).⇤P ac(:,1:T�1)�Xac(:,1:T�1)
��2

F

+↵·
��(L

X

RT

X

).⇤Pnc(:,1:T�1)�Xnc(:,1:T�1)
��2

F

+� ·
�
kL

X

k2
F

+kR
X

k2
F

�
+
��(L

X

RT

X

)ST

X

��2

F

(6)

where .⇤ denotes the element-wise product of two matrices;
k · k

F

denotes the Frobenius norm of a matrix; ↵ and � are
two tunable parameters; S

X

is the temporal transformation
matrix used to enforce the temporal stability constraint.

Note that the first two terms of Notation (6) guarantee
that the resulting approximation is consistent with the lo-
cation of the normal and anchor nodes respectively. Since
the coordinates of the anchors are more reliable than those
of the normal nodes, we set ↵ to 0.1. The third term of
Notation (6) corresponds to the low rank property of X(:
, 1 : T � 1). We use � = 0.1 as the weight for the low
rank portion in our research. The last term ensures that
the approximation satisfies the temporal stability feature.
In our research, S

X

= Toeplitz(0, 1, -2, 1), which denotes
the Toeplitz matrix with central diagonal given by ones, the
first upper diagonal given by negative twos, and the second
upper diagonal given by ones. In detail, S

X

can be defined
using Eq. (7):

S
X

=

2

664

1 �2 1 · · · 0 0 0
0 1 �2 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 �2 1

3

775 (7)

With S
X

, the last term of Notation (6) guarantees that,
for node i, (G(k, i, t+1)�G(k, i, t))�(G(k, i, t)�G(k, i, t�1))=
G(k, i, t�1)+G(k, i, t+1)�2·G(k, i, t) approaches zero.

There are many di↵erent methods to solve the minimiza-
tion problem [12][13]. In our research, the alternating least

))1:1(:,( TXfZX

)1:1(:, TX )(:,TX

1st dimension 
coodinates

2nd dimension 
coodinates

Figure 2: Relationship between X and Z

squares procedure is adopted. Furthermore, we use the oper-
ation f(·) to define a special matrix Z, which is a submatrix
of X(:, 1:T�1) and only includes the rows corresponding to
the nodes that appear in the local subnet of node i during
t
rw

. Formally, Z can be calculated using Eq. (8):

Z = f(X(:, 1 : T � 1)) (8)

Fig. 2 illustrates the relationship between X and Z using
a normal node in the example 2-dimension mobile network
mentioned in Section 2. Note that X(:, 1 : T � 1), a matrix
consisting of the leftmost T�1 columns of X, is also marked
in Fig. 2.

Once the approximation of X(:, 1 : T�1) is available, we
can naturally approximate Z by selecting the corresponding
rows in the approximated X(:, 1 : T � 1). In this paper, we

use eZ to denote this approximation of Z.

3.2 Calculating the Unknown Entries in Y
Y contains the coordinates of the nodes that have ap-

peared in a normal node’s local subnet over t
rw

. Most entries
in the last column of Y are empty because the coordinates of
the normal nodes at t

c

are to be determined (i.e. not avail-
able yet). Only the entries in the last column corresponding

to the anchor nodes are available. Step 2 of MALL uses eD,
eZ, and Xac to fill the unknown entries in Y . Technically, a
carefully-designed matrix completion method that involves
low-complexity optimization is used to estimate Y . In this
paper, we use eY to denote the resulting estimated Y .

According to the operation f(·) defined previously, Y can
be constructed using Eq. (9):

Y = f
�
X(:, T � T

r

+ 1 : T )
�

(9)

Using Eq. (8) and (9), we can arrive at the following rela-
tionship:

f(X) =
⇥
Z(:, 1 : T � T

r

) Y
⇤

(10)

where [· ·] denotes the operation of combining two sub-
matrices into one matrix.

Step 2 of MALL attempts to estimate Y by solving a
carefully-formulated minimization problem under a series of
important constraints. The details of these constraints are
presented as follows.
Connectivity/Distance: We first formulate the constraints
with regard to the connectivity/distance information. To re-
duce computation cost, we only use the connectivity/distance
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information that is collected at t
c

and stored in eD. Namely,
only the entries in Y (:, T ) are constrained. The constraints
can be divided into two categories: equality constraints and
bound constraints. Formally, we use g(Y ) to denote the
total violation of these constraints:

g(Y ) = kD. ⇤Qmd � eDmdk2
F

+
X

1m,nNc

min
�
0, D(m,n)�Dlb(m,n)

 2

+
X

1m,nNc

max
�
0, (D(m,n)�Dub(m,n)

 2

(11)

where D is the squared distance matrix calculated using Y (:
, T ) according to Eq. (1). Dlb and Dub are two N

c

⇥N
c

ma-
trices containing the lower and upper bound of the distances.
For a pair of nodes m and n, Dlb(m,n) and Dub(m,n) rep-
resent the lower bound and upper bound of the distance
between them respectively.

Since eDmd include the measured distances that are highly
precise, we use it to generate equality constraints: D. ⇤
Qmd = eDmd. The first term of g(Y ) capture the viola-
tion of these equality constraints. Dlb and Dub are used to
generate two bound constraints: D(m,n) � Dlb(m,n) and
D(m,n)  Dub(m,n). The second and third term of g(Y )
represent the violation of these bound constraints. In our
research, when two nodes cannot hear each other, d2

max

is
used as the lower bound. With regard to upper bound, when
two nodes, m and n, can hear each other, d2

max

is used as
the upper bound; otherwise, eDot(m,n) is used as the upper
bound.
Low Rank: Being a submatrix of X, f(X) exhibits the
low rank feature. As mentioned previously, f(X) is equal

to [Z(:, 1 : T � T
r

) Y ] and Step 1 of MALL results in eZ,
a satisfactory approximation of Z. The low rank constraint
used in Step 2 is based on the observation that adding Y to
the approximated eZ(:, 1 : T � T

r

) should keep the low rank
feature of f(X).

To retain the low rank of f(X), we let:

f(X) =
⇥
Z(:, 1 : T � T

r

) Y
⇤
= Z ·BT

X

(12)

where B
X

is an arbitrary T ⇥ (T � 1) matrix. If B
X

exists,
we can arrive at:

rank
�
f(X)

�
 min

�
rank(Z), rank(B

X

)
 

(13)

This is based on the theorem that if a matrix is a product of
two other matrices, the rank of the matrix does not exceed
the rank of the other two matrices [14].

Note that the first T � T
r

columns of Z should be the
same as the corresponding part of f(X). Therefore, B

X

(1 :
T � T

r

, 1 : T � T
r

) should be a (T � T
r

) ⇥ (T � T
r

) identity
matrix while each entry in B

X

(1 : T �T
r

, T �T
r

+1 : T �1)
should be equal to zero. Namely, only the bottom T

r

rows
in B

X

is unknown. In this paper, we use a T
r

⇥ (T � 1)
matrix, B, to denote this part of B

X

. Then we use h(Y,B)
to capture the violation of the low rank constraint (i.e. the

di↵erence between Y and eZ ·BT ):

h(Y,B) =
��Y � eZBT

��2

F

(14)

Note that B is actually an unknown matrix to be deter-
mined in the minimization problem. An approximation of
B and Y will be available once the minimization problem

is solved. By keeping h(Y,B) small, we can ensure that

[ eZ(:, 1 : T � T
r

) Y ] is a low rank matrix.
Temporal Stability: As a submatrix of f(X), Y has the
temporal stability property. Namely, for any node j whose
coordinates are included in Y , G(k, j, t�1)+G(k, j, t+1)�
2 ·G(k, j, t) approaches zero. To ensure that this property
holds well in Y , we include the temporal stability constraint
in the minimization problem. Formally, the violation of the
temporal stability constraint can be captured by p(Y ):

p(Y ) =
��Y ST

Y

��2

F

(15)

In our research, we set T
r

= 3. Therefore, S
Y

= [1 � 2 1].
Matching Received Coordinates: As mentioned previ-
ously, each normal node collects the coordinates of its neigh-
bors in the local subnet over t

cw

. Since these coordinates
are either calculated by the neighboring normal nodes or
generated by anchors, Y should be consistent with them.
In addition, since the coordinates from anchors are more
reliable than those from normal nodes, we should assign a
higher weight to the violations related to anchors. Formally,
we use q(Y ) to calculate the total violations of the coordi-
nate matching constraint:

q(Y)=
��Y.⇤f

�
P ac(:,T�T

r

+1:T )
�
�f
�
Xac(:,T�T

r

+1:T )
���2

F

+� ·
��Y.⇤f

�
Pnc(:,T�T

r

+1:T )
�
�f
�
Xnc(:,T�T

r

+1:T )
���2

F

(16)

where � is a tunable parameter to adjust the weight of the
terms in Eq. (16). In our research, we set � = 0.1 to assign a
lower weight to the violation term related to normal nodes.
Complete Formulation: Formally, filling the unknown
entries in Y can be converted into the following minimiza-
tion problem incorporating the constraints mentioned pre-
viously (note that Y and B are the unknown matrices to be
determined):

minimize c(Y,B)=g(Y )+� ·h(Y,B)+p(Y )+q(Y ) (17)

where � is a tunable parameter (0 < �  1) used to assign
a proper weight to the low rank constraint. Since real co-
ordinate matrices are not completely low-rank, the weight
of the low rank constraint should be kept small. Gener-
ally speaking, � could be set to 0.1. In our research, we
use a Quasi-Newton optimization algorithm, BFGS [15], to
find the optimal solution to the minimization problem, ulti-
mately arriving at eY .

As mentioned previously, once eY is available, the corre-
sponding node can localize itself easily by retrieving its cur-
rent coordinates from eY .

3.3 Time Complexity
The two steps of MALL correspond to two minimization

problems: Notation (6) and Notation (17), by which the
time complexity of MALL is dominated. As mentioned pre-
viously, Notation (6) is solved using the least squares method
while Notation (17) is tackled using BFGS. Hence, the com-

plexity of them are O(r1 ·N ·T · I
LS

) and O(d ·N
c

2 · I
BFGS

),
respectively. Here N and N

c

are the average number of
neighbors appeared during t

cw

and the average number of
neighbors at t

c

, respectively. I
LS

and I
BFGS

are the iter-
ation number of the least squares method for Notation (6)
and the iteration number of BFGS for Notation (17), respec-
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tively. Overall, the time complexity of MALL is:

O
⇣
r1 ·N · T · I

LS

+ d ·N
c

2 · I
BFGS

⌘
(18)

Despite of the non-convex optimization nature of Notation
(17), the complexity of Step 2 is on the same order as that
of Step 1, which only involves convex optimization. Conse-
quently, MALL tends to be very competitive compared to
the existing mobile localization schemes. Our experimental
results are consistent with the theoretical analysis.

4. SIMULATION
We carried out intensive simulations to compare MALL

with the state-of-the-art mobile localization schemes: MCL
[6], MSL* [7], IMCL [8], and TSLRL [10]. MCL, MSL*,
IMCL, and MALL are decentralized algorithms while TSLRL
is a centralized method. In our simulation, we implemented
MCL, MSL*, IMCL and MALL with MATLAB ourselves
and adopted the TSLRL program provided by the authors
[10]. The performance comparison of these schemes in terms
of localization error, running time, and communication cost
is presented in this section.

0 50 100 150 200

0

50

100

150

200

Figure 3: A C-shaped area

Our simulations were conducted with both synthetic and
real mobility traces. The synthetic mobility traces were gen-
erated using the standard random waypoint model [16] and
modified random waypoint model [6]. Each of the traces
involves 50 nodes over 300 time slots, which allows us to
complete 10 random runs and calculate the average local-
ization error. In our research, 10m/slot and 30m/slot are
considered the typical low-mobility and high-mobility ve-
locity respectively, which is consistent with the simulations
carried out in [7][10]. With synthetic traces, we studied
the performance of MALL using two di↵erent experimental
fields. The first field was a 200m⇥ 200m square-shaped re-
gion. The second field is an irregular C-shaped area that was
used in [10]. Specifically, it is a 230m⇥ 230m square with a
115m ⇥ 115m block taken o↵. The details of the C-shaped
field is shown in Fig. 3. To ensure every node’s position
falls within the fields, whenever a node is about to traverse
outside, a new randomly-selected speed and direction are re-
selected for the node. Unless otherwise specified, 50 nodes,
including 5 anchor nodes, are placed in the fields randomly
using standard random waypoint model with a maximum
speed of 10m/slot.

As defined in previous studies [7][10], node density is the
ratio of the average number of nodes to the area correspond-
ing to d

max

. Formally, we use ⇡d2
max

M/A
area

to denote this

parameter, where M is the number of nodes in the network
and A

area

denotes the experimental area. Similarly, anchor
density is defined as ⇡d2

max

J/A
area

, where J is the number
of anchors in the network. The configuration of the experi-
mental fields for synthetic traces leads to a node density of
10 and an anchor density of 1.

To investigate the practical performance of MALL, we also
used a few real mobility traces, including ZebraNet traces
[17], Seattle Bus traces [18], and Human Mobility traces
[19]. Specifically, 100 vehicles in the Seattle Bus traces were
randomly selected to the mobile nodes while all the nodes in
the ZebraNet and Human Mobility traces were used in our
research. In order to have 10 random runs over 300 slots,
we extracted 300 consecutive slots from the Human Mobility
traces. The Seattle Bus traces only involve 300 slots, thus
all of them were used in our simulation. Since the ZebraNet
traces only involve 90 slots, we carried out 3 random runs
with these traces. For our simulations with the real traces,
all the distances in the traces were scaled down in order
to arrive at an node density of 10 and anchor density of 1
approximately.

In our simulations, we quantified the localization error
using the mean absolute error (MAE) [6] [7][8][10]. Formally,
MAE is defined using Eq. (19):

MAE =
1

M · T
last

X

i,t

kG(:, i, t)� bG(:, i, t)k (19)

where G(:, i, t) and bG(:, i, t) denote the real and approxi-
mated coordinates for node i at t respectively; T

last

is a
time window covering a number of past time slots. MAE
indicates the average di↵erence between real and estimated
coordinates. In practice, the ratio of MAE to d

max

is often
used to quantify the localization error. In our simulation, we
also use this ratio to compare the performance of di↵erent
localization schemes.

In our experiments, the iteration numbers used by MALL
were I

LS

= 20 and I
BFGS

= 100, respectively. These iter-
ation numbers guarantee that MALL can generate satisfac-
tory results. For TSLRL, the time window t

cw

consists of
15 slots. For MALL, t

cw

and t
rw

are set to 8 and 3 slots re-
spectively. In addition, r1 is set to 3. For all the localization
schemes under investigation, our simulations keep running
for 30 slots in order to ensure convergence. When we com-
pare their performance, we only consider their localization
error during the last 10 slots (i.e. T

last

= 10).

4.1 Localization Error
In this section, we compare the localization error of MALL

with that of MCL, MSL*, IMCL, and TSLRL using both
synthetic and real mobility traces. Fig. 4(a) and Fig. 4(b)
illustrate the performance of the localization schemes in the
case of the square-shaped region. Specifically, these two fig-
ures correspond to the standard and modified random way-
point model respectively. In both of these cases, we calcu-
lated the localization error when the maximum speed, S

max

,
varied in the range of 1m/slot to 50m/slot. Our experimen-
tal results show that the performance of MALL has the fol-
lowing features. First of all, MALL significantly outperforms
all of the decentralized schemes, MCL, MSL* and IMCL, in
all scenarios. For example, MALL reduces the MAE by a
factor of 1.9-6.5 over MCL, 1.4-4.5 over MSL*, and 1.8-5.6
over IMCL. Secondly, the performance of MALL is compa-
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(b) Square: modified random waypoint
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Figure 4: Comparison of di↵erent localization schemes using synthetic traces

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
a
n
a
b
so
lu
te

e
rr
o
r

M
C

L

M
S

L

IM
C

L

T
S

L
R

L

M
A

L
L

(a) ZebraNet

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
M
e
a
n
a
b
so
lu
te

e
rr
o
r

M
C

L

M
S

L

IM
C

L

T
S

L
R

L

M
A

L
L

(b) Seattle bus

0

0.1

0.2

0.3

0.4

0.5

0.6

M
e
a
n
a
b
so
lu
te

e
rr
o
r

M
C

L

M
S

L

IM
C

L

T
S

L
R

L

M
A

L
L

(c) Human mobility

Figure 5: Comparison of di↵erent localization schemes using real traces

rable to that of TSLRL, but a subtle di↵erence does exist.
When S

max

is low, MALL leads to slightly higher local-
ization error. As S

max

increases, their performance di↵er-
ence narrows till it disappears when S

max

reaches a critical
speed. The critical speed in the case of standard and mod-
ified random waypoint model are 30 m/slot and 20 m/slot
respectively. Once S

max

exceeds the critical speed, MALL
will start to outperform TSLRL and their performance dif-
ference will increase with S

max

. Finally, the MAE of all lo-
calization schemes decreases with the maximum speed when
the maximum speed is small (i.e. 5 m/slot or less). When
the maximum speed exceeds 5 m/slot, the MAE starts to
increase with the maximum speed.

The localization error performance of MALL in the case of
the C-shaped region and standard waypoint model was illus-
trated in Fig. 4(c). In this case, S

max

was also in the range
of 1m/slot to 50m/slot. Our experimental results show that
MALL results in a better performance than the decentral-
ized schemes. Compared with TSLRL, MALL leads to a
similar localization error level.

We also studied the performance of MALL using real mo-
bility traces. Fig. 5 includes our experimental results. The
results indicate that MALL significantly outperforms the
distributed schemes, MCL, MSL*, and IMCL. In addition,
the performance of MALL is comparable to that of TSLRL,
which is a centralized scheme. This is consistent with our
experimental results based on synthetic traces.

4.2 Running Time
In this section, we compare the running time performance

of the localization schemes. Specifically, we vary the size
of the networks by increasing the number of nodes from 25

to 400 and check whether the schemes scale well. When the
number of nodes increases, the experimental area is enlarged
accordingly in order to keep the node density at 10 and
anchor density at 1. In our research, we assume that each
mobile node attempts to localize itself during every time
slot. For MALL, MCL, MSL*, and IMCL we calculate the
average running time consumed by each node per time slot.
For TSLRL, a centralized approach, we assume that the base
station generates the coordinates of all nodes during each
slot. Thus we calculate the average running time consumed
by the base station per time slot.
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Figure 6: Running time

Our simulations were executed on a 64-bit Windows 7
machine with Intel Core i7-3770 CPU, 16GB memory, and
8MB cache. Since TSLRL requires a large volume of mem-
ory when the number of nodes is relatively large, we set
the virtual memory to 64GB when the TSLRL simulations
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were carried out. However, we still cannot run TSLRL when
the number of nodes exceeds 300 due to memory overflow.
Thus the data point corresponding to the 400-node scenario
is missing in the case of TSLRL. However, the data for other
schemes are collected successfully.

Fig. 6 includes the details of the running time results.
Our results indicate that, in terms of running time, MALL
is similar to MCL and outperforms all other schemes. Fur-
thermore, we found that the running time of MALL, MCL,
MSL*, and IMCL do not increase very much as the network
size goes up while the running time of TSLRL does not scale
well. Actually, the running time of TSLRL increases with
the network size at a skyrocketing pace.

4.3 Communication Cost
In this section, we compare the communication cost of

the localization schemes. Technically, we use the average
number of packets that are transmitted during a time slot
to quantify the communication cost. In our research, we
considered the default synthetic scenario. Table 1 includes
the the detailed experimental results. With MCL, only an-
chor nodes forward their location-related information to the
neighbors within two hops. As a result, it leads to the low-
est communication cost: 68.3 packets/slot. With MSL, all
mobile nodes send their data to their neighbors within two
hops. Therefore, it results in the highest cost: 746.4 pack-
ets/slot. With MALL and IMCL, anchor nodes commu-
nicate with their neighbors within two hops while normal
nodes only send the information to their 1-hop neighbors.
Thus, their communication cost is slightly higher than that
of MCL. Considering that TSLRL is a centralized scheme,
we assume that a randomly-selected node plays the role of
base station and collects all of the location-related informa-
tion from other nodes. Finally, TSLRL’s communication
cost is similar to that of MALL and IMCL.

Table 1: Communication Cost
Schemes MCL MSL* IMCL TSLRL MALL
Average
number of

packets per slot
68.3 746.4 113.3 121.9 113.3

5. TESTBED EXPERIMENTS
To study the performance of MALL in practice, we tested

the schemes under investigation using a sensor testbed in
our research lab. Specifically, we deployed 25 TelosB motes
on the floor of our lab. Each TelosB mote has a micro-
controller with 10kB of RAM and 24KB of flash memory.
In addition, it is equipped with a CC2420 RF transceiver
that communicates via 2.4GHz radio. The CC2420 chip is
tailored for IEEE 802.15.4 and ZigBee protocol stacks. The
TelesB mote has the built-in capability to measure the re-
ceived signal strength (RSS), which enables the RSS-based
distance measurement between two nearby motes.

In our experiment, we adjusted the transmission power of
the mote to the lowest level: �25dBm. However, it still led
to an overlong transmission range, which resulted in a fully
connected network. To generate a realistic network that is
not fully connected, we used a carefully-selected power level
threshold, �73dBm in our research. Furthermore, we as-
sumed that two motes cannot communicate with each other

if the RSS measurement is less than the threshold. With the
threshold of �73dBm, the transmission range of the motes is
limited to 2.2m (i.e. d

max

=2.2m).The experimental region
used in our research is a 5m⇥ 5m square. The transmission
range and the experimental region lead to a node density of
around 15. Among the 25 motes in the testbed, 5 motes are
used as anchor nodes.
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In our research, we tested the localization schemes using
two di↵erent mobility scenarios: low mobility (0.2D

max

/slot)
and high mobility (0.6D

max

/slot). For each of these scenar-
ios, the coordinates of motes were generated using the stan-
dard random waypoint model [16] over 30 time slots. For
each time slot, the motes were placed in the testbed manu-
ally according to the generated coordinates. Then each mote
broadcast 30 packets so that the neighbors of the mote could
acquire multiple RSS measurements. Finally, the average of
the RSS readings was used as the RSS value to estimate the
distance between each pair of neighboring motes.

We noticed that the RSS-based distance measurement is
not very precise. To quantify its performance, we calculated
the normalized measurement error, which can be obtained
through dividing the di↵erence between the measured (cal-
culated using RSS readings) and actual distance by the ac-
tual distance. The cumulative distribution function (CDF)
of the normalized measurement error is summarized in Fig.
7. Specifically, for around 80% of the distance measure-
ments, the normalized error is less than 0.5; for around 6% of
the distance measurements, the normalized error is greater
than 1. Namely, the measured distances in the testbed con-
tain some noise. The testbed can be used to study the prac-
tical performance in a relatively realistic environment.

Fig. 8 and 9 illustrates the performance of the schemes
under investigation in the testbed. Our experimental results
indicate that MALL significantly outperforms the state-of-
the-art decentralized schemes, MCL, MSL* and IMCL. In
addition, the performance of MALL is similar to TSLRL in
both the low and high mobility cases. Overall, the exper-
imental results from our testbed are consistent with those
from our simulations.

6. CONCLUSIONS
In this paper, we propose MALL, a 2-step algorithm for

mobile network localization. The first step uses a novel ma-
trix completion technique to generate an intermediate ma-
trix. The second step makes use of the intermediate ma-
trix and the received location-related information to local-
ize mobile nodes. Through intensive simulation and tested
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Figure 8: Comparison of various schemes using the
testbed with low mobility
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Figure 9: Comparison of various schemes using the
testbed with high mobility

experiments, we found that MALL outperforms the state-
of-the-art decentralized localization schemes in terms of lo-
calization error. Compared with the existing centralized
schemes, MALL achieves the same high level of precision at
a much faster pace because it only uses convex optimization
and low-complexity non-convex optimization. In addition,
MALL scales much better than centralized schemes due to
its decentralized nature. Finally, MALL leads to low com-
munication cost since it only collects the information from
the anchor nodes that are at most two hops away and the
normal nodes that are one-hop neighbors.
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