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ABSTRACT
This paper considers max-min fair rate allocation and rout-
ing in energy harvesting networks where fairness is required
among both the nodes and the time slots. Unlike most pre-
vious work on fairness, we focus on multihop topologies and
consider different routing methods. We assume a predictable
energy profile and focus on the design of efficient and opti-
mal algorithms that can serve as benchmarks for distributed
and approximate algorithms. We first develop an algorithm
that obtains a max-min fair rate assignment for any given
(time-variable or time-invariable) unsplittable routing or a
routing tree. For time-invariable unsplittable routing, we
also develop an algorithm that finds routes that maximize
the minimum rate assigned to any node in any slot. For
fractional routing, we study the joint routing and rate as-
signment problem. We develop an algorithm for the time-
invariable case with constant rates. We show that the time-
variable case is at least as hard as the 2-commodity feasible
flow problem and design an FPTAS to combat the high run-
ning time. Finally, we show that finding a max-min fair
unsplittable routing or a routing tree is NP-hard, even for a
time horizon of a single slot. Our analysis provides insights
into the problem structure and can be applied to other re-
lated fairness problems.
Categories and Subject Descriptors: C.2.1. [Computer-
Communication Networks]: Network Architecture and De-
sign — Wireless Communication
Keywords: Energy Harvesting; Energy Adaptive Network-
ing; Sensor Networks; Routing; Fairness

1. INTRODUCTION
Recent advances in the development of ultra-low-power

transceivers and energy harvesting devices (e.g., solar cells)
will enable self-sustainable and perpetual wireless networks
[12,13]. In contrast to legacy wireless sensor networks, where
the available energy only decreases as the nodes sense and
forward data, in energy harvesting networks the available
energy can also increase through a replenishment process.
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Figure 1: A simple energy harvesting network: the
nodes sense the environment and forward the data
to a sink s. Each node has a battery of capacity B.
At time t a node i’s battery level is bi,t, it harvests
ei,t units of energy, and senses at data rate λi,t.

As a result, the available energy is a more complex quantity,
thereby posing challenges in the design of resource allocation
and routing algorithms.

Two natural conditions that a network should satisfy are:
(i) balanced data acquisition over all the parts of the net-
work, and (ii) persistent operation (i.e., even when the en-
vironmental energy is not available for harvesting). Condi-
tion (i) is commonly reinforced by requiring fairness of the
sensing rates over network nodes. One approach to achiev-
ing (ii) is by assigning constant sensing rates to the nodes.
However, this approach can result in underutilization of the
available energy. As a simple example, consider a node that
harvests outdoor light energy over a 24-hour time horizon.
If the battery capacity is small, then the sensing rate must
be low to prevent battery depletion during the nighttime.
However, during the daytime, when the harvesting rates are
high, a low sensing rate prevents full utilization of the en-
ergy that can be harvested. Therefore, it is advantageous
to vary the sensing rates over time. However, fairness must
be required over time slots to prevent the rate assignment
algorithm from assigning high rates during periods of high
energy availability, and zero rates when no energy is avail-
able for harvesting.

The problems of resource allocation, scheduling, and rout-
ing in energy harvesting networks have received considerable
attention [2, 4, 10, 11, 14–16, 19, 20, 25, 29]. Much of the ex-
isting work considers simple networks consisting of a single
node or a link [2,4,11,14,25,29]. Moreover, fair rate assign-
ment has not been thoroughly studied, and most of the work
either focuses on maximizing the total (or average) through-
put [2,4,10,16,19,22,25,29], or considers fairness either only
over nodes [20] or only over time [11, 14]. An exception
is [15], which requires fairness over both the nodes and the
time, but is limited to two nodes.

In this paper, we study the max-min fair rate assignment
and routing problems, requiring fairness over both nodes and
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(a) Routing tree. (b) Unsplittable routing. (c) Fractional routing.

Figure 2: Routing types: (a) a routing tree, (b) unsplittable routing: each node sends its data over one path,
(c) fractional routing: nodes can send their data over multiple paths. Paths are represented by dashed lines.

time slots, and with the goal of designing optimal and effi-
cient algorithms. Following [11, 14, 15, 19, 20], we assume
that the harvested energy is known for each node over a fi-
nite time horizon. Although there are settings that do not
conform to this assumption, the designed algorithms can be
used for: (i) determining (in an offline fashion) rate assign-
ment and routing in a network with a highly-predictable
energy profile, and (ii) benchmarking rate assignment and
routing solutions in networks with unpredictable energy pro-
files. We consider an energy harvesting sensor network with
a single sink node, and network connectivity modeled by a
directed graph (Fig. 1). Each node senses some data from
its surrounding (e.g., air pressure, temperature, radiation
level), and sends it to the sink. The nodes spend their en-
ergy on sensing, sending, and receiving data.

We consider different routing types, which are illustrated
in Fig. 2. Each routing type incurs different trade-offs be-
tween the supported sensing rates1 and the required amount
of control information. Routing types with higher number
of active links require more control information to be ex-
changed between neighboring nodes (e.g., to maintain syn-
chronization), and complicate the transmission and/or sleep-
wake scheduling implementation. Moreover, energy con-
sumed by the control messages can affect achievable rates
significantly, due to limited energy budget, as confirmed via
experiments in [13]. Below we outline the main characteris-
tics of the routing types we consider.

Routing Tree–the simplest form of routing, in which
every node sends all of the data it senses and receives to a
single neighboring (parent) node. It requires minimum num-
ber of active links, yielding minimum energy consumption
due to control messages. However, in general, it provides
the lowest sensing rates (see more details below).

Unsplittable Routing–a single-path routing, in which
every node sends all of its sensed data over a single path to
the sink (a routing tree is a special case of the unsplittable
routing, in which all the paths incoming into node i outgo
via the same edge). There are simple cases in which unsplit-
table routing provides a rate assignment with the minimum
sensing rate Ω(n) times higher than in a routing tree, where
n is the number of nodes [23]. However, in general, it has
higher number of active links than the routing tree, yielding
higher energy consumption for control information.

Fractional Routing–a multi-path routing, in which each
node can split its data over multiple paths to the sink (un-
splittable routing is a special case of fractional routing in
which every node has one path to the sink). It is the most
general routing that subsumes both routing trees and un-
splittable routings, and, therefore, provides the best sensing
rates. However, it utilizes the highest number of links, yield-
ing the highest energy consumption due to control messages.

1A metric of performance can be the minimum sensing rate
that is assigned to any node in any time slot.

Time-invariable vs Time-variable Routing– A rout-
ing is time-invariable, if every node uses the same (set of)
path(s) in each time slot to send its data to the sink. If
the paths change over time, the routing is time-variable.2

While there are cases in which time-variable routing pro-
vides a rate assignment with the minimum sensing rate Ω(n)
times higher than in the time-invariable case [23], it requires
substantial control information exchange for routing recon-
figurations, yielding high energy consumption.

For the unsplittable routing and routing tree, we design a
fully-combinatorial algorithm that solves the max-min fair
rate assignment problem, both in the time-variable and time-
invariable settings, when the routing is provided at the in-
put. We then turn to fractional routing, considering two
settings: time-variable and time-invariable. We demonstrate
that in the time-variable setting verifying whether a given
rate assignment is feasible is at least as hard as solving a fea-
sible 2-commodity flow. This result implies that, to our cur-
rent knowledge, it is unlikely that max-min fair time-variable
fractional routing3 can be solved without the use of linear
programming. To combat the high running time induced by
the linear programming, we develop a fully polynomial time
approximation scheme (FPTAS). For the time-invariable
setting, we provide a fully-combinatorial algorithm that de-
termines a max-min fair routing with constant rates.

We show that determining a max-min fair unsplittable
routing or a routing tree is NP-hard even for a single time
slot. Relaxing the max-min fairness requirement, we develop
an algorithm that determines a time-invariable unsplittable
routing that maximizes the minimum sensing rate assigned
to any node in any time slot.

The considered problems generalize classical max-min fair
routing problems that have been studied outside the area of
energy harvesting networks: max-min fair fractional rout-
ing [24], max-min fair unsplittable routing [18], and bot-
tleneck routing [3]. In contrast to the problems studied
in [3,18,24], our model allows different costs for flow gener-
ation and forwarding, and has time-variable node capacities
determined by the available energies at the nodes. We note
that studying networks with node capacities is as general as
studying networks with capacitated edges, since there are
standard methods for transforming one of these two prob-
lems into another (see, e.g., [1]). Therefore, we believe that
the results can find applications in other related areas.

The rest of the paper is organized as follows. Section
2 provides the model and problem formulations, which are
placed in the context of related work in Section 3. Section 4

2Whether the rates are constant or time-variable is indepen-
dent of whether the routing is time-variable or not.
3We refer to a routing as max-min fair if it provides the
lexicographically maximum rate assignment. The notions
of max-min fairness and lexicographic maximization are de-
fined in Section 4.
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Table 1: Nomenclature.
in

p
u
ts

n Number of energy harvesting nodes
T Time horizon
B Battery capacity
bi,1 Initial battery level at node i
ei,t Harvested energy at node i in time slot t
cs Energy spent for sensing a unit flow
ctx Energy spent for transmitting a unit flow
crx Energy spent for receiving a unit flow

v
a
r
ia
b
le
s λi,t Sensing rate of node i in time slot t

fij,t Flow on link (i, j) in time slot t

bi,t+1
Battery level at node i at the beginning of
time slot t+ 1

n
o
ta

ti
o
n

i Node index, i ∈ {1, 2, ...n}
t Time index, t ∈ {1, 2, ..., T}
cst

Energy spent for jointly sensing and transmit-
ting a unit flow: cst = cs + ctx

crt
Energy spent for jointly receiving and trans-
mitting a unit flow: crt = crx + ctx

fΣ
i,t

Total flow entering node i in time slot t:
fΣ
i,t =

∑
j:(j,i)∈E fji,t

describes the connection between max-min fairness and le-
xicographic maximization. Section 5 considers rate assign-
ment in unsplittable routing, while Sections 6 and 7 study
fractional routing and rate assignment in time-variable and
time-invariable settings. Section 8 provides hardness results
for determining unsplittable routing or a routing tree. Sec-
tion 9 concludes the paper. Due to space constraints, most
of the proofs are deferred to the technical report [23].

2. MODEL AND PROBLEM FORMULATION
We consider a network that consists of n energy harvest-

ing nodes and one sink node (see Fig. 1). The sink is the
central point at which all the sensed data is collected, and
is assumed not to be energy constrained. In the rest of the
paper, the term “sink” will be used for the sink node. The
connectivity between the nodes is modeled by a directed
graph G = (V,E), where |V |= n+ 1 (n nodes and the sink),
and |E|= m. The main notation is summarized in Table 1.

Each node is equipped with a rechargeable battery of finite
capacity B. The time horizon is T time slots. The duration
of a time slot is assumed to be much longer than the duration
of a single data packet, but short enough so that the rate
of energy harvesting does not change during a slot. For
example, if outdoor light energy is harvested, one time slot
can be at the order of a minute. In a time slot t, a node i
harvests ei,t units of energy. The battery level of a node i at
the beginning of a time slot t is bi,t. We follow a predictable
energy profile [11,14,15,19,20], and assume that the battery
capacity B, initial battery levels bi,1, and harvested energies
ei,t are known and finite, for i ∈ {1, ..., n}, t ∈ {1, ..., T}.

A node i in slot t senses data at rate λi,t. A node forwards
all the data it senses and receives towards the sink. The flow
on a link (i, j) in slot t is denoted by fij,t. Each node spends
cs energy units to sense a unit flow, and ctx, respectively crx,
energy units to transmit, respectively receive, a unit flow.

The feasible region R for the sensing rates and flows is
determined by the following set of linear constraints:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

fΣ
i,t + λi,t =

∑
(i,j)∈E

fij,t, (1)

bi,t+1 = min{B, bi,t + ei,t − (crtf
Σ
i,t + cstλi,t)}, (2)

bi,t+1 ≥ 0, λi,t ≥ 0, fij,t ≥ 0,∀(i, j) ∈ E, (3)

where fΣ
i,t ≡

∑
(j,i)∈E fji,t, cst ≡ cs +ctx, and crt ≡ crx +ctx.

Eq. (1) is a classical flow conservation constraint, while (2)
models battery evolution over time slots.4

Similar to the definition of max-min fairness in [3], we
define a rate assignment {λi,t}, i ∈ {1, ..., n}, t ∈ {1, ..., T},
to be max-min fair if no λi,t can be increased without either
losing feasibility or decreasing some other rate λj,τ ≤ λi,t.

In some of the problems, the routing is provided at the
input as a set of paths P = {pi,t}, for i ∈ {1, ..., n}, t ∈
{1, ..., T}. In such a case, R should be interpreted with
respect to P, instead with respect to the input graph G.
Considered problems (see Table 1 for inputs and vari-
ables). We examine different routing types, in time-variable
and time-invariable settings, as described in the introduc-
tion. For the unsplittable routing and routing trees, we ex-
amine the problems of determining a rate assignment and
determining a routing separately, as described below.

P-Unsplittable-Rates: For a given time-variable un-
splittable routing P = {pi,t}, determine the max-min fair
assignment of the rates {λi,t}. Note that this setting sub-
sumes time-invariable unsplittable routing, time-invariable
routing tree, and time-variable routing tree.

P-Unsplittable-Find: Associate with each (time-invari-
able or time-variable) unsplittable routing P, a set of sensing
rates {λPi,t} that optimally solves P-Unsplittable-Rates.
Determine an unsplittable routing P that provides the lexi-
cographically maximum5 rate assignment {λPi,t}.

P-Tree-Find: Let T denote a (time-invariable or time-
variable) routing tree on the input graph G. Associate with
each T a set of sensing rates {λTi,t} that optimally solves
P-Unsplittable-Rates. Determine T that provides the
lexicographically maximum rate assignment {λTi,t}.

For the fractional routing, we study the following two vari-
ants of max-min fair routing, where the routing and the rate
assignment are determined jointly.

P-Fractional: Determine a time-variable fractional rout-
ing with the max-min fair rate assignment {λi,t}.

P-Fixed-Fractional: Determine a time-invariable frac-
tional routing with the max-min fair rate assignment {λi,t} =
{λi}, when the sensing rates are constant over time.

3. RELATED WORK
Energy-harvesting Networks. Rate assignment in en-
ergy harvesting networks in the case of a single node or a
link was studied in [2, 4, 11,14,25,29].

Resource allocation and scheduling for network-wide sce-
narios using Lyapunov optimization techniques was studied
in [10,16,22]. While the work in [10,16,22] can support un-
predictable energy profiles, it focuses on the (sum-utility of)
time-average rates, which is, in general, time-unfair. The de-
sign of online algorithms for resource allocation and routing
was studied in [9, 19].

Max-min time-fair rate assignment for a single node or
a link was studied in [11, 14], while max-min fair energy
allocation for single-hop and two-hop scenarios was studied
in [15]. Similar to our work, [15] requires fairness over both
the nodes and the time slots, but considers only two energy

4Eq. (2) is considered as a linear constraint, since for max-
imizing λi,t’s it can be replaced by bi,t+1 ≤ B and bi,t+1 ≤
bi,t + ei,t − (crtf

Σ
i,t + cstλi,t).

5Lexicographical ordering of vectors is defined in Section 4.
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harvesting nodes. The work on max-min fairness in network-
wide scenarios [20] is explained in more detail below.
Sensor Networks. Problems P-Fractional, P-Fixed-
Fractional, and P-Unsplittable-Rates are related to
the maximum lifetime routing problems (see, e.g., [6,21] and
the follow-up work) in the following sense. In our model,
maximization of the minimum sensing rate is equivalent to
the network lifetime maximization in sensor networks, but
only if the system is observed for T = 1. Namely, the nodes
have the initial energy, and no harvesting happens over time.

Determining a maximum lifetime tree in sensor networks
as in [5] is a special case of P-Tree-Find. We extend the
NP-hardness result from [5] and provide a lower bound of
Ω(logn) for the approximation ratio (for both [5] and P-
Tree-Find), where n is the number of nodes in the network.
Max-min Fair Unsplittable Routing. Rate assignment
in unsplittable routing was studied extensively (see [3,7] and
references therein). P-Unsplittable-Rates reduces to the
problem studied in [3, 7] for cst = 0, crt > 0, and T = 1.
In the energy harvesting network setting, this problem has
been studied in [20], for rates that are constant over time and
a time-invariable routing tree. We consider a more general
case than in [20], where the rates are time-variable, fairness
is required over both network nodes and time slots, and
the routing can be time-variable and given in a form of an
unsplittable routing or a routing tree.

Determining a max-min fair unsplittable routing as stud-
ied in [18] is a special case of P-Unsplittable-Find for
cst = 0, crt > 0, and T = 1, and the NP-hardness re-
sults from [18] implies the NP-hardness of P-Unsplittable-
Find.
Max-min Fair Fractional Routing. Max-min fair frac-
tional routing was first studied in [24]. The algorithm from
[24] relies on the property that the total values of a max-
min fair flow and max flow are equal, which does not hold
even in simple instances of P-Fixed-Fractional and P-
Fractional. P-Fixed-Fractional and P-Fractional
reduce to the problem of [24] for cst = 0, crt > 0, and T = 1.

Max-min fair fractional routing in energy harvesting net-
works has been considered in [20]. The distributed algo-
rithm from [20] solves P-Fixed-Fractional, but only as a
heuristic. We provide a combinatorial algorithm that solves
P-Fixed-Fractional optimally in a centralized manner.

A general linear programming framework for max-min fair
routing was provided in [27], and extended to the setting of
sensor and energy harvesting networks in [8] and [20], respec-
tively. This framework, when applied to P-Fractional, is
highly inefficient. P-Fractional reduces to [8] for T = 1,
and to [20] when the rates are constant over time.

4. MAX-MIN FAIRNESS AND LEXICOGRA-
PHIC MAXIMIZATION

Recall that a rate assignment {λi,t}, i ∈ {1, ..., n}, t ∈
{1, ..., T}, is max-min fair if no rate λi,t can be increased
without either losing feasibility or decreasing some other rate
λj,τ ≤ λi,t. Closely related to the max-min fairness is the
notion of lexicographic maximization. The lexicographic or-
dering of vectors, with the relational operators denoted by
lex
= ,

lex
> , and

lex
< , is defined as follows:

Definition 4.1. Let u and v be two vectors of the same
length l, and let us and vs denote the vectors obtained from
u and v respectively by sorting their elements in the non-

decreasing order. Then: (i) u
lex
= v if us = vs element-

wise; (ii) u
lex
> v if there exists j ∈ {1, 2, ..., l}, such that

us(j) > vs(j), and us(1) = vs(1), ..., us(j − 1) = vs(j − 1) if

j > 1; (iii) u
lex
< v if not u

lex
= v nor u

lex
> v.

It was proved in [27] that a max-min fair allocation vector
exists on any convex and compact set. The results from
[28] state that in a given optimization problem whenever
a max-min fair vector exists, it is unique and equal to the
lexicographically maximum one.

In the problems P-Unsplittable-Rates, P-Fractional,
and P-Fixed-Fractional the feasible region R is deter-
mined by linear constraints (1)-(3), and it is therefore con-
vex. As we are assuming that all the input values B, ei,t,
and bi,1 are finite, it follows that the feasible region is also
bounded, and therefore compact. Therefore, for the afore-
mentioned problems, lexicographic maximization produces
the max-min fair assignment of the sensing rates {λi,t}.

Lexicographic maximization can be implemented using
the well-known water-filling framework (see, e.g., [3]):

Algorithm 1 Water-filling-Framework(G, b, e)

1: Set λi,t = 0 ∀i, t, and mark all the rates as not fixed.
2: Increase all the rates λi,t that are not fixed by the same

maximum amount, subject to the constraints from R.
3: Fix all the λi,t’s that cannot be further increased.
4: If all the rates are fixed, terminate. Else, go to step 2.

While the framework is well-known, it does not fully spec-
ify Steps 2 and 3. Implementation of these two steps is
the main challenge in solving P-Unsplittable-Rates, P-
Fractional, and P-Fixed-Fractional, for which we de-
velop algorithms in the following sections. We refer to the
algorithms that implement Steps 2 and 3 as Maximizing-
the-Rates and Fixing-the-Rates, respectively.
Note: A rate λi,t can in general get fixed in any iteration
of the Water-filling-Framework; there is no rule that
relates an iteration k to a node i or a time slot t.

5. RATES IN UNSPLITTABLE ROUTING
This section studies P-Unsplittable-Rates, the prob-

lem of rate assignment for an unsplittable routing provided
at the input. The analysis applies to any time-invariable or
time-variable unsplittable routing or a routing tree.

We assume that the routing over time t ∈ {1, ..., T} is
provided as a set of routing paths P = {pi,t} from a node i
to the sink s, for each node i ∈ V \{s}. We say that a node
j is a descendant of a node i in a time slot t if i ∈ pj,t.6

Before describing the algorithms in detail, we need to
introduce some notation. Let F ki,t = 1 if the rate λi,t is

not fixed at the beginning of the kth iteration of Water-
filling-Framework, F ki,t = 0 otherwise. Initially, F 1

i,t = 1,
∀i, t. If a rate λi,t is not fixed, we will say that it is “active”.
We will denote by Dk

i,t the number of active descendants of

the node i in the time slot t, whereD1
i,t = |{j : i ∈ pj,t\{j}}|.

Notice that Dk
i,t =

∑
j:i∈pj,t\{j} F

k
j,t. Finally, let λki,t de-

note the value of λi,t in the kth iteration of Water-filling-
Framework, and let λ0

i,t = 0, ∀i, t. Under this notation,

the rates can be expressed as λki,t =
∑k
l=1 F

l
i,tλ

l, where λl

6Notice that this is consistent with the definition of a de-
scendant in a routing tree.
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denotes the common amount by which all the active rates
get increased in the lth iteration.

5.1 Maximizing the Rates
Maximization of the common rate λk in kth iteration of

Water-filling-Framework can be formulated as follows:

max λk

s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

λki,t = λk−1
i,t + F ki,t · λk,

fΣ
i,t + λki,t =

∑
(i,j)∈E

fij,t,

bi,t+1 = min{B, bi,t + ei,t − (crtf
Σ
i,t + cstλ

k
i,t)},

bi,t ≥ 0, λk ≥ 0, fij,t ≥ 0,∀(i, j) ∈ E.
As in each slot t every node i sends all the flow it senses

over a single path, we can compute the total inflow into a
node i as the sum of the flows coming from i’s descendants:

fΣ
i,t =

∑
j:i∈pj,t\{j}

k∑
l=1

F lj,t · λl =
k∑
l=1

λl
∑

j:i∈pj,t\{j}
F lj,t

=
k∑
l=1

Dl
i,t · λl.

Denoting the battery levels in the iteration k as bki,t, the
problem can now be written more compactly as:

max λk

s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

bki,t+1 = min{B, bki,t + ei,t −
k∑
l=1

λl(crtD
l
i,t + cstF

l
i,t)},

bki,t ≥ 0, λk ≥ 0,

where ∀i ∀k : bki,1 = bi,1.
Define the battery drop for node i in slot t and iteration k

as: ∆bki,t =
∑k
l=1 λ

l(crtD
l
i,t+cstF

l
i,t), setting ∆b0i,t = 0. The

intuition is: to determine the battery levels in all the time
slots, we only need to know the initial battery level and how
much energy (∆bi,t) is spent per time slot. This results in:

max λk

s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

∆bki,t = ∆bk−1
i,t + λk(crtD

k
i,t + cstF

k
i,t),

bki,t+1 = min{B, bki,t + ei,t −∆bki,t},

bki,t ≥ 0, λk ≥ 0.

Writing the problem for each node independently, we can
solve the following subproblem:

max λki (4)

s.t. ∀t ∈ {1, ..., T} :

∆bki,t = ∆bk−1
i,t + λki (crtD

k
i,t + cstF

k
i,t), (5)

bki,t+1 = min{B, bki,t + ei,t −∆bki,t}, (6)

bki,t ≥ 0, λki ≥ 0, (7)

for each i with
∑
i,t F

k
i,t > 0, and determine λk = mini λ

k
i .

Notice that we can bound each λki by the interval [0, λkmax,i],

where λkmax,i is the rate for which node i spends all its avail-
able energy in the first slot τ in which its rate is not fixed:

λkmax,i =
bk−1
i,τ + ei,τ

crtDk
i,τ + cst

, τ = min{t : F ki,t = 1}.

The subproblem of determining λki can now be solved by
performing a binary search in the interval [0, λkmax,i].

Let δ denote the precision of the input variables. Note that
however small, δ can usually be expressed as a constant.
Lemma 5.1. Maximizing-the-Rates in P-Unsplittable-
Find can be implemented in time O

(
T
∑
i log

(
λkmax,i/δ

))
=

O (nT log ((B + maxi,t ei,t)/(δcst))).

5.2 Fixing the Rates
Recall that the elements of the matrix F k are such that

F ki,t = 0 if the rate λi,t is fixed for the iteration k, and F ki,t =

1 otherwise. At the end of iteration k ≥ 1, let F k+1 = F k,
and consider the following set of rules for fixing the rates:

(F1) For all (i, t) such that bki,t+1 = 0 set F k+1
i,t = 0.

(F2) For all (i, t) such that bki,t+1 = 0 determine the longest
sequence (i, t), (i, t− 1), (i, t− 2), ..., (i, τ), τ ≥ 1, with
the property that bki,s + ei,s − ∆bki,s ≤ B ∀s ∈ {t, t −
1, ..., τ}, and set F k+1

i,s = 0 ∀s.
(F3) For all (i, t) for which the rules (F1) and (F2) have set

F k+1
i,t = 0, and for all j such that i ∈ pj,t, set F k+1

j,t = 0.

The correctness of the rules (F1)-(F3) is proved via the
following two lemmas.
Lemma 5.2. (Necessity) No rate fixed by the rules (F1),
(F2) and (F3) can be increased in the next iteration without
violating feasibility constraints.

Proof. We first make the following two observations. When
bki,t+1 = 0, then, from (6):

bki,t+1 = min{B, bki,t + ei,t − (crt
∑

j:i∈pj,t\{j}
λkj,t + cstλ

k
i,t)}

= bki,t + ei,t − (crt
∑

j:i∈pj,t\{j}
λkj,t + cstλ

k
i,t) = 0. (8)

For bki,t+1 = 0, let (i, t), (i, t − 1), (i, t − 2), ..., (i, τ), τ ≥ 1,

be the longest sequence with the property that: bki,s + ei,s−
∆bki,s ≤ B ∀s ∈ {t, t−1, ..., τ}. Then ∀s ∈ {τ, τ+1, ..., t−1}:

bki,s+1 = bki,s + ei,s − (crt
∑

j:i∈pj,t\{j}
λkj,s + cstλ

k
i,s).

This is a recursive relation on s, so we can write bi,t+1 as:

bki,t+1 = bki,τ +
t∑

s=τ

ei,s−
t∑

s=τ

(crt
∑

j:i∈pj,t\{j}
λkj,s−cstλki,s). (9)

The rest of the proof is by induction on iteration k.
The base case. In the first iteration, λ1

i,t = λ1, ∀i, t.
Suppose b1i,t+1 = 0 for some i, t. From (8), if λi,t is increased,

either b1i,t+1 < 0, or some λj,t, with i ∈ pj,t\{j}, must be
decreased. In the former, feasibility is lost. In the latter,
max-min fairness does not hold. Similarly if λj,t, with i ∈
pj,t\{j} is increased. This proves rule (F1), and rule (F3)
for the descendants of node i in time slot t.

Now, for b1i,t+1 = 0, let (i, t), (i, t−1), (i, t−2), ..., (i, τ), τ ≥
1, be the longest sequence with the property that: bki,s+ei,s−
∆bki,s ≤ B ∀s ∈ {t, t− 1, ..., τ}. From (9), if any of the rates

λi,s, or λj,s, with i ∈ pj,s\{j} is increased, either b1i,t+1 < 0,
or some other rate from (9) needs to be decreased, which
violates the max-min fairness, since all the rates are equal.
This proves rule (F2), and completes the proof for rule (F3).

The inductive step. Observe that:
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(o1) λj,t ≤ λi,t, ∀j : i ∈ pj,t, as all the rates, until fixed, get
increased by the same amount in each iteration, and
once a rate gets fixed for some (i, t), by the rule (F3),
it gets fixed for all the (j, t) with i ∈ pj,t\{j}. The
inequality is strict only if λj,t got fixed before λi,t.

(o2) Once fixed, a rate never becomes active again.

(o3) If a rate λi,t gets fixed in iteration k, then λi,t = λki,t =∑k
p=1 λ

p = λli,t, ∀l ≥ k.

Suppose that bki,t+1 = 0 for some i ∈ {1, .., n}, t ∈ {1, ..., T}.
If F ki,t = 0, then by the inductive hypothesis λi,t cannot be

further increased in any future iteration. Assume F ki,t = 1.

By (o1), λkj,t ≤ λki,t, ∀j such that i ∈ pj,t\{j}, where the

inequality holds with equality if F kj,t = 0. Therefore, from
(8), if we increase λi,t in some of the future iterations, either
bi,t+1 < 0, or we need to decrease some λj,t ≤ λi,t, violating
the max-min fairness condition. This proves the necessity
of the rule (F1). For the rule (F3), as for all (j, t) with
F kj,t = 1, i ∈ pj,t\{j}, we have λj,t = λi,t, none of the i’s
descendants can further increase its rate in the slot t.

Now for (i, t) such that bki,t+1 = 0, let (i, t), (i, t−1), (i, t−
2), ..., (i, τ), τ ≥ 1, be the longest sequence with the prop-
erty that: bki,s + ei,s − ∆bki,s ≤ B ∀s ∈ {t, t − 1, ..., τ}. If
any of the rates appearing in (9) was fixed in some pre-
vious iteration, then it cannot be further increased by the
inductive hypothesis. By the observation (o1), all the rates
that are active are equal, and all the rates that are fixed are
strictly lower than the active rates. Therefore, by increasing
any of the active rates from (9), we either violate battery
nonnegativity constraint or the max-min fairness condition.
Therefore, rule (F2) holds, and rule (F3) holds for all the
descendants of nodes whose rates got fixed by the rule (F2),
in the corresponding time slots.

Lemma 5.3. (Sufficiency) If F k+1
i,t = 1, then λi,t can be

further increased by a positive amount in the iteration k+1,
∀i ∈ {1, ..., n}, ∀t ∈ {1, ..., T}.
Proof. Suppose that F k+1

i,t = 1. Notice that by increasing
λi,t by some ∆λi,t node i spends an additional ∆bi,t =
cst∆λi,t energy only in the time slot t. As F k+1

i,t = 1, by

the rules (F1) and (F2), either bi,t′ > 0 ∀t′ > t, or there is a

time slot s > t such that bki,s + ei,s −∆bki,s > B and s < s′,
where s′ = arg min {τ > t : bi,τ = 0}.

If bi,t′ > 0 ∀t′ > t, then the node i can spend ∆bi,t =

mint+1≤t′≤T+1 b
k
i,t′ energy, and keep bi,t′ ≥ 0, ∀t′, which

follows from the battery evolution equation (6).
If there is a slot s′ > t in which bki,s′ = 0, then let s be the

minimum time slot between t and s′, such that bki,s + ei,s −
∆bki,s > B. Decreasing the battery level at s by (bki,s+ei,s−
∆bki,s)−B does not influence any other battery levels, as in
either case bi,s+1 = B. As all the battery levels are positive
in all the time slots between t and s, i can spend at least
min{(bki,s + ei,s −∆bki,s)− B, mint+1≤t′≤s b

k
i,t′} energy at

the time t and have bi,t′ ≥ 0 ∀t′.
By the rule (F3), ∀j such that j ∈ pi,t we have that

bj,t > 0, and, furthermore, if ∃s′ > t with bj,s′ = 0 then

∃s ∈ {t, s′} such that bki,s + ei,s − ∆bki,s > B. By the
same observations as for the node i, each j ∈ pi,t can spend
some extra energy ∆bj,t > 0 in the time slot t and keep
all the battery levels nonnegative. In other words, there is
a directed path from the node i to the sink on which ev-
ery node can spend some extra energy in time slot t and

keep its battery levels nonnegative. Therefore, if we keep all
other rates fixed, the rate λi,t can be increased by ∆λi,t =
min{∆bi,t/cst,minj∈pi,t ∆bj,t/crt} > 0.

As each active rate λi,t can (alone) get increased in the
iteration k + 1 by some ∆λi,t > 0, it follows that all the
active rates can be increased simultaneously by at least
mini,t ∆λi,t/(T (cst + ncrt)) > 0.

Due to space constraints, the proofs are omitted in the
rest of the paper and can instead be found in [23].
Theorem 5.4. Fixing rules (F1), (F2) and (F3) provide
necessary and sufficient conditions for fixing the sensing rates
in Water-filling-Framework.

Lemma 5.5. The total running time of Fixing-the-Rates
in P-Unsplittable-Find is O(mT ).

Combining lemmas 5.1 and 5.5, we can compute the total
running time of Water-filling-Framework for P-Unsplit-
table-Find, as stated in the following lemma.
Lemma 5.6. Water-filling-Framework with Steps 2
Maximizing-the-Rates and 3 Fixing-the-Rates imple-
mented as described in Section 5 runs in time:

O

(
n2T 2 log

(
B + maxi,t ei,t

δcst

)
+ nmT 2

)
.

6. FRACTIONAL ROUTING
The feasible regionR for the rates and flows in P-Fractio-

nal can be described by the following constraints:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

fΣ
i,t + λi,t =

∑
(i,j)∈E

fij,t,

bi,t+1 = min{B, bi,t + ei,t − (crtf
Σ
i,t + cstλi,t)},

bi,t ≥ 0, λi,t ≥ 0, fij,t ≥ 0,∀(i, j) ∈ E,

where fΣ
i,t ≡

∑
(j,i)∈E fji,t.

Observe that we can avoid computing the values of battery
levels bi,t+1, and instead explicitly write the non-negativity
constraints for each of the terms inside the min. Reordering
the terms, we get the following formulation:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

fΣ
i,t + λi,t =

∑
(i,j)∈E

fij,t, (10)

t∑
τ=1

(crtf
Σ
i,τ + cstλi,t) ≤ bi,1 +

t∑
τ=1

ei,τ , (11)

t∑
τ=s

(crtf
Σ
i,τ + cstλi,t) ≤ B +

t∑
τ=s

ei,τ , 2 ≤ s ≤ t, (12)

λi,t ≥ 0, fij,t ≥ 0,∀(i, j) ∈ E. (13)

In the kth iteration of Water-filling-Framework we
have that λki,t = λk−1

i,t + F ki,t · λk =
∑k
l=1 F

l
i,t · λl, where

λ0
i,t = 0. Let:

ubi,t = bi,1+
t∑

τ=1

(ei,τ−cstλk−1
i,τ ), uBi,t,s = B+

t∑
τ=s

(ei,τ−cstλk−1
i,τ ).

Since in the iteration k all λk−1
i,t ’s are constants, the rate

maximization subproblem can be written as:

max λk (14)

s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

− fΣ
i,t − F ki,t · λk +

∑
(i,j)∈E

fij,t = λk−1
i,t , (15)
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t∑
τ=1

(crtf
Σ
i,τ + F ki,τ · cstλk) ≤ ubi,t, (16)

t∑
τ=s

(crtf
Σ
i,τ + F ki,τ · cstλk) ≤ uBi,t,s, 2 ≤ s ≤ t, (17)

λk ≥ 0, fij,t ≥ 0, ∀(i, j) ∈ E. (18)

Notice that in this formulation all the variables are on the
left-hand side of the constraints, whereas all the right-hand
sides are constant.

6.1 Relation to Multi-commodity Flow
Let T = 2, and observe the constraints (10)–(13). We

claim that verifying whether any set of sensing rates λi,t is
feasible is at least as hard as solving a 2-commodity feasible
flow problem with capacitated nodes and a single sink. To
prove the claim, we first rewrite (10)–(13) as:∑

(j,i)∈E
fji,t + λi,t =

∑
(i,j)∈E

fij,t, t ∈ {1, 2}

crt
∑

(j,i)∈E
fji,1 ≤ bi,1 + ei,1 − cstλi,1,

crt
2∑
τ=1

∑
(j,i)∈E

fji,τ ≤ bi,1 +
2∑
τ=1

(ei,τ − cstλi,τ ) ,

crt
∑

(j,i)∈E
fji,2 ≤ B + ei,2 − cstλi,2,

λi,t ≥ 0, fij,t ≥ 0, ∀i ∈ {1, ..., n}, (i, j) ∈ E, t ∈ {1, 2}.

Suppose that we are given any 2-commodity flow problem
with capacitated nodes7, and let:

• λi,t denote the supply of commodity t at node i;
• ui,t denote the per-commodity capacity constraint at node
i for commodity t;
• ui denote the bundle capacity constraint at node i.

Given λi,t, ui,t, and ui, for i ∈ {1, ..., n}, t ∈ {1, 2}, choose
values of cst, crt, B, bi,1, bi,2, ei,1, ei,2 so that the following
equalities are satisfied:

ui,1 = (bi,1 + ei,1 − cstλi,1) /crt,

ui,2 = (B + ei,2 − cstλi,2) /crt,

ui = (bi,1 +
2∑
τ=1

(ei,τ − cstλi,τ )) /crt.

Then feasibility of the given 2-commodity flow problem is
equivalent to the feasibility of (10)–(13). Therefore, any 2-
commodity feasible flow problem can be stated as an equiv-
alent problem of verifying feasibility of sensing rates λi,t in
an energy harvesting network for T = 2.

For T > 2, (11) and (12) are general packing constraints.
If a flow graph Gt in time slot t is observed as a flow of a
commodity indexed by t, then for each node i the constraints
(11) and (12) define capacity constraints for every sequence
of consecutive commodities s, s+ 1, ..., t, 1 ≤ s ≤ t ≤ T .

Therefore, to our current knowledge, it is unlikely that
the general rate assignment problem can be solved exactly
in polynomial time without the use of linear programming,
as there have not been any combinatorial algorithms that
solve feasible 2-commodity flow in directed graphs exactly.

6.2 Fractional Packing Approach
The fractional packing problem is defined as follows [26]:

Packing: Given a convex set P for which Ax ≥ 0 ∀x ∈ P ,

7For the definition of a multi-commodity flow, see e.g., [1].

is there a vector x such that Ax ≤ b? Here, A is a p × q
matrix, and x is a q-length vector.

A given vector x is an ε-approximate solution to the Pack-
ing problem if x ∈ P and Ax ≤ (1 + ε)b. Alternatively,
scaling all the constraints by 1

1+ε
, we obtain a solution x′ =

1
1+ε

x ∈ ( 1
1+ε

xOPT, xOPT] ⊂ ((1 − ε)xOPT, xOPT], for ε < 1,
where xOPT is an optimal solution to the packing problem.
The algorithm in [26] either provides an ε-approximate so-
lution to the Packing problem, or it proves that no such
solution exists. It’s running time depends on:

• The running time required to solve min{cx : x ∈ P},
where c = yTA, y is a given p-length vector, and (.)T

denotes the transpose of a vector.
• The width of P relative to Ax ≤ b, which is defined by
ρ = maxi maxx∈P

aix
bi

, where ai is the ith row of A, and

bi is the ith element of b.

For a given error parameter ε > 0, a feasible solution to
the problem min{β : Ax ≤ βb, x ∈ P}, its dual solution y,
and CP(y) = min{cx : c = yTA, x ∈ P}, [26] defines the
following relaxed optimality conditions:

(1− ε)βyT b ≤ yTAx (P1),

yTAx− CP(y) ≤ ε(yTAx+ βyT b) (P2).

The packing algorithm [26] is implemented through sub-
sequent calls to the procedure Improve-Packing:

Algorithm 2 Improve-Packing(x, ε) [26]

1: Initialize β0 = maxi aix/bi; α = 4β−1
0 ε−1 ln(2pε−1); σ =

ε/(4αρ).
2: while maxi aix/bi ≥ β0/2 and x, y do not satisfy (P2)

do
3: For each i = 1, 2, ..., p: set yi = (1/bi)e

αaix/bi .
4: Find a min-cost point x̃ ∈ P for costs c = yTA.
5: Update x = (1− σ)x+ σx̃.

6: return x.

The running time of the ε-approximation algorithm pro-
vided in [26], for ε ∈ (0, 1], equals O(ε−2ρ log(mε−1)) multi-
plied by the time needed to solve min{cx : c = yTA, x ∈ P}
and compute Ax (Theorem 2.5 in [26]).

6.2.1 Maximizing the Rates as Fractional Packing
We demonstrated at the beginning of this section that

for the kth iteration Maximize-the-Rates can be stated
as (14)-(18). Observe the constraints (16) and (17). Since
λk, fij,t and all the right-hand sides in (16) and (17) are
nonnegative, (16) and (17) imply the following inequalities:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

F ki,θ · cstλk ≤ ubi,t, 1 ≤ θ ≤ t,

F ki,θ · cstλk ≤ uBi,t,s, 2 ≤ s ≤ t, s ≤ θ ≤ t,

crt
∑

(j,i)∈E
fji,θ ≤ ubi,t − cst

t∑
τ=1

F ki,τλ
k, 1 ≤ θ ≤ t,

crt
∑

(j,i)∈E
fji,θ ≤ uBi,t,s − cst

t∑
τ=s

F ki,τλ
k, 2 ≤ s ≤ t, s ≤ θ ≤ t.

Therefore, we can yield an upper bound λkmax for λk:

λk ≤ λkmax ≡
1

cst
min
i,t,s≥2

{ubi,t :
t∑

τ=1

F ki,τ > 0, uBi,t,s :
t∑

τ=s

F ki,τ > 0}.
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For a fixed λk, the flow entering a node i at time slot t can
be bounded as:∑

(j,i)∈E
fji,t ≤ ui,t ≡

1

crt
min
i,t1≥t
s≥2

{ubi,t1 − cst
t1∑
τ=1

F ki,τλ
k, uBi,t,s − cst

t1∑
τ=s

F ki,τλ
k}.

We choose to keep only the flows fij,t as variables in the
Packing problem. Given a λk ∈ [0, λkmax], we define the
convex set P via the following set of constrains8:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

−
∑

(j,i)∈E
fji,t +

∑
(i,j)∈E

fij,t = λk−1
i,t + F ki,t · λk, (19)∑

(j,i)∈E
fji,t ≤ ui,t, (20)

fij,t ≥ 0, ∀(i, j) ∈ E. (21)

Proposition 6.1. For P described by (19) − (21) and a
given vector y, problem min{cf : c = yTAf, f ∈ P} reduces
to T min-cost flow problems.

The remaining packing constraints of the form Ax ≤ b are
given by (16) and (17), where x ≡ f .
Proposition 6.2. Ax ≥ 0 ∀f ∈ P .

Lemma 6.3. One iteration of Improve-Packing for P-
Fractional can be implemented in time

O
(
nT 2 + T ·MCF (n,m)

)
,

where MCF (n,m) denotes the running time of a min-cost
flow algorithm on a graph with n nodes and m edges.

Lemma 6.4. Width ρ of P relative to the packing con-
straints (16) and (17) is O(T ).

Lemma 6.5. Maximizing-the-Rates that uses packing al-
gorithm from [26] can be implemented in time: Õ(T 2ε−2 ·
(nT+MCF (n,m))), where Õ-notation ignores poly-log terms.

6.2.2 Fixing the Rates
As Maximizing-the-Rates described in previous subsec-

tion outputs an ε-approximate solution in each iteration, the
objective of the algorithm is not to output a max-min fair
solution anymore, but an ε-approximation. We consider the
following notion of approximation, as in [18]:
Definition 6.6. For a problem of lexicographic maximiza-
tion, say that a feasible solution given as a vector v is an
element-wise ε-approximate solution, if for vectors v and
vOPT sorted in nondecreasing order v ≥ (1−ε)vOPT component-
wise, where vOPT is an optimal solution to the given lexico-
graphic maximization problem.

Let ∆ be the smallest real number that can be represented
in a computer, and consider the algorithm that implements
Fixing-the-Rates as stated below.

Assume that Fixing-the-Rates does not change any of
the rates, but only determines what rates should be fixed
in the next iteration, i.e., it only makes (global) changes to
F k+1
i,t . Then:

Lemma 6.7. If the Steps 2 and 3 in the Water-filling-
Framework are implemented as Maximizing-the-Rates
and Fixing-the-Rates from this section, then the solution

8P is determined by linear equalities and inequalities, which
implies that it is convex.

Algorithm 3 Fixing-the-Rates

1: Solve the following linear program:
2: max

∑n
i=1 F

k
i,tλ

k
i,t

3: s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :
4: λki,t ≥ λk−1

i,t + F ki,t · λk,
5: λki,t ≤ λk−1

i,t + F ki,t ·
(
ελk−1
i,t + (1 + ε)λk + ∆

)
,

6: fΣ
i,t + λki,t =

∑
(i,j)∈E fij,t,

7: bi,t+1 = min
{
B, bi,t + ei,t −

(
crtf

Σ
i,t + cstλ

k
i,t

)}
,

8: bi,t ≥ 0, λki,t ≥ 0, fij,t ≥ 0.

9: Let F k+1
i,t = F ki,t, ∀i, t.

10: If λki,t < (1 + ε)(λk−1
i,t + F ki,t · λk) + ∆, set F k+1

i,t = 0.

output by the algorithm is an element-wise ε-approximate
solution to the lexicographic maximization of λi,t ∈ R.

Lemma 6.8. An FPTAS for P-Fractional can be imple-
mented in time:

Õ(nT (T 2ε−2 · (nT +MCF (n,m)) + LP (mT, nT ))),

where LP (mT, nT ) denotes the running time of a linear pro-
gram with mT variables and nT constraints, and MCF (n,m)
denotes the running time of a min-cost flow algorithm run
on a graph with n nodes and m edges.

Note: A linear programming framework as in [8, 20, 27]
when applied to P-Fractional would yield a running time
equal to O(n2T 2 · LP (mT, nT )). As the running time of an
iteration in our approach is dominated by LP (mT, nT ), the
improvement in running time is at least O(nT )-fold, at the
expense of providing an ε-approximation.

7. FIXED FRACTIONAL ROUTING
Suppose that we want to solve lexicographic maximization

of the rates keeping both the routing and the rates constant
over time. Observe that, as both the routing and the rates
do not change over time, the energy consumption per time
slot of each node i is also constant over time and equal to
∆bi = cstλi + crt

∑
(j,i)∈E fji.

Proposition 7.1. Maximum constant energy consumption

∆bi can be determined in time O(T log(
bi,1+ei,1

δ
)) for each

node i ∈ V \{s}, for the total time of O(nT log(
bi,1+ei,1

δ
)).

Similarly as in previous sections, let F ki = 0 if the rate i
is fixed at the beginning of iteration k, and F ki = 1 if it is
not. Initially: F 1

i = 1, ∀i. Rate maximization can then be
implemented as follows:

Algorithm 4 Maximizing-the-Rates(G,F k, b, e, k)

1: λkmax = 1
cst

mini{∆bi − cstλk−1
i : F ki = 1}.

2: repeat for λk ∈ [0, λkmax], via binary search:
3: Set the supply of node i to di = λk−1 + F ki λ

k, ca-
pacity of node i to ui = 1

crt
(∆bi − cstλk), for each i.

4: Set the demand of the sink to
∑
i di.

5: Solve feasible flow problem on G.
6: until λk takes maximum value for which the flow prob-

lem is feasible on G.

The remaining part of the algorithm is to determine which
rates should be fixed at the end of iteration k. We note that
in each iteration k, the maximization of the rates produces
a flow f in the graph Gk with the supply rates λki . Instead
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of having capacitated nodes, we can modify the input graph
by a standard procedure of splitting each node i into two
nodes i′ and i′′, and assigning the capacity of i to the edge
(i′, i′′). This allows us to obtain a residual graph Gr,k for
the given flow. We claim the following:
Lemma 7.2. The rate λi of a node i ∈ G can be further in-
creased in the iteration k+1 if and only if there is a directed
path from i to the sink node in Gr,k.

Lemma 7.3. Water-filling-Framework for P-Fixed-
Fractional can be implemented in time

O

(
n log

(
bi,1 + ei,1

δ

)
min(T,MF (n,m))

)
,

where MF (n,m) denotes the running time of a max-flow
algorithm for a graph with n nodes and m edges.

8. DETERMINING A ROUTING
In this section we demonstrate that solving P-Unsplit-

table-Find is NP-hard, and design an efficient combinato-
rial algorithm for a relaxed version of this problem–it deter-
mines a time-invariable unsplittable routing that maximizes
the minimum rate. For P-Tree-Find we show that it is NP-
hard to obtain an approximation ratio better than Ω(log n).

8.1 Unsplittable Routing
A simple extension of the NP-hardness proof for unsplit-

table routing studied in [18] can be used to show NP-hardness
of P-Unsplittable-Find for a single time slot, and we omit
the proof due to space constraints. This result implies that
P-Unsplittable-Find remains NP-hard for T > 1, regard-
less of whether the routing structure is allowed to change
over time slots or not.

However, determining a time-invariable unsplittable rout-
ing that guarantees the maximum value of the minimum
sensing rate over all time-invariable unplittable routings is
solvable in polynomial time, and we provide a combinatorial
algorithm that solves it below.

We first observe that in any time-invariable unsplittable
routing, if all the nodes are assigned the same sensing rate
λ, then every node i spends a fixed amount of energy ∆bi
per time slot equal to the energy spent for sensing and send-
ing own flow and for forwarding the flow coming from the
descendant nodes: ∆bi = λ (cst + crtDi,t).

The next property we use follows from the integrality of
the max flow problem with integral capacities (see, e.g., [1]).
This property was stated as a theorem in [17] for single-
source unsplittable flows, and we repeat it here for the equiv-
alent single-sink unsplittable flow problem:
Theorem 8.1. [17] Let G = (N,E) be a given graph with
the predetermined sink node s. If the supplies of all the nodes
in the network are from the set {0, λ}, λ > 0, and the capac-
ities of all the edges/nodes are integral multiples of λ, then:
if there is a fractional flow of value f , there is an unsplittable
flow of value at least f . Moreover, this unsplittable flow can
be found in polynomial time.

Note: For the setting of theorem 8.1, any augmenting-path
or push-relabel based max flow algorithm produces a flow
that is unsplittable, as a consequence of the integrality of
the solution produced by these algorithms. We will assume
that the used max-flow algorithm has this property.

The last property we need is that our problem can be
formulated in the setting of theorem 8.1. We observe that

for a given sensing rate λ, each node spends cstλ units of
energy for sensing, whereas the remaining energy can be
used for routing the flow originating at other nodes. There-
fore, for a given λ, we can set the supply of each node i
to λ, set its capacity to ui = (∆bi − cstλ)/crt (making sure
that ∆bi − cstλ ≥ 0), and observe the problem as the feasi-
ble flow problem. For any feasible unsplittable flow solution
with all the supplies equal to λ, we have that flow through
every edge/node equals the sum flow of all the routing paths
that contain that edge/node. As every path carries a flow
of value λ, the flow through every edge/node is an integral
multiple of λ. Therefore, to verify whether it is feasible to
have a sensing rate of λ at each node, it is enough to down-
round all the nodes’ capacities to the nearest multiple of λ:
ui = λ · b(∆bi − cstλ)/(crtλ)c, and apply the theorem 8.1.

An easy upper bound for λ is λmax = mini ∆bi/cst, which
follows from the battery nonnegativity constraint. The al-
gorithm becomes clear now:

Algorithm 5 Maxmin-Unsplittable-Routing(G, b, e)

1: Perform a binary search for λ ∈ [0, λmax].
2: For each λ chosen by the binary search set node supplies

to λ and node capacities to ui = λ·b(∆bi − cstλ)/(crtλ)c.
Solve feasible flow problem.

3: Return the maximum feasible λ.

Lemma 8.2. The running time of Maxmin-Unsplittable-
Routing is O(log(mini(bi,1 + ei,1)/(cstδ)) ·MF (n+ 1,m)),
where MF (n,m) is the running time of a max-flow algo-
rithm on an input graph with n nodes and m edges.

8.2 Routing Tree
If it was possible to find the (either time variable or time-

invariable) max-min fair routing tree in polynomial time for
any time horizon T , then the same result would follow for
T = 1. It follows that if P-Tree-Find NP-hard for T = 1,
it is also NP-hard for any T > 1. Therefore, we restrict our
attention to T = 1. In such a setting, determining a tree
with the maximum value of the minimum sensing rate is
equivalent to the maximum lifetime tree problem from [5].
The instance used in [5] for showing the NP-hardness of
the problem has the property that on that instance, at the
optimum, P-Tree-Find produces λ1 = λ2 = ... = λn = λ.
Therefore, P-Tree-Find is also NP-hard.

We state the following lower bound result without a proof,
and instead provide it in [23].
Theorem 8.3. The lower bound on the approximation ratio
of P-Tree-Find is Ω(logn).

9. CONCLUSIONS AND FUTURE WORK
This paper presents a comprehensive algorithmic study of

the max-min fair rate assignment and routing problems in
energy harvesting networks with predictable energy profile.
We develop algorithms for the Water-filling-Framework
implementation under various routing types. The running
times of the developed algorithms are summarized in Ta-
ble 2. The algorithms provide important insights into the
structure of the problems, and can serve as benchmarks for
evaluating distributed, online, and approximate algorithms.

The Water-filling-Framework does not specify how
to implement the Maximizing-the-Rates and Fixing-the-
Rates steps. Although general algorithms that implement
water-filling (e.g., [8, 20, 27]) can be adapted to solve P-
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Table 2: Running times of the algorithms for the Water-filling-Framework implementation.

Maximizing-the-Rates Fixing-the-Rates Total

P-Unsplittable-Find O
(
nT log

(
B+maxi,t ei,t

δcst

))
O(mT ) O

(
n2T 2 log

(
B+maxi,t ei,t

δcst

)
+ nmT 2

)
P-Fixed-Fractional O

(
n log

(
bi,1+ei,1

δ

)
min(T,MF (n,m))

)
O(m) O

(
n log

(
bi,1+ei,1

δ

)
min(T,MF (n,m))

)
P-Fractional Õ(T 2ε−2 · (nT +MCF (n,m))) LP (mT,nT ) Õ(nT (T 2ε−2 · (nT + MCF (n,m)) +

LP (mT, nT )))

Unsplittable-Rates, P-Fractional, and P-Fixed-Frac-
tional, their implementation would require solving a large
number of linear programs (LPs), each with a high number
of variables and constraints. This would result in a very
high running time. Moreover, such algorithms do not pro-
vide insights into the problem structure.

Our algorithms exploit the problem structure and in most
cases do not use linear programming. The only exception is
the algorithm for P-Fractional, which solves O(nT ) LPs
(an adaptation of [8, 20, 27] would need to solve O(n2T 2)
LPs). Furthermore, each LP in our solution searches over
much smaller space (only within the ε-region of the starting
point, for any ε-approximation).

Overall, the results reveal interesting trade-offs between
different routing types. For example, in simple routing types
(routing tree and unsplittable routing), it is relatively sim-
ple to determine the max min-fair rate assignment whenever
the routing is provided at the input. However, determining a
good routing (the one that provides lexicographically maxi-
mum assignment of rates among all the routings of the same
type) is hard even for a single time slot.

There are several directions for future work. For example,
extending the model to incorporate the energy consumption
due to the control messages exchange would provide a more
realistic setting. Moreover, designing algorithms for unpre-
dictable energy profiles that can be implemented in an online
and/or distributed manner is of high practical importance.
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