
When Backpressure Meets Predictive Scheduling

Longbo Huang?, Shaoquan Zhang], Minghua Chen], Xin Liu†
?longbohuang@tsinghua.edu.cn, IIIS, Tsinghua University

]{zsq008, minghua}@ie.cuhk.edu.hk, IE, Chinese University of Hong Kong
†liuxin@microsoft.com, Microsoft Research Asia

ABSTRACT
Motivated by the increasing popularity of learning and pre-
dicting human user behavior in communication and com-
puting systems, in this paper, we investigate the funda-
mental benefit of predictive scheduling, i.e., predicting and
pre-serving arrivals, in controlled queueing systems. Based
on a lookahead-window prediction model, we first establish
a novel queue-equivalence between the predictive queueing
system with a fully-efficient scheduling scheme and an equiv-
alent queueing system without prediction. This result allows
us to analytically demonstrate that predictive scheduling
necessarily improves system delay performance and drives
it to zero with increasing prediction power. It also enables
us to exactly determine the required prediction power for
different systems and study its impact on tail delay.

We then propose the Predictive Backpressure (PBP) al-
gorithm for achieving optimal utility performance in such
predictive systems. PBP efficiently incorporates prediction
into stochastic system control and avoids the great com-
plication due to the exponential state space growth in the
prediction window size. We show that PBP achieves a util-
ity performance that is within O(ε) of the optimal, for any
ε > 0, while guaranteeing that the system delay distribution
is a shifted-to-the-left version of that under the original Back-
pressure algorithm. Hence, the average delay under PBP is
strictly better than that under Backpressure, and vanishes
with increasing prediction window size. This implies that
the resulting utility-delay tradeoff with predictive schedul-
ing can beat the known optimal [O(ε), O(log(1/ε))] tradeoff
for systems without prediction.

1. INTRODUCTION
Due to the rapid development of powerful handheld de-

vices, e.g., smartphones or tablet computers, human users
now interact much more easily and frequently with the com-
munication and computing infrastructures, e.g., E-commerce
websites, cellular networks, and crowdsourcing platforms.
Thus, in order to provide high level quality-of-service, it is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MobiHoc’14, August 11–14, 2014, Philadelphia, PA, USA.
Copyright 2014 ACM 978-1-4503-2620-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2632951.2632983.

important to understand human behavior features and to
utilize such information in guiding system control algorithm
design. Therefore, various studies have been conducted to
learn and predict human behavior patterns, e.g., online so-
cial networking [1], online searching behavior [2], and online
browsing [3].

In this paper, we take one step further and ask the fol-
lowing important question: What is the fundamental system
benefit of having such user-behavior information? Our ob-
jective is to obtain a theoretical quantification of this gain.
To mathematically carry out our investigation, we consider
a multi-user single-server queueing system. At every time,
user workload arriving at the system will first be queued
at corresponding buffer space. Then, the server allocates
resources and decides the scheduling for serving the jobs.
These operations allow the server to serve certain amount
of workload for each user, but also result in a system cost due
to resource utilization. Different from most existing work in
multi-queue systems, here we assume that the server can
predict and serve future arrivals before they arrive at the
system. Hence, at every time, the server updates his pre-
diction of future arrivals and adapts his control action. The
objective is to serve all user workload with minimum cost,
and to ensure small job latency for each user.

This is an important problem and can be used to model
many practical systems where traffic prediction and pre-
serving can be performed. The first example is scheduling
in cellular networks. In this case, the base station handles
users’ data demand. Instead of waiting for the users to sub-
mit their requests, and suffering from a potentially big burst
of traffic, which can lead to a large service latency, the base
station can “push” the information to the users beforehand,
e.g., push the news information at 7am in the morning. The
second example scenario is prefetching in computing sys-
tems, e.g., [4] [5]. Here, data or instructions are preloaded
into memory before they are actually requested. Doing so
enables faster access or execution of the commands and en-
hances system performance. Another example is computing
management, e.g., in computers. In this case, each user rep-
resents a software application and the server represents a
workload management unit. Then, according to the needs
of the applications, the managing unit pre-computes some
information in case some later applications request them,
e.g., branch prediction in computer architecture [6] [7].

There have been many previous works studying multi-
queue system scheduling with utility optimization. [8] stud-
ies the fundamental tradeoff between energy consumption
and packet delay for a single-queue system. [9] extends

33

the results to a downlink system and designs algorithms to
achieve the optimal tradeoff. [10] designs algorithms for min-
imizing energy consumption of a stochastic network. [11]
designs energy optimal scheme for satellites. [12] looks at
the problem of quality-of-service guaranteed energy efficient
transmission using a calculus approach. [13] studies the
tradeoff between energy and robustness for downlink sys-
tems. [14] and [15] develop algorithms for achieving the
optimal utility-delay tradeoff in multihop networks.

However, we note that all the aforementioned works as-
sume that the system only takes causal scheduling actions,
i.e., the server will start serving packets only after they enter
the system. While this is necessary in many systems, pre-
serving future traffic can actually be done in systems that
have highly predictable traffic. While predictive scheduling
approaches have been investigated, e.g., [7], not much ana-
lytical study has been conducted. Closest to our work are
[16], [17], which study the benefit of proactive scheduling,
and [18], which studies the impact of future arrival infor-
mation on queueing delay in M/M/1 queues. However, we
note that [16] and [17] do not consider the effect of queueing,
which very commonly appears in communication and com-
puting systems, whereas [18] does not consider controllable
rates and scheduling. Indeed, due to the joint existence of
prediction and controlled queueing, the problem considered
here is very complicated. Delay problems in stochastic con-
trolled queueing systems are known to be hard. Moreover,
arrival prediction advances in a sliding-window pattern over
time, i.e., at every time, the system can predict slightly fur-
ther into the future. Designing control algorithms for such
systems often involves dynamic programming (DP). How-
ever, since the state space size grows exponentially with the
prediction window size, the DP approach may not be com-
putationally practical even for small systems. Even without
prediction, the complexity of DP can still be very high due
to the large queue state space. Moreover, since the system
prediction evolves according to a sliding-window pattern, it
is also not possible to apply the frame-based Lyapunov tech-
nique as in [19] and [20].

To resolve the above difficulties, we first establish a novel
equivalence between the queueing system under prediction
and a class of fully-efficient scheduling scheme and a queue-
ing system without prediction but with a different initial
condition and an equivalent scheduling policy. This connec-
tion is made by carrying out a sample-path queueing argu-
ment and enables us to analytically quantify the delay gain
due to predictive scheduling for general multi-queue single-
server systems. Our result shows that for such systems, the
packet delay distribution is shifted-to-the-left under predic-
tive scheduling. Hence, the average delay necessarily de-
creases and approaches zero as the prediction window size
increases. Based on this result, we further propose a low-
complexity Predictive Backpressure (PBP) scheduling pol-
icy for utility maximization in such predictive systems. PBP

retains all desired features of the original Backpressure al-
gorithm [21], e.g., greedy, does not require statistical infor-
mation of the system dynamics, and has strong theoretical
performance guarantee. We prove that the PBP algorithm
can achieve an average cost that is O(ε) of the minimum cost
for any ε > 0, while guaranteeing an average delay that is
strictly smaller than that under the original Backpressure.
Hence, the resulting utility-delay tradeoff with predictive
scheduling can beat the known optimal [O(ε), O(log(1/ε))]

tradeoff for systems without prediction. We also demon-
strate analytically and numerically with real data trace that
when the first-in-first-out (FIFO) queueing discipline is used,
PBP achieves an average packet delay reduction that is linear
in the prediction window size, and that when the last-in-
first-out (LIFO) discipline is used, the average packet delay
under PBP decreases exponentially in the window size. These
results demonstrate the power of predictive scheduling and
provide explicit quantification of the benefits, which also
provides useful guidelines for predictive algorithm design.

The rest of the paper is organized as follows. In Section
2, we present our system model and problem formulation.
We develop the Predictive Backpressure (PBP) algorithm
in Section 3. The analysis of delay performance under gen-
eral predictive scheduling and PBP is given in Section 4. We
extend the results to predictable-only systems in Section 5.
Simulation results are presented in Section 6, followed by
the conclusions in Section 7.

2. SYSTEM MODEL
We consider a general multi-queue single-server system

shown in Fig. 1. In this system, a server serves N queues,
one for each user that utilizes the service of the server. 1

This multi-queue system has many applications. For in-
stance, it can be used to model downlink transmission in cel-
lular networks, where the server represents the base station
and the users are mobile users. Another example is a task
management system of smartphones, where each user repre-
sents an application and the server represents the operating
system that manages all computing workloads. We assume
that the system operates in slotted time, i.e., t ∈ {0, 1, ...}.

������

A1(t)

AN (t)

Q1(t)

QN (t)

Figure 1: A multi-queue system where a server is
serving workloads for different users/applications.

2.1 The Traffic Model
We use An(t) to denote the amount of new workload ar-

riving at the system at time t (called packets below). Here
the workload can represent newly arrived data units that
need to be delivered to their destinations, or new comput-
ing tasks that the server must fulfill eventually. We use
A(t) = (A1(t), ..., AN (t)) to denote the vector of arrivals at
time t. We assume that A(t) is i.i.d. with E

{
An(t)

}
= λn.

2 We also assume that for each n, 0 ≤ An(t) ≤ Amax.

2.2 The Service Rate Model

1Though we only consider a multi-queue system here, our
results can likely be extended to general multihop queueing
systems using the queue-equivalent results in Section 4.
2The arrivals can be arbitrarily correlated among different
users.

34

Every time slot, the server allocates power for serving the
pending packets. 3 However, due to the potential system dy-
namics, e.g., channel fading coefficient changes, serving dif-
ferent users at different time may result in different resource
consumption and generate different service rates. We model
this fact by assuming that the server connects to each user
n with a time-varying channel, whose state is denoted by
Sn(t). We then denote S(t) = (S1(t), ..., SN (t)) the system
link state. We assume that S(t) is i.i.d. and takes values
in {s1, ..., sK}. 4 We use πsi to denote the probability that
S(t) = si.

The server’s power allocation over link n at time t is de-
noted by Pn(t). We denote the aggregate system power
allocation vector by P (t) = (P1(t), ..., PN (t)). Under a
system link state si, we assume that the power allocation
vector P (t) must be chosen from some feasible power allo-

cation set P(si), which is compact and contains the con-
straint 0 ≤ Pn(t) ≤ Pmax. Then, under the given link
state S(t) and the power allocation vector P (t), the amount
of backlog that can be served for user n is determined by
µn(t) = µn(S(t),P (t)). We assume that µn(S(t),P (t)) is
a continuous function of P (t) for all S(t). Also, we assume
that there exists µmax such that µn(S(t),P (t)) ≤ µmax for
all n, all time t, and under any S(t) and P (t).

2.3 The Predictive Service Model
Different from most previous works, we assume that the

server can predict and serve future packet arrivals. Specifi-
cally, we first parameterize our prediction model by a vector
D = (D1, ..., DN), where Dn ≥ 1 is the prediction win-
dow size of user n. That is, at each time t, the server has
access to the arrival information in the lookahead window
{An(t), ..., An(t+Dn − 1)}, and can allocate rates to serve
the future arrivals in the current time slot. 5 Such a looka-
head window model approximates practical scenarios and
was also used in [18] and [23].

We then use {µ(d)
n (t)}Dn−1

d=0 to denote the rate allocated
to serving the arriving packets in time slot t + d and let

µ
(−1)
n (t) denote the rate allocated for serving the packets

that are already in the system. Note that we always have∑Dn−1
d=−1 µ

(d)
n (t) ≤ µn(t). Fig. 2 shows the slot structure and

the predictive service model.

slot t

Serve what is in
the queue

Serve arrivals in
slot t

Serve arrivals in
slot t+1

Serve arrivals in
slot t+2

slot t+1 slot t+2

service service servicearrival arrival arrival

Figure 2: The figure shows what happens in a single
time slot in the case of Dn = 3. The server predicts
and serves the arrivals in timeslots t, t+ 1 and t+ 2,
respectively.

3Our results can be extended to the case where the server
consumes multiple types of resources, e.g., power and CPU
cycles.
4Our results can easily be generalized to the case when both
arrivals and channel conditions are Markovian, using the
variable-size drift analysis developed in [22].
5Since we assume that the arrivals in a time slot can only be
served in the next slot, we also consider An(t) to be future
arrivals.

2.4 Queueing
Denote Qn(t) the number of packets queued at the server

for user n. We assume the following queueing dynamics:

Qn(t+ 1) =

[
Qn(t)− µ(−1)

n (t)

]+
+A(−1)

n (t). (1)

Here A
(−1)
n (t) denotes the number of packets that actually

enter the queue after going through a series of predictive
service phases, i.e., for all −1 ≤ d ≤ Dn − 2,

A(d)
n (t) = [A(d+1)

n (t)− µ(d+1)
n (t− d− 1)]+, (2)

and A
(Dn−1)
n (t) = An(t). In this paper, we say that the

system is stable if the following condition holds:

Qav , lim sup
t→∞

1

t

t−1∑
τ=0

∑
n

E
{
Qn(τ)

}
<∞. (3)

2.5 System Objective
In every time slot, the server spends certain cost due to

power expenditure. We denote this cost by f(S(t),P (t)).
One simple example is f(S(t),P (t)) =

∑
n Pn(t), which de-

notes the total power consumption. We assume that un-
der any state S(t), there exists a constant fmax such that
f(S(t),P (t)) ≤ fmax. The special case when f(S(t),P (t))
is independent of P (t) corresponds to the stability schedul-
ing problem [21].

The system’s objective is to find a power allocation and
scheduling scheme for minimizing the time average cost, de-
fined as:

fav , lim sup
t→∞

1

t

t−1∑
τ=0

E
{
f(τ)

}
, (4)

subject to the constraint that the queues in the system must
be stable, i.e., (3) holds. We use fD∗

av to denote the mini-
mum average cost under any feasible predictive scheduling
algorithm with prediction vector D, i.e., those that predict
the arrivals for Dn slots and allocates service rates to serving
the arrivals within the window [t, t + Dn − 1] for each user
n. We then use f∗av to denote the minimum average power
consumption incurred under any non-predictive scheduling
policy.

2.6 Discussion of the Model
Note that the lookahead-window model is an idealized

model which assumes that the system can perfectly predict
future arrivals. Because of this, our results can be viewed
as upper bounds of the fundamental benefit of predictive
scheduling, which provide important criteria for evaluating
predictive control algorithms. We also investigate the im-
pact of prediction error in Section 6.

We also note that our model is very different from previ-
ous controlled queueing system works, which almost all as-
sume that the system operates in a causal manner, i.e., only
serves packets after they arrive at the system. Our model is
motivated by pre-fetching techniques used in memory man-
agement [4], branch prediction in computer architecture [6],
as well as recent advancement in data mining for learning
user behavior patterns [3].

Our model is most relevant for modeling problems where
future workload can be predicted and served before they
enter the system. One such application scenario is in mo-
bile networks, where the base station handles users’ demand.

35

Since each user typically requests certain news information
at specific times, e.g., 7am in the morning. Instead of wait-
ing for the all the users to submit their requests at the same
time, which can lead to a large service latency and high
power consumption, one can “push” some information to the
users beforehand at times when the link condition is good.

Without such predictive control, the cost minimization
problem has been extensively studied and algorithms have
been proposed, e.g., [10]. However, very little is known
about the fundamental impact of prediction on system per-
formance, let alone finding optimal control policies for such
predictive queueing systems. Moreover, due to the existence
of prediction windows and the fact that arrival processes
are stochastic, the system naturally evolves according to a
Markov chain whose state space size grows exponentially in
the prediction window size. Thus, this problem is very chal-
lenging to solve.

3. PREDICTIVE BACKPRESSURE
In this section, we present our algorithm, which is de-

signed by efficiently incorporating prediction information
into the Backpressure technique [21]. Note that since future
arrival information is made available in a sliding-window
form, prediction couples the current action with future ar-
rivals in every time slot. This prohibits the use of frame-
based Lyapunov technique [22], and makes the problem com-
plicated. Fortunately, as we will see, with the development
of a novel queue-equivalence result, one can incorporate pre-
diction into system control cleanly and significantly reduce
the complexity in both algorithm design and analysis.

3.1 Prediction Queues
For our algorithm development and analysis, we now in-

troduce the notion of a prediction queue, which records the
number of residual arrivals in every slot in time window

[t, t+Dn− 1]. Specifically, we denote Q
(d)
n (t) the number of

remaining arrivals currently in future slot t+ d, i.e., d slots

into the future, and denote Q
(−1)
n (t) the number of pack-

ets already in the system. We see then the queues evolve
according to the following dynamics:

1. If d = Dn − 1, then:

Q(d)
n (t+ 1) = An(t+Dn). (5)

2. If 0 ≤ d ≤ Dn − 2, then:

Q(d)
n (t+ 1) =

[
Q(d+1)
n (t)− µ(d+1)

n (t)
]+
. (6)

3. For Q
(−1)
n (t), we have:

Q(−1)
n (t+ 1) (7)

=

[
Q(−1)
n (t)− µ(−1)

n (t)

]+
+
[
Q(0)
n (t)− µ(0)

n (t)
]+
,

with Q
(−1)
n (0) = 0.

Fig. 3 shows the definition of the prediction queues. One

can see that {Q(d)
n (t)}Dn−1

d=0 are not really queues. They sim-
ply record the residual arrivals going through the timeline,

whereas Q
(−1)
n (t) records the true backlog in the system.

Notice that Q
(−1)
n (t) is exactly the same as Qn(t) in (1).

Since Q
(−1)
n (t) is the only actual queue, the system is stable

if and only if Q
(−1)
n (t) is stable.

µ(�1)
n (t)An(t + Dn)

Q(�1)
n (t)Q(Dn�1)

n (t) Q(0)
n (t)

Time t+Dn-1 Time t+1 Time t

µ(0)
n (t)µ(Dn�1)

n (t)

Figure 3: The prediction queues that describe the
system evolution.

3.2 Predictive Backpressure
Here we construct our algorithm based on the above pre-

diction queues and Backpressure. Our main idea is to use

the sum of all the queues Qsum
n ,

∑Dn−1
d=−1 Q

(d)
n (t) for decision

making.
To describe the algorithm in details, we define the notion

of queueing discipline for the predictive system, i.e., how to

select packets to serve from queues {Q(d)
n (t)}Dn−1

d=−1 . Specifi-

cally, we order the packets inQ
(d)
n (t) with labels p∑

d′<d Q
d′
n (t)+1,

..., p∑
d′≤d Q

d′
n (t). Then, all the packets in {Q(d)

n (t)}Dn−1
d=−1 are

ordered from p1 to pQsum
n (t). When a particular queueing dis-

cipline is applied in the predictive system, we select packets
to serve according to the discipline using the order of the
packets. For instance, if FIFO is used, then the server will
serve the packets p1, ..., pmin[µn(t),Qsum

n (t)] from the queues
every time. We now also define the notion of a fully-efficient
predictive scheduling policy.

Definition 1. A predictive scheduling policy is called fully-

efficient if for every user n, we have: (i)
∑
d µ

(d)
n (t) = µn(t),

and (ii) whenever there exists any −1 ≤ d ≤ Dn − 1 such

that µ
(d)
n (t) > Q

(d)
n (t), µd

′
n (t) ≥ Qd

′
n (t), ∀ d′ 6= d. 3

In other words, if a policy is fully-efficient, it will always
try to utilize all service opportunities and not allocate more
service rate to serve any queue unless all other queues are
already fully served. 6 Hence, it will not waste any service
opportunity unless there are more. With this definition, we
now present our algorithm, in which V ≥ 1 is a control
parameter used to tradeoff utility performance and system
delay (See Theorem 5).
Predictive Backpressure (PBP): In every time slot, com-

pute Qsum
n (t) =

∑Dn−1
d=−1 Q

(d)
n (t) for all n. Then, observe the

current channel state vector S(t) and perform:

• Choose the power allocation vector P (t) to solve the
following problem:

min : V f(S(t),P (t))−
∑
n

Qsum
n (t)µn(S(t),P (t)) (8)

s.t. P (t) ∈ P(S(t)). (9)

Then, allocate the service rates {µ(d)
n (t)}Dn−1

d=−1 to the

queues {Q(d)
n (t)}Dn−1

d=−1 in a fully-efficient manner ac-
cording to any pre-specified queueing discipline.

• Update the queues according to (5), (6) and (7). 3

Remark 1. Notice that the PBP algorithm has a very clean
format. Indeed, PBP can be viewed as weighting the predicted

6It is equivalent to work-conserving in queue scheduling.

36

future arrivals for different users into current system con-
trol. It is worth emphasizing that such a low-complexity al-
gorithm is not possible without the use of prediction queues
and the Backpressure technique.

4. PERFORMANCE ANALYSIS
In this section, we first present an important theorem

which states that if a predictive scheduling policy is fully-
efficient, then the queueing system under the scheme evolves
in the exact same way as a non-predictive queueing system
with delayed arrivals and a different initial queue state. Us-
ing this queue-equivalence result, we obtain an interesting
delay distribution shifting theorem. After that, we present
our delay analysis for the PBP algorithm.

4.1 Performance of Fully-Efficient Scheduling
Policies

We start by presenting the theorem regarding the equiv-
alence between predictive and non-predictive systems.

Theorem 1. Let Q̂n(t) be the queue size of a single queue

system that (i) has Q̂n(0) =
∑Dn−1
t=0 An(t), (ii) has arrival

Ân(t) = An(t+Dn), (ii) has service µ̂n(t) =
∑Dn−1
d=−1 µ

(d)
n (t),

and (iv) evolves according to:

Q̂n(t+ 1) =

[
Q̂n(t)− µ̂n(t)

]+
+ Ân(t). (10)

Then, if the predictive system uses a fully-efficient predic-
tive scheduling policy (with any queueing discipline) with

Q
(−1)
n (0) = 0 for all n, we have for all t that:

Qsum
n (t) = Q̂n(t), ∀ n. 3. (11)

Proof. See Appendix A.

Theorem 1 provides an important connection between the
predictive system and the system without prediction. Using
this result, we derive the following theorem, which relates
the delay distribution of the predictive system to the equiv-
alent system without prediction.

Theorem 2. (Delay Distribution Shifting) Denote π
(Dn)
n,k

the steady-state probability that a user n packet experiences
a delay of k slots under a fully-efficient predictive schedul-
ing policy in the predictive system, and let π̂n,k denote the
steady-state probability that a user n packet experiences a k-

slot delay in Q̂n(t). Suppose the set of queues {Q(d)
n (t)}Dn−1

d=−1

and Q̂n(t) use the same queueing discipline. Then, we have
for each queue n that:

π
(Dn)
n,0 =

Dn∑
k=0

π̂n,k and π
(Dn)
n,k = π̂n,k+Dn , k ≥ 1. (12)

That is, the distribution of the original queue can be viewed
as “shifted to the left by Dn slots” under predictive scheduling
with Dn-slot prediction. 3

Proof. See Appendix B.

Note that Theorem 2 is important for the general framework
of predictive scheduling. It allows us to compare scheduling
with prediction with the original queueing system, and en-
ables us to leverage existing results in queueing theory for

analyzing predictive systems. To formalize this idea, first no-
tice that if we start with Q̂n(0) = 0 and have Ân(t) = An(t),

then Q̂n(t) becomes exactly the same as the queueing pro-
cess in the original system without prediction. Thus, if the
steady-state behavior of Q̂n(t) does not depend on the initial
condition and the shift of the arrival process, e.g., a G/G/1
queue [24], then the delay performance of the predictive sys-
tem can be understood by studying the delay distribution
of the original system without prediction.

Corollary 1. Suppose {Q(d)
n (t)}Dn−1

d=−1 and Q̂n(t) use the
same queueing discipline. For any arrival and service pro-
cesses under which the delay distribution of Q̂n(t) does not

depend on Q̂n(0) and the shift in the arrival process, we
have:

π
(Dn)
n,0 =

Dn∑
k=0

πn,k and π
(Dn)
n,k = πn,k+Dn , k ≥ 1. (13)

Here πn,k is the steady-state probability that a user n packet
experiences a delay of k slots in the system without predic-
tion. 3

Note that Corollary 1 applies to general multi-queue single-
server systems where the steady-state behavior depends only
on the statistical behavior of the arrival and service pro-
cesses. Note that (13) also quantifies how tail delay changes
with predictive scheduling. Specifically, we now have in the
predictive system that:

Pr
{

Delayn > K
}

=
∑
k>K

πn,k+Dn . (14)

This is often exponentially smaller compared to that under
the non-predictive system (see the simulation section).

With Theorem 2, we can now quantify how much delay im-
provement one can obtain via predictive scheduling. This is
summarized in the following theorem, in which we use Wtot

to denote the average delay of the original system without
prediction, i.e.,

Wtot =

∑N
n=1 λn

∑
k≥0 kπn,k∑N

n=1 λn
. (15)

Theorem 3. Suppose the conditions in Corollary 1 hold.
The delay reduction offered by predictive scheduling with pre-
diction window vector D, denoted by R(D), is given by:

R(D) =

∑N
n=1 λn

(∑
1≤k≤Dn

kπn,k +Dn
∑
k≥1 πn,k+Dn

)∑N
n=1 λn

. (16)

In particular, if Wtot <∞, the average system delay goes to
zero as Dn goes to infinity for all queue n, i.e.,

lim
D→∞

R(D) = Wtot. (17)

Here D →∞ means Dn →∞ for all n. 3

Proof. See Appendix C.

Note that Theorems 2 and 3, and Corollary 1 show that
systems with predictive scheduling can be analyzed by study-
ing the original system without prediction. Also note that
the above results hold under any queueing discipline. The
resulting delay distribution, of course, changes under differ-
ent disciplines. Hence, the results also provide an efficient
way for deciding how much prediction power is needed for

37

different systems under different control policies, e.g., if a
system has a delay distribution under which most packets
experience a delay of no more than D slots, then using a pre-
diction power of D slots suffices to reap most of the benefit of
predictive scheduling, and further investment on improving
prediction power can readily be saved.

4.2 Performance of PBP
In this section, we analyze the performance of PBP. We

will assume the following system slack condition: there exist

a set of power vectors and probabilities {P (si)
m , a

(si)
m }, and a

constant η > 0, such that:

λn −
∑
si

πsi

∞∑
m=0

a(si)m µn(si,P
(si)
m) ≤ −η, ∀n. (18)

Note that (18) is commonly assumed in stochastic queueing
system works and η ≥ 0 is necessary for system stability
[21]. The following theorem states that allowing predictive
scheduling does not change the optimal average cost.

Theorem 4. For any vector 0 �D ≺ ∞, we have:

fD∗
av = f∗av. 3 (19)

Proof. Omitted due to space limitation. Please see [25]
for proof details.

Theorem 4 is interesting and shows that predictive schedul-
ing does not reduce the minimum cost needed for system
stability. Instead, the theorem, together with Theorem 5 be-
low, deliver an important message that predictive scheduling
it improves the system delay given the same utility perfor-
mance.

We now have the following theorem, which shows that
PBP achieves an average power consumption that is within
O(1/V) of the minimum and guarantees an average conges-
tion bound.

Theorem 5. The PBP algorithm achieves the following:

f PBPav ≤ fD∗
av +

B

V
, Qsum

av = QBP
av =

B + V fmax

η
. (20)

Here B = N
2

(µ2
max +A2

max) is a constant independent of V ,
Qsum

av denotes the average expected queue size of
∑
nQ

sum
n (t),

and QBP
av denotes the average expected queue size of the non-

predictive system under Backpressure. 3

Proof. Omitted due to space limitation. Please see [25]
for proof details.

Theorem 5 is similar to the results in previous literature
of Backpressure, e.g., [21]. It states that the average size of∑
nQ

sum
n (t) is the same as QBP

av under Backpressure without
prediction. Since Qsum

n (t) is the total size of the actual queue
and the prediction queues, we see that the actual queue size
is strictly smaller than that under Backpressure. Since the
average queue size under PBP is finite, we can apply Theorem
3 to obtain the following immediate corollary.

Corollary 2. Suppose there exists a steady-state distri-
bution of the queue vector under PBP. Then, the average
delay under PBP goes to zero as D →∞. 3

Corollary 2 shows that with predictive scheduling, it is
possible to achieve an O(1/V) performance with an average

delay that is smaller than O(log(V)). This is fundamen-
tally different from the non-predictive case, in which the
best utility-delay tradeoff is [O(1/V), O(log(V))] [9]. It is
also tempting to analyze the exact delay reduction offered
by PBP. However, due to the complex queueing dynamics
under Backpressure, it is challenging to compute the exact
distributions πn,k even without prediction. Thus, in the
following, we consider a general class of cost-minimization
problems, and study the delay reduction due to prediction
in this case. For stating the results, we define the following
optimization problem:

max : g(γ), s.t. γ � 0, (21)

where g(γ) is defined as:

g(γ) =
∑
si

πsi inf
P

(si)
m ∈P(si)

{
V f(si,P

(si)
m) (22)

+
∑
n

γn[λn − µn(si,P
(si)
m)]

}
.

We now state our theorem regarding the average backlog
reduction due to predictive scheduling. In the theorem, we
use γ∗ to denote an optimal solution of (21).

Theorem 6. Suppose (i) γ∗ = Θ(V) > 0 is unique, (ii)
the η-slack condition (18) is satisfied with η > 0, (iii) the
dual function g(γ) satisfies:

g(γ∗) ≥ g(γ) + L||γ∗ − γ||, ∀ γ � 0, (23)

for some constant L > 0 independent of V , (iv) there exists
a steady-state distribution of Qsum(t) under PBP, (v) Dn =
O(1

Amax
[γ∗n −G−K(log(V))2 − µmax]+) for all n, and (iv)

FIFO is used. Then, under PBP with a sufficiently large V ,
we have:

Q(−1)
av ≤ QBP

av −
∑
n

Dn
(
λn −O(

1

V log(V)
)
)+
. 3 (24)

Proof. See Appendix D.

As shown in [15], conditions (i)-(iii) in Theorem 6 are satis-
fied in many practical network optimization problems, espe-
cially when the power allocation sets {P(si)}Mi=1 are finite.
In this case, queue vector Q(t) = (Q1(t), ..., QN (t)) mostly
stays close to the fixed point γ∗ [15]. Using Little’s theorem,
Theorem 6 implies that the system delay is reduced roughly
linearly in the prediction window size Dn. Note that the lin-
ear reduction in Dn is due to the use of the FIFO discipline
and the fact that Dn is constrained. In the case when Dn
is larger than O(1

Amax
[γ∗V n −G−K(log(V))2 − µmax]+), or

when LIFO is used, we observe that packet delay decreases
exponentially in Dn (see Section 6).

5. PREDICTABLE-ONLY ARRIVAL
Here we discuss how PBP can also be applied (with slight

modification) to the case when arrivals can only be pre-
dicted but not pre-served. The idea is to first pretend that
the predictable-only traffic can also be pre-served, and then
construct the algorithm and show that pre-serving rarely
happens.
Predictable− Only PBP (POPBP): In every time slot, run

PBP. In addition, for each queue n, do:

• (Marking) Mark all packets in {Q(d)
n (t)}Dn−1

d=0 served in
the current time slot as mistaken packets.

38

• (Dropping) Drop all mistaken packets when they enter

Q
(−1)
n (t). 3

Here “run PBP” means carrying out all the steps in PBP in-
cluding choosing and implementing actions, and updating

queue values. Note that {Q(d)
n (t)}Dn−1

d=0 do not exactly cor-
respond to the number of remaining future arrivals, as they
are not served under POPBP. Instead, they are equal to the
number of future arrivals excluding the mistaken packets.

The performance of POPBP is summarized as follows.

Theorem 7. Suppose the conditions in Theorem 6 hold.
Then, under POPBP with a sufficiently large V , we have:

f POPBPav ≤ fD∗
av +

B

V
, (25)

Q(−1)
av ≤ QBP

av −
∑
n

Dn
(
λn −O(

1

V log(V)
)
)+
. (26)

Moreover, the average packet dropping rate is O(1

V log(V)). 3

Proof. Omitted due to space limitation. Please see [25]
for proof details.

6. SIMULATION
We present simulation results of the PBP algorithm in this

section in a 10-user system.

6.1 Parameters and Settings
Real Data Trace: We collected data from 10 different

mobile users in a 12-day long period (over five-minute in-
tervals). The data for each user represents the aggregate
amount of mobile traffic (over all applications) that is de-
livered by the base station to the user in that slot. Fig. 4
shows the traffic of a single user and the aggregate traffic of
all users in 12 days. In the simulations, we take the traf-
fic data as the workload arriving at the system which needs
delivered by the server to different users.

0 2 4 6 8 10 12
0

20

40

60

80

Time (day)

Tr
aff

ic
(K

B)

0 2 4 6 8 10 12
0

0.4

0.8

1.2

Time (day)

Tr
aff

ic
(M

B)

Figure 4: Left: The mobile traffic delivered by the
base station to a single user. Right: The aggregate
mobile traffic delivered by the base station to 10 dif-
ferent users.

Channel, Power and Prediction: For each user n, we
assume that the channel condition Sn(t) takes values {1, 2}
with equal probabilities, and Pn(t) ∈ P(Sn) , {0, 5, 10}. We
assume that at any time, only one channel receives nonzero
power allocation. The service rate is given by µn(t) =
b100 log(1+Sn(t)Pn(t))cKB/s. The cost function f(S(t),P (t))
is set to be

∑
n Pn(t), which denotes the total power con-

sumption. We set Dn = ρ ∗ 5 for all n. Then, we simu-
late the cases ρ ∈ {1, 3, 5, 10} to see the effect of the pre-

dictive scheduling. We simulate the algorithm with V ∈
{1, 5, 10, 20, 50, 100}.

6.2 Performance of PBP
Fig. 5 shows the performance of PBP with FIFO queueing

policy. We see from the left plot that the average power
consumption decreases as V increases. The right plot shows
the average backlog under PBP. It is not hard to see that the
average system backlog scales as O(V). One also sees that
as the prediction window sizes increase, the network delay
decreases linearly in D.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

V
0 20 40 60 80 100

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

V

BP
PBP − 5 prediction
PBP − 15 prediction
PBP − 25 prediction
PBP − 50 prediction

Avg Power Consumption Avg Queue Size (MB)

Figure 5: Performance of PBP. Left: Average power
consumption under PBP. Right: Average queue size
under PBP with different prediction window sizes.

Fig. 6 shows the delay distribution under PBP for the set-
ting with V = 100 and ρ = 1. We see that the distributions
of the latency for queue n are shifted to the left by Dn, as
shown in Theorem 2. It can also be verified that Corollary
1 holds.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Delay

Fr
ac

tio
n

BP
PBP − 5 prediction

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Delay

Fr
ac

tio
n

BP
PBP − 5 prediction

Queue 2 Queue 10

Figure 6: Packet delay distribution under PBP with
FIFO scheduling with V = 100 and Dn = 5 for all n.
We see that predictive scheduling effectively shifts
the distribution to the left by 5 slots for both queues.

Fig. 7 then shows the delay distribution under PBP and the
original Backpressure, under the LIFO discipline. It can be
verified that the distribution for the predictive system is also
a left-shifted version of the one under Backpressure. We see
that large fractions of packets experience zero delay in both

queues, i.e., they are served before they arrive at Q
(−1)
n (t).

This is so because under LIFO Backpressure (no prediction),
most packets roughly experience (log(V))2 delay. Thus, with
a moderate size prediction window size, the server can serve
most packets before they enter the system. Since we use
a log-scale for the x-axis, we do not plot the fraction for
packets that have zero delay. Instead, we show the numbers

39

in the plot. We see that, 69% of the packets for queue 2
are served before they enter the system, whereas 73% of the
packets are served for queue 10. These results demonstrate
the power of predictive scheduling on delay reduction.

100 101 1020

0.05

0.1

0.15

0.2

0.25

Delay

Fr
ac

tio
n

BP
PBP − 5 prediction

100 101 1020

0.05

0.1

0.15

0.2

0.25

Delay

Fr
ac

tio
n

BP
PBP − 5 prediction

Queue 2 Queue 10

PBP: π0
2(5)=0.69 PBP: π0

10(5)=0.73

Figure 7: Packet Delay distribution under PBP with
LIFO scheduling (V = 100 and Dn = 5 for all n). We
see that a large fraction of the packets now experi-
ence zero delay! This is because with a moderate
size prediction window, most packets are served be-

fore they arrive at Q
(−1)
n (t). In the plots, πn0 (Dn) de-

notes the fraction of packets experience zero delay.

6.3 Impact of Imperfect Prediction
To investigate the impact of imperfect prediction, we con-

sider two types of prediction errors. The first type is failing
to predict actual arrivals, i.e., miss detection. When it hap-
pens, the arrivals will be out of the system’s vision and thus
will not appear in prediction queues. Therefore, they cannot
be served predictively. The other type is false alarm, which
happens when the system mistakenly predicts the existence
of non-existing arrivals. Such false arrivals will appear in
prediction queues, but will not enter the system. However,
the system may incorrectly allocate resources to serve them,
resulting in wasted service opportunities.

We model miss detections and false alarms as follows.
Each time unit, q fraction of the request arrivals are miss
detections, and 1−p

p
fraction of the rest request arrivals are

false alarms (p ≥ 0.5). Therefore, fraction 1−q
p

of all pre-
dicted requests are actual arrivals, which can be served be-
forehand. Larger q means more miss detections, and smaller
p means more false alarms in the system. For perfect pre-
diction, q = 0 and p = 1. We simulate three different
settings: (q = 0.5, p = 0.95), (q = 0.05, p = 0, 75) and
(q = 0.2, p = 0.85). The first setting corresponds to the case
when the prediction mechanism works very conservatively,
which leads to very few false alarms but many miss detec-
tions. The second setting corresponds to the case where the
prediction mechanism works very aggressively and results in
few miss detections but many false alarms. The third setting
is in-between.

As discussed above, Q
(d)
n (t) (0 ≤ d ≤ Dn − 1) may now

contain false alarms besides real arrivals, and the fraction
of false alarms is 1 − p on average. Thus, the effective

queue size of Q
(d)
n (t) (the number of real arrivals) is p ·

Q
(d)
n (t). Therefore, in the PBP algorithm, we use Q

(−1)
n (t) +

p
∑Dn−1
d=0 ·Q(d)

n (t) as the weight in (8) instead of
∑Dn−1
d=−1 Q

(d)
n (t).

Fig. 8 shows the performance of PBP with FIFO queue-
ing policy under imperfect prediction when Dn = 5 for all
n. We see that PBP still improves the delay performance

while at the same time keeping a good power performance.
This is because that the chance that PBP serves future ar-
rivals is decreased when V increases. Therefore, the impact
of prediction errors on the utility performance of PBP is re-
duced, showing that PBP is robust against prediction error.
Compared to PBP with perfect prediction, prediction errors
increase the average backlog of the system and thus the av-
erage delay. This is intuitive since miss detections cannot
be served beforehand and false alarms waste service oppor-
tunities. We also observe that the delay performance of PBP
is more sensitive to miss detections. This is because miss
detections enter the system directly and may increase the
system backlog.

0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

4

V

BP
PBP(q=0.5,p=0.95)
PBP(q=0.05,p=0.75)
PBP(q=0.2,p=0.85)

0 20 40 60 80 100
1

1.2

1.4

1.6

1.8

2

2.2

V

BP
PBP(q=0.5,p=0.95)
PBP(q=0.05,p=0.75)
PBP(q=0.2,p=0.85)
PBP(q=0,p=1)

Avg Power Consumption Avg Queue Size (MB)

Figure 8: Performance of PBP under imperfect pre-
diction when Dn = 5 for all n. Left: Average
power consumption under different prediction er-
rors. Right: Average queue size under different pre-
diction errors.

7. CONCLUSION
In this paper, we investigate the fundamental benefit of

predictive scheduling in controlled queueing systems. Based
on a lookahead prediction window model, we establish a
novel queue-equivalence result, which enables exact analysis
of queueing systems under predictive scheduling using tra-
ditional queueing network control techniques. We then pro-
pose the Predictive Backpressure (PBP) algorithm, and show
that PBP achieves a cost performance that is arbitrarily close
to the optimal, while guaranteeing that the average system
delay vanishes as the prediction window size increases. Our
results can also be used to determine the required prediction
power and analyze the tail delay reduction improvement.

8. ACKNOWLEDGEMENT
This work was supported in part by the National Basic Re-

search Program of China Grant 2011CBA00300, 2011CBA00301,
the National Natural Science Foundation of China Grant
61033001, 61361136003, 61303195, and the China youth 1000-
talent grant. It was also partially supported by the Univer-
sity Grants Committee of the Hong Kong Special Admin-
istrative Region, China (Area of Excellence Grant Project
No. AoE/E-02/08 and General Research Fund Project No.
411011), and Chancellor’s Fellowship and NSF grant CNS1147930.

Appendix A – Proof of Theorem 1
Here we prove Theorem 1.

Proof. (Theorem 1) We prove the result by induction
with the aid of the following figure showing the evolution of
Q̂n(t).

First, we see that the the result holds for t = 0: On one
hand, Q̂n(0) =

∑Dn−1
t=0 An(t). On the other hand, in the

40

µn(t)Ân(t) = An(t + Dn)
Q̂n(t)

Figure 9: The original queue without prediction and
with a delayed arrival process as well as a different
initial queue state.

system under predictive scheduling, since Q
(−1)
n (0) = 0 and

Q
(d)
n (0) = An(d) for d ∈ {0, ..., Dn − 1}, we have Qsum

n (0) =∑Dn−1
t=0 An(t).
Now suppose the result holds for all t = 0, ..., k, we show

that it holds for t = k+1. Using the queueing dynamic equa-
tion (10), we know that in time slot k, µ̃n(k) = min[µn(k), Q̂n(k)]

packets will be served from Q̂n(k). Now consider the queues

{Q(d)
n (k)}Dn−1

d=−1 . Since the scheduling policy is fully-efficient,
we must have that the number of packets served from these
queues is also µ̃n(k) = min[µn(k), Q̂n(k)]. To see this, note
that if µ̃n(k) = µn(k), there are more packets in the queues
than the number of packets that can be served. In this case,

we must have µ
(d)
n (k) ≤ Q(d)

n (k) for all d. Also, because the

policy is fully-efficient, we have
∑
d µ

(d)
n (k) = µn(k). Hence,

exactly µn(k) packets will be served from {Q(d)
n (k)}Dn−1

d=−1 , re-

sulting in Q̂n(k+1) = Qsum
n (k+1). On the other hand, sup-

pose µ̃n(k) = Q̂n(k). Then, there are enough service oppor-
tunities to clear all the awaiting packets. In this case, since
the scheduling policy is fully-efficient, exactly Q̂n(k) packets

will be served. Thus, in both cases, we have Q̂n(k + 1) =
Qsum
n (k + 1) = An(k +Dn).

Appendix B – Proof of Theorem 2
Here we prove Theorem 2.

Proof. (Theorem 2) From Theorem 1, we see thatQsum
n (t) =

Q̂n(t) for all time. Hence, if the two queueing systems use
the same queueing discipline in choosing what packets to
serve, then every packet will experience the exact same de-

lay in both Q̂n(t) and {Q(d)
n (t)}Dn−1

d=−1 .
However, in Qsum

n (t), a packet will enter the actual system
only after spending one unit of time in each of the queues

in {Q(d)
n (k)}Dn−1

d=0 , which takes exactly Dn slots in total.
Thus, any packet experiencing a k-slot delay will experience

[k − Dn]+ delay in Q
(−1)
n (t). This completes the proof of

Theorem 2.

Appendix C – Proof of Theorem 3
We prove Theorem 3 here.

Proof. (Theorem 3) Using Corollary 1, we see that in
the predictive system, the average system backlog size is
given by:

NP
tot =

N∑
n=1

λn
∑
k≥1

kπn,k+Dn . (27)

On the other hand, the average system backlog without pre-
diction is given by:

Ntot =

N∑
n=1

λn
∑
k≥1

kπn,k. (28)

Using (28) and (27), we conclude that:

Ntot −NP
tot =

N∑
n=1

λn

(∑
1≤k≤Dn

kπn,k +Dn
∑
k≥1

πn,k+Dn

)
. (29)

Using Little’s theorem and dividing both sides by
∑
n λn,

we see that (16) follows.
Now we prove (17). By taking a limit as D →∞, we first

obtain:

lim
D→∞

∑
n

λn
∑

1≤k≤Dn

kπn,k = Ntot. (30)

Then, using the fact that Wtot <∞, we have:

lim
Dn→∞

Dn
∑
k≥1

πn,k+Dn = 0, ∀ n. (31)

Using the above in (16), we see that (17) follows.

Appendix D – Proof of Theorem 6
We prove Theorem 6. For our proof, we use the following
theorem (which is Theorem 1 in [15]), in which γ∗ denotes
an optimal solution of (21). According to [15], γ∗ is either
Θ(V) or 0.

Theorem 8. Suppose (i) γ∗ is unique, (ii) the η-slack
condition (18) is satisfied with η > 0, (iii) the function g(γ)
satisfies:

g(γ∗) ≥ g(γ) + L||γ∗ − γ||, ∀ γ � 0, (32)

for some constant L > 0 independent of V . Then, under
Backpressure, there exist constants G,K, c = Θ(1), i.e., all
independent of V , such that for any m ∈ R+,

P(r)(G,Km) ≤ ce−m, (33)

where P(r)(G,Km) is defined:

P(r)(G,Km) (34)

, lim sup
t→∞

1

t

t−1∑
τ=0

Pr
{
∃n, |Qn(τ)− γ∗n| > G+Km

}
. 3

Proof. See [15].

We are now ready to present the proof of Theorem 6.

Proof. (Theorem 6) We prove the results using Little’s
theorem. The main idea is to show that the average system
queue length is roughly reduced by

∑
n λnDn. To prove

this, we show that the average total service rate allocated to
the prediction queues is O(1

V log(V)). Then, the average rate

of the packets that go through {Q(d)
n (t)}Dn−1

d=0 will roughly
be λn, and so the average queue size is reduced by roughly∑
n λnDn.
First, using (11) and (33), we see that in steady state,

Pr
{
|Qsum

n (t)− γ∗n| > G+Km
}
≤ ce−m.

Using the fact that Qsum
n (t) =

∑Dn−1
d=−1 Q

(d)
n (t), we have:

Pr
{
Q(−1)
n (t) < γ∗n −G−Km−

Dn−1∑
d=0

Q(d)
n (t)

}
≤ ce−m.

Now let m = (log(V))2. Since γ∗n = Θ(V), we see that when
V is sufficiently large, we have:

γ∗n −G−Km−
∑
d

Q(d)
n (t)

41

= Θ(V)−G−K(log(V))2 −
∑
d

Q(d)
n (t)

(a)

≥ Θ(V)−G−K(log(V))2 −DnAmax

(b)

≥ µmax. (35)

Here (a) follows from the fact that Q
(d)
n (t) ≤ Amax for all 0 ≤

d ≤ Dn − 1, and in (b) we use the fact that V is sufficiently
large and Dn = O(1

Amax
[γ∗n−G−K(log(V))2−µmax]+) for

all n. This shows that the probability for Q
(−1)
n (t) to go

below µmax is at most ce−(log(V))2 = c

V log(V) .
Using the fact that under the FIFO queueing discipline, a

prediction queue Q
(d)
n (t) will be served only when Q

(−1)
n (t) <

µmax, we conclude that the average service rate allocated to
the prediction queues is no more than cµmax

V log(V) . Hence, the
average traffic rate of the packets that traverse all predic-

tion queues and eventually enter Q
(−1)
n (t) is at least [λn −

cµmax

V log(V)]+. Since every packet stays 1 slot in every predic-
tion queue, using Little’s theorem, we conclude that the av-

erage size of the prediction queues, denoted by
∑Dn−1
d=0 Q

(d)

n

satisfies
∑Dn−1
d=0 Q

(d)

n ≥
(
λn − cµmax

V log(V)

)+
Dn. Hence, (24)

follows.

9. REFERENCES
[1] M. Maia, J. Almeida, and V. Almeida. Identifying

user behavior in online social networks. Proceedings of
the 1st Workshop on Social Network Systems, pages
1-6, 2008.

[2] I. Weber and A. Jaimes. Who uses web search for
what? and how? Web Search and Data Mining
(WSDM), pages 21-30, 2011.

[3] R. Kumar and A. Tomkins. A characterization of
online browsing behavior. Proceedings of the 19th
interna- tional conference on World Wide Web, pages
561-570, 2010.

[4] V. N. Padmanabhan and J. C. Mogul. Using
predictive prefetching to improve world wide web
latency. ACM SIGCOMM Computer Communication
Review, Volume 26, Issue 3, Pages 22-36, July 1996.

[5] J. Lee, H. Kim, and R. Vuduc. When prefetching

works, when it doesnÕt, and why. ACM Transactions
on Architecture and Code Optimization (TACO),
Volume 9, Issue 1, March 2012.

[6] T. Ball and J. R. Larus. Branch prediction for free.
Proceedings of the Conference on Programming
Language Design and Implementation, ACM
SIGPLAN Notices, volume 28, pages 300-13, 1993.

[7] M. U. Farooq, Khubaib, and L. K. John.
Store-load-branch (slb) predictor: A compiler assisted
branch prediction for data dependent branches.
Proceedings of the 19th IEEE International
Symposium on High-Performance Computer
Architecture (HPCA), February 2013.

[8] R. Berry and R. Gallager. Communication over fading
channels with delay constraints. IEEE Transactions
on Information Theory, vol. 48, no. 5, pp. 1135-1149,
May 2002.

[9] M. J. Neely. Optimal energy and delay tradeoffs for
multi-user wireless downlinks. IEEE Transactions on

Information Theory vol. 53, no. 9, pp. 3095-3113,
Sept. 2007.

[10] M. J. Neely. Energy optimal control for time-varying
wireless networks. IEEE Transactions on Information
Theory 52(7): 2915-2934, July 2006.

[11] A. C. Fu, E. Modiano, and J. N. Tsitsiklis. Optimal
energy allocation and admission control for
communications satellites. IEEE/ACM Transactions
on Networking, vol. 11, no. 3, pp. 488-500, 2003.

[12] M. A. Zafer and E Modiano. A calculus approach to
energy-efficient data transmission with
quality-of-service constraints. IEEE/ACM
Transactions on Networking, 17(3), 898–911, 2009.

[13] C. W. Tan, D. P. Palomar, and M. Chiang.
Energy-robustness tradeoff in cellular network power
control. IEEE/ACM Transactions on Networking, Vol.
17, No. 3, pp. 912-925, 2009.

[14] M. J. Neely. Super-fast delay tradeoffs for utility
optimal fair scheduling in wireless networks. IEEE
Journal on Selected Areas in Communications
(JSAC), Special Issue on Nonlinear Optimization of
Communication Systems, vol. 24, no. 8, pp.
1489-1501, Aug. 2006.

[15] L. Huang and M. J. Neely. Delay reduction via
Lagrange multipliers in stochastic network
optimization. IEEE Trans. on Automatic Control,
Volume 56, Issue 4, pp. 842-857, April 2011.

[16] J. Tadrous, A. Eryilmaz, and H. El Gamal. Proactive
resource allocation: harnessing the diversity and
multicast gains. IEEE Tansactions on Information
Theory, 2013.

[17] J. Tadrous, A. Eryilmaz, and H. El Gamal. Pricing for
demand shaping and proactive download in smart
data networks. The 2nd IEEE International Workshop
on Smart Data Pricing (SDP), INFOCOM, 2013.

[18] J. Spencer, M. Sudan, and K Xu. Queueing with
future information. ArXiv Technical Report
arxiv:1211.0618, 2012.

[19] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and
M. J. Neely. Data centers power reduction: A two
time scale approach for delay tolerant workloads. USC
CS Technical Report 11-9020, 2011.

[20] I. Hou and P.R. Kumar. Broadcasting
delay-constrained traffic over unreliable wireless links
with network coding. Proceedings of MobiHoc, 2011.

[21] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource
Allocation and Cross-Layer Control in Wireless
Networks. Foundations and Trends in Networking Vol.
1, no. 1, pp. 1-144, 2006.

[22] L. Huang and M. J. Neely. Max-weight achieves the
exact [O(1/V), O(V)] utility-delay tradeoff under
Markov dynamics. arXiv:1008.0200v1, 2010.

[23] A. Wierman M. Lin, Z. Liu and L. Andrew. Online
algorithms for geographical load balancing.
International Green Computing Conference (IGCC),
2012.

[24] R. G. Gallager. Discrete Stochastic Processes. Kluwer
Academic Publishers, 1996.

[25] L. Huang, S. Zhang, M. Chen, and X. Liu. When
Backpressure meets Predictive Scheduling. arXiv
Technical Report, arXiv:1309.1110v1.

42

