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ABSTRACT
Binary proximity sensors (BPS) provide extremely low cost
and privacy preserving features for tracking mobile targets in
smart environment, but great challenges are posed for track-
ing multiple targets, because a BPS cannot distinguish one
or multiple targets are in its sensing range. In this paper, we
at first address the counting problem by presenting a maxi-
mum clique partition model on unit disk graph, which leads
to a tight lower bound for estimating the number of targets
by a snapshot of sensor readings. Then, to more accurately
count and track the multiple targets by sequential readings
of sensors, we state the key is to comprehensively infer the
states behind the events. Therefore, at each event we infer
which target may trigger the event via a dynamic coloring
technique (DEC) and predict the potential regions of the
multiple targets by a colorful area shrinking and expanding
approach. Such an approach generates multiple potential
scenarios containing di↵erent colors to interpret the sequen-
tial events, where the number of colors indicates the di↵erent
estimations of the target number. Then we designed multi-
color particle filter (MCPF), which is run in parallel in each
scenario to enumerate and evaluate the potential trajecto-
ries of the targets under the color constraint. The likelihoods
of the trajectories are evaluated by each target’s movement
consistence. The overall best trajectory over all scenarios is
voted to provide not only the most possible target number,
but also the trajectories of the targets. Extensive simula-
tions were conducted using a multi-agent simulator which
show good accuracy of the proposed multi-target tracking
algorithms.

1. INTRODUCTION
This paper investigates the problem of tracking multiple

targets using a network of binary proximity sensors (BPS).
A BPS is a low-cost sensor, which provides binary detection
to the mobile users in its proximity. It outputs “1”when one
or more targets are presenting and “0” otherwise. It cannot
distinguish individual or multiple targets, nor provide any
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moving direction or location specific information. But BPS
can well preserve users’ privacy, which make it highly suit-
able for occupancy sensing in smart environments. It detects
users’ demands without leaking users’ privacy, which is the
foundation for smart control, such as on-demand lighting or
HVAC control. The typical BPS sensors include Passive In-
frared sensor, ultrasound sensor, and microwave radar sensor
etc.
Although a BPS provides very limited information, prior

work [1] has shown that a collaborative network of BPSs
can yield respectable single target tracking accuracy. In [1],
the authors showed that a target can be localized with a
location error proportional to 1

⇢R

d�1 , where ⇢ is the sensor
density, R is the sensing range, and d is the dimension of
the space. But significant di�culties will be encountered for
tracking multiple targets, because the sensors can’t tell how
many targets are presenting, which leads to the di�culty of
disaggregating the motion trajectories of the multiple tar-
gets.
Only in 1-Dimension network, the counting problem was

investigated in[2], which presented a lower bound of the pre-
senting targets as the maximum number of positively inde-
pendent sensors[2], where the positively independent sensors
are“on”sensors su�ciently far apart, or separated by at least
one “o↵” sensors [2]. They presented a greedy algorithm to
calculate the lower bound. However, this lower bound is
shown conservative in 2-D space in this paper, and a novel
unit disk graph (UDG) model for the BPS network is pro-
posed, which leads to a tighter lower bound, i.e., minimum
number of cliques that partition the UDG formed by the “on”
sensors. This new lower bound is valid in both 1-D and 2-D
networks.
Then how the sequential readings overtime can further im-

prove the target counting and tracking is investigated. The
sequentially state changing events reported by distributed
sensors introduce temporal and spatial constraints, i.e., some
timely close by, but spatially far away events must be trig-
gered by di↵erent targets because the targets must move
continuously. Based on this intuition, despite the little in-
formation provided by each event, we comprehensively in-
fer and evaluate possible target distributions and trajecto-
ries that may coincide the sequential events to improve the
counting and tracking accuracy. We define a time-spatial
distance between events, which can help more accurately
counting the targets than that of the snapshot-based count-
ing. Then for tracking and disaggregating the trajectories
of the multiple targets, we propose dynamic edge coloring
(DEC) and Multi-color Particle filter (MCPF). The DEC

397



generates and maintains a set of target distribution scenar-
ios of di↵erent colors. The number of colors in a scenario
indicates the estimation to the number of the targets. In
each scenario, from the sensor readings before and after an
event, shrinking and expanding methods are presented to
predict the feasible regions of the targets at the occurred
event.

Then in each scenario, we further developed a multi-color
particle filter (MCPF), which generates random particles ac-
cording to the possible target distributions to enumerate and
evaluate the potential trajectories of the targets. The MCPF
calculates the likelihood of the multi-target trajectory by the
consistence of the moving speeds of each target. So that, the
overall best trajectory among all trajectories over all sce-
narios is voted at each event time, which provides not only
the estimation to the most possible number of the targets,
but also the disaggregated trajectories of these targets. Ex-
tensive evaluations by multi-agent simulations showed that
the proposed methods can provide satisfactory counting and
tracking accuracy for multiple, anonymous, uncooperative,
simultaneously moving targets, despite the very limited in-
formation provided by the BPSs.

The remaining part of this paper is organized as follows.
Background and problem model are introduced in section
2. Lower bound for target number counting is presented
in section 3. Interplay of DEC and MCPF is presented in
Section 4. Simulation results are presented in section 5, with
conclusions drawn in Section 6.

2. BACKGROUND AND PROBLEM MODEL
We introduce the problem model and the most related

works in this section.
In this work, we consider an idealized sensing model for

the BPS. Let’s consider n sensors are deployed in a two-
dimensional area-of-interest. The locations of the sensors
are assumed known by self-localization techniques [3] and
the sensors are assumed timely synchronized [4], so that the
concurrent readings of the sensors can be measured to form
a snapshot. Each sensor monitors the targets (e.g. people)
within its sensing range and outputs “1” when one or more
targets are in its sensing range, and “0” otherwise. Let’s R
denote the sensing radius of a sensor and we assume targets
within this range can be detected by the sensor without er-
ror. Each sensor only reports the state transition events, i.e,
the timestamp and the event type (“1” to “0”, or “0” to “1”)
to a central collector. The collector infers the concurrent
states of all the sensors and conducts information process-
ing to estimate the number and locations of the presenting
targets. We assume the data collection is well addressed by
routing and MAC protocols.

Under above sensing model, the sensing regions of the n
sensors will partition the area-of-interest into m patches. A
patch is a close area bounded by the sensing boundaries of
sensors. Each patch can be uniquely coded by a length n
vector P

i

= {b
i,1

, · · · , b
i,n

}, where b
i,j

= 1 if sensor j covers
patch i and b

i,j

= 0 otherwise. Since the locations in a patch
have the same code, conventionally, the discriminability res-
olution of the BPS network is considered to be determined
by the size of the patches[1]. Whereas, when taking the
time attributes of the events into consideration, we can fur-
ther characterize the possible locations of the target which
triggers the event by the arc it is crossing. This can further
narrow down the freedom of the location estimation than
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Figure 1: Spatial and temporal information pro-
vided by the BPS sensors for motion track estima-
tion when a target moves through the sensing re-
gions of three BPSs.

the patch-based representation. For targets not triggering
the event, we can still estimate their locations by the patch
indices. Therefore, as introduced in Section 4, by shrink-
ing and expanding based approach, we can interactively use
edge-based and patch-based location representation to more
accurately estimate the possible locations of the targets.
Fig.1 shows an example of tracking a mobile target by

three BPS sensors. Fig.1a) shows the formed patches and
the patch codes. Fig.1b) shows the state transition events
reported by the sensors. Fig.1c) shows the crossing edges of
each event by di↵erent colors. Fig.1d) illustrates the spatial
and temporal information provided by the sensing events,
where the crossing edge at each event is discretized to dots
to represent the possible positions of the target at the event
time. Tracking multiple targets is more complex, because
when an event occurs, we don’t know who triggers it and
don’t have clue for other targets’ locations.

2.1 Existing Counting Limits and Bounds
The problem becomes di�cult when we consider track-

ing multiple targets by the BPS network. By assuming
the sensor can distinguish the targets, i.e., can distinguish
which event is triggered by which target, FindingHuMo [5]
proposed adaptive Hidden Markov Model (HMM) to dis-
aggregate the motion trajectories of the multiple targets.
By assuming knowing the total number of the targets, [6]
proposed multiple pairs shortest path algorithm to search
the most possible trajectory using walking speed variance to
disaggregate target trajectories. But the problem becomes
extremely di�cult when the number of targets is unknown
and when the sensors cannot distinguish the targets, which
is however, the most practical scenario, because in real appli-
cations, neither the Infrared sensor, ultrasound sensor nor
the microwave sensor can distinguish the targets, and we
generally don’t know the number of the presenting targets.
For this practical case, only in one-dimensional space where
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the targets move along a line, a method for evaluating the
lower bound of the number of targets was presented in [2].
In the method, if the “on” sensors can be partitioned into
at most X positively independent sets, where the positively
independent sensors are “on” sensors whose sensing regions
don’t overlap, or separated by at least one“o↵”sensors, The-
orem 4 in[2] stated that the number of targets in the sensing
field is not less than the cardinarity of X, i.e., |X|.

But we found this lower bound was conservative when
applied to 2-D spaces. Fig.2 explains this lower bound in
several scenarios. In Fig.2a) and Fig.2b), the two “on” sen-
sors (red segments) form two positively independent sets, so
the lower bound of the target number is two in these cases.
In Fig.2c), the two “on” sensors form only one positively in-
dependent set, so the lower bound of target number is one.
But in the 2-D example, as shown in Fig.2d), the three “on”
sensors are not independent, forming only one positively in-
dependent set, so the lower bound of target number is one.
But it is not hard to verify that it needs at least two targets
presenting in the positive sensing field (white area) to trigger
the three sensors to “on”. So the lower bound is conserva-
tive. Because tracking multiple targets in 2-D spaces is a
more general scenario in practice, tighter lower bound, and
e�cient target counting and tracking algorithms are needed.
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Figure 2: Calculate lower bound of target number
in 1-D and 2-D spaces by the maximum number of
positively independent sensors.

2.2 More related works
BPS-based target counting and tracking has attacked many

studies. In [7], Busnel et al. explored the limits of multiple
object tracking using a network of binary motion sensors.
They showed that the multiple objects cannot be identified
by BMSs on a general graph even by an omniscient exter-
nal observer if all the objects can freely move on the graph.
They showed that priori restrictions on the graph or priori
restrictions on object movements can help to make the prob-
lem solvable. Further than FindingHuMo [5], to overcome
the di�culties of training the HMM model, MiningTraMo
was proposed in [6] to infer the most possible trajectories
by multiple pairs shortest path algorithm based on walking
speed variance. In [8], Jeswani et al. proposed an approach
for target tracking using sparsely deployed binary sensor
network. The trajectory of a target is approximated by a
piece-wise curve, where each piece is an estimated as tan-
gent between sensing regions of two sensors. In [9], cluster-
based decentralized variational filtering was proposed for
target tracking in binary sensor networks. In [10], He et al.
proposed a hybrid multiple target tracking scheme, which

conducts coarse-scale tracking by binary proximate sensors
to narrow down search area, and uses high-end sensors for
fine-grained tracking. In [11], Cao et al. presented collab-
orative scheme for tracking groups of targets using BMSs.
In [12], Wang et al. presented a distributed energy e�-
cient target tracking scheme using binary sensor networks.
The algorithm exploited the successive detection events of
neighboring binary sensors to infer the trajectory of the tar-
get. In [13], Rao-BlackWellised Particle filters are intro-
duced to tracking and identify target, which is implemented
in a device-free people tracking and identification system.
In System presented in [14], motion character is introduced
to improve locating accuracy in netwokred BPS. A family of
bound on performance for multiple target tracking is given
in [15], whose core idea is locating error is introduced by un-
certain origin of measurement. Based on this uncertainty,
error in optimal solution can be bounded.

3. COUNTABILITY BY A SNAPSHOT
To investigate the countability problem by a snapshot of

sensor readings, we firstly present su�cient and necessary
conditions for precisely target counting in 2-D space.

3.1 Conditions for Precisely Target Counting
Let’s consider an arbitrary snapshot at time t. Let S

t

2
(0, 1)n be a length-n vector representing the “on/o↵” states
of the n sensors at time t. Let A

t

denote the set of the “on”
sensors. Let E

t

denote the set of the “o↵ ” sensors. Let
function P (s) return all the patches covered by the sensor
set s. Let F

t

be the feasible target space in which the targets
may present. Then:

F
t

= P (A
t

)� P (E
t

) (1)

Let Si be the set of positive sensors that sense the target
i. Let function F (Si) return the feasible target space con-
tributed by these positive sensors in set Si, then

F (Si) = P (Si)� P (Si) \ P (E
t

) (2)

Then a su�cient condition for precisely target counting can
be stated as:

Theorem 1. (Su�cient condition). If Si is the set of
sensors that sense the target i, the su�cient condition for
precisely target counting is that 8i 6= j, F (Si) \ F (Sj) = ;.

Proof. Suppose there are m targets. Since 8i 6= j,
F (Si) \ F (Sj) = ;, the feasible target spaces are natu-
rally partitioned to m isolated feasible areas, one per tar-
get. Therefore, we can precisely determine the m isolated
feasible target spaces, which precisely indicates there are m
targets.

Note that this su�cient condition requires the groups of sen-
sors triggered by the di↵erent targets are enough separated.
The su�cient condition presented in [2] which requires the
pairwise distances between any two targets to be larger than
4R is a special case of this su�cient condition.

Theorem 2. (Necessary condition). If Si is the set of
sensors that sense target i, the necessary condition for pre-
cisely target counting is that 8i 6= j, F (Si) 6= F (Sj).

Proof. We prove by contradiction. If F (Si) = F (Sj),
then we can never determine whether there is one or two
targets in the area F (Si). Therefore, for precisely target
counting, there must be 8i 6= j, F (Si) 6= F (Sj).

399



The necessary and su�cient conditions give properties but
are not practical. A more general requirement is to estimate
the number of targets by a given snapshot of the sensor
readings, for which, we present a new tight lower bound for
estimating the number of targets.

3.2 UDG Model for Feasible Target Space
We firstly present a unit disk graph (UDG) model to

model the geometrical structure of the feasible target space.
For a given snapshot, the feasible target space in which the
targets may locate is determined by F

t

= P (A
t

) � P (E
t

).
This area may be partitioned by the sensing areas of the
“o↵” sensors into some isolated islands, which are denoted
by L

t

= {L
1

, L
2

, · · · , L
v

}, where v is the total number of
the isolated islands. Note that two feasible areas L

i

and L
j

are isolated if they are spatially separated by the sensing
regions of the “o↵” sensors.

An example is shown in Fig.3, in which the feasible target
space (the space in white) is separated by the “o↵” sen-
sors (space in grey) into three isolated islands, denoted by
L

1

, L
2

, L
3

respectively. A trivial lower bound for the num-
ber of target is therefore the number of the isolated islands,
because each island contains at least one target. But this
lower bound is not tight. We can improve this lower bound
by considering the topology of each island. Note that each
island is a union region of the sensing regions of some “on”
sensors subtract the regions covered by the “o↵” sensors. If
we normalize the sensor radius R to 1, we can construct a
Unit Disk Graph (UDG) by connecting the vertexes of the
intersected “on” sensors in each feasible island. The con-
struction rules are:

• The “on” sensors in the isolated islands are chosen as
the vertexes of the UDG.

• For any two“on” sensors, if they have intersected sens-
ing region and the intersected region is not fully cov-
ered by the regions of the “o↵” sensors, an edge is
added between these two vertexes.

By examining all the “on” sensors by above rules, A UDG is
constructed in each island. Examples of UDG construction
are shown in Fig.3. Note that the UDG in each island is con-
nected and the UDGs in di↵erent islands are disconnected.

Figure 3: Unit disk graph for target counting

3.3 Lower Bound of Target Number
By investigating the topologies of the UDGs, a tighter

lower bound for the number of targets can be calculated.

Definition 1 (clique). In graph theory, a clique in
an undirected graph G = (V,E) is a subset of vertices C 2 V ,
such that every two vertices in the subset C are connected.

Definition 2 (clique partition). Given a UDG G =
(V,E), a clique partition is a partition of V into nonempty,
disjoint sets {C

1

, C
2

, · · · , C
u

}, such that each set C
i

, (i =
1, · · · , u) induces a clique. The minimum clique partition
(MCP) is to partition the vertex into the minimum number
of cliques.

Let’s consider a clique partition on a UDG, which is de-
noted by {C

1

, C
2

, · · · , C
u

}. If S
j

represents the sensors par-
titioned into the clique C

j

, because the cliques are disjoint,
8C

i

6= C
j

,S
i

\ S
j

= ;. All the sensors in the same clique
can be triggered “on” by one sensor (because these sensors
are connected, i.e., have a common feasible target region),
therefore, finding the lower bound of the target number is
equal to find the minimum clique partition of the UDG.

Lemma 1. For a clique containing k sensors, one target
located in the k-intersected sensing area of the k sensors is
su�cient to make all the k sensors be in “on” state.

Proof. From the construction of UDG, two sensors are
connected if they have intersected sensing area in the fea-
sible target space. Because k sensors in a clique are fully
connected, they share a common k-intersected feasible tar-
get space. Only if one target is presenting in the feasible
k-intersected area, all sensors in the clique will triggered
“on” to coincide their readings.

Theorem 3. (Lower bound of the target number by a snap-
shot). Given a snapshot consisting of v isolated islands. Let
N be the number of targets that matches the sensor read-
ings, then there must be N �

P
v

i=1

l
i

, where l
i

equals to the
minimum number of cliques partitioning the UDG of the ith
island.

Proof. Since the isolated islands are independent, we
only need to prove that the number of targets in an island
i is at least l

i

, i.e., the least number of targets equal to the
minimum number of cliques that partition the UDG.
1). For su�ciency aspect, from Lemma1, one target placed

at the most intersected area in each clique is su�cient to
trigger all sensors in the clique to “on” state, so l

i

targets is
su�cient to make the states of all the sensors in the UDG
be coincide with their “on” readings.
2). For necessity aspect, if l

i

� 1 targets can make all
sensors’ states to be “on”, we can repartition the UDG by
selecting the sensors detecting the same target into the same
clique. Because the sensors detecting the same target must
have intersected sensing region, i.e., connected. This new
partition will partition the UDG into l

i

� 1 cliques. This
is contradict to that l

i

is the minimum number of cliques
partitioning the UDG, so that there is at least l

i

targets in
the sensing field.

Corollary 1. The lower bound of target number in The-
orem 3 is tight, because it can be exactly achieved by placing
a target in the most intersected sensing region in each clique.

However, because the MCP of the UDG is not unique, there
are di↵erent versions of minimum clique partitions. Even if
we know exactly that the least number of targets are pre-
senting in the sensing field, it is still ambiguous to determine
the locations of the targets.
Moreover, regarding the computation cost for estimating

the lower bound of the targets, the MCP problem on UDGs
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Figure 4: Example to illustrate the idea of time-
space distance and FCA coloring

is a well-known NP-hard problem[16]. Recent work in [17]
provided a polynomial time approximation algorithm, which
is guaranteed to be within (1+✏) ratio of the optimum when
the input is a UDG. For the special characters of target
tracking problem, the number of vertexes in an feasible is-
land are generally limited. Therefore, we can calculate a
rather accurate lower bound for the number of targets given
the snapshot readings of the sensors.

An example to estimate the lower bound of the number of
the targets by a snapshot is shown in Fig.3. In the three iso-
lated islands, UDGs are constructed. The minimum number
of cliques in the islands L

1

, L
2

and L
3

are 1, 1, 3 respec-
tively, so that the least number of targets estimated by this
snapshot is totally five. The figure gives an example distri-
bution of the five targets. Note that the minimum clique
partition in L

3

is not unique, so that the locations of the
three targets are still ambiguous, even if there are exactly
three targets.

4. COUNT AND TRACK DYNAMICLY
Although Theorem 3 presents a tight lower bound for the

number of targets at a snapshot. The exact number of the
targets and their locations are still di�cult to be estimated
from the snapshot. But this doesn’t exclude the possibility
to count and track the targets more accurately by further
exploring the temporal and spatial constraints from the se-
quential events of the sensors.

In this section, we investigate how the temporal and spa-
tial information introduced by the state changing events can
help to improve the target counting accuracy. In particular,
we propose a concept of space-time separation between the
events. We show that when the events triggered by di↵erent
targets are enough separated in space-time distance, they
can be successfully attributed to di↵erent targets.

4.1 Space-time Separation Between Events
The sequential readings of the sensors provide more con-

texts for multi-target counting and locating. In an instance
when a sensor’s state switches from “o↵” to “on” (or from
“on” to “o↵”), it must because some targets are entering
(leaving) its sensing region from its sensing boundary.

Definition 3 (feasible crossing arc (FCA)). When
a sensor’s state change is detected, the feasible crossing arc
indicates the arc segments where the targets are traversing
to trigger the event without violating the states of the other
sensors.

The FCA provides temporal location constraint to a mov-
ing target. Each event maps to a corresponding FCA. To
characterize whether two successive events are possibly trig-
gered by the same target, we measure the distance between

the FCAs of these two events. If the occurrence times of the
two events are close, but the distance between their FCAs
is large, we can distinguish confidently that the two events
are triggered by di↵erent targets.

Definition 4 (distance between FCAs). The distance
between two FCAs f

a

and f
b

is the shortest distance between
any two points on the two FCAs, where the shortest path
connecting the two points must be within the feasible target
space. We denote the distance between FCAs as kf

a

� f
b

k
2

.

Let’s suppose the maximum moving speed of the targets is
V
max

, then:

Definition 5 (time-space distance). The time-space
distance between two event E

a

, E
b

happened at time t
a

, t
b

,
with FCAs f

a

, f
b

respectively is defined as:

D
a,b

= kf
a

� f
b

k
2

� |t
b

� t
a

|V
max

Theorem 4 (dynamic target seperation). Two events
E

a

and E
b

must be triggered by di↵erent targets, if D
a,b

> 0.

Proof. D
a,b

> 0 means kf
a

� f
b

k
2

> |t
b

� t
a

|V
max

, which
means that even the shortest distance between the two FCAs
is larger than |t

b

� t
a

|V
max

. Because |t
b

� t
a

|V
max

is the
largest distance a target can travel from t

a

to t
b

, a target
triggers E

a

hasn’t enough time to move from f
a

to f
b

to
trigger E

b

, so that E
a

and E
b

must be triggered by di↵erent
targets.

Dynamic target separation can count target more accurately
than the snap-shot based lower bound. An example is shown
in Fig.4. Initially, all sensors are “o↵” as shown in Fig.4(a).
The red arc in Fig.4(b) shows the FCA when sensor a turns
to be “on”. The green arc in Fig.4(c) shows the FCA when
sensor b turns to be “on”. The red area in Fig.4(c) shows
the reachable area of the target who triggered E

a

when the
event E

b

happens. Since the red target cannot reach the
green arc, these two events must be triggered by di↵erent
targets. If using MCP-based method, the UDG contains
only one clique, the lower bound provided by the snapshot
is one, which is smaller than dynamic lower bound. There-
fore, dynamic counting can be more accurate in practice
by considering both time and location constraints. Based
on this intuition, we propose dynamic edge coloring (DEC)
and multicolor particle filter (MCPF) to dynamically color
the edges to count the number of targets and to disaggre-
gate the trajectories of targets by the presenting colors and
also by evaluating the consistence of the targets’ movement
patterns.

4.2 DEC and MCPF
DEC andMCPF are jointly designed. DEC is event driven,

which is used to assign color to the FCA (feasible crossing
arc) according to occurring event, which is to specify which
target may trigger the event. The edge coloring is based on
the time-space distance from the historical events, therefore,
it is based on the historical states of the targets, which are
stored and tracked by the MCPF. The MCPF stores a set of
parallel scenario trajectories. Each scenario trajectory has
di↵erent estimation to the number of the targets. For an ex-
ample, a scenario trajectory considers that all the previous
events are triggered by 3 targets (having three colors), but
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another trajectory considers the previous events are trig-
gered by at least 4 targets (having four colors). Further,
each scenario trajectory maintains a dynamic set of feasi-
ble target trajectories. A feasible target trajectory contains
the historical positions of the targets from beginning up to
now. The feasibility constraint of the target trajectory is
that at each event’s time, the positions of the targets must
make the states of the sensors coincide with their readings.
The likelihood of each feasible target trajectory is evaluated
by evaluating the variance of the moving speeds of the tar-
gets. The feasible target trajectory with the overall highest
likelihood provides not only the most likely number of the
targets, but also the disaggregated historical trajectories of
these targets.

This method depends on the consistence of the target
number and the consistence of the targets’ moving patterns
during a monitoring period, therefore we assume the num-
ber of the target doesn’t change within the short monitoring
period and the targets move smoothly.

4.2.1 Scenario Generation
A snapshot of sensor readings is obtained at each event.

For the ambiguity of the sensor readings we cannot deter-
mine exactly the target distribution, but we can generate a
set of possible distributions by Monte-Calo method. Given
a snapshot, we generate distribution scenarios with di↵erent
number of targets, then these scenarios can be evolved and
be evaluated lately by the following events. Since determin-
ing the minimum number of presenting targets is NP-hard,
we propose an e�cient method to generate the distribution
scenarios on a proposed positive patch graph, induced by a
snapshot of the sensor readings.

Definition 6 (Patch Graph). refers to the directional
neighboring graph of patches. Each positive patch (i.e., in
the feasible space of targets) is treated as a vertex. Edge
v ! u exits i↵ corresponding patch P

v

and P
u

have a com-
mon arc and P

v

is inside the arc. Each arc separates the
area into two regions; the inside region refers to the one
close to the circle center (the circle where the arc is on).

The problem of target distribution generation is then to
place some targets into these positive patches, so that all
the patches can be in “on” state, i.e., all sensors’ states co-
incide their readings.

Theorem 5. When we place one target in a patch, all its
o↵spring patches and its ancestor patches on the patch graph
can be “overlooked”. The occupied patch and the overlooked
patches can be deleted from the patch graph when we con-
sider the placement of the next target. After all the patches
are deleted, the placement of the targets coincide the sensor
readings.

Proof. In the patch graph, if P
o

is an o↵spring of P
v

,
then the sensors covering P

o

must be in a subset of the
sensors covering P

v

. If P
a

is an ancestor of P
v

, there must
be one common sensor covers both P

a

and P
v

. Therefore,
when we place a target at P

v

, a sensor covering P
o

and a
sensor covering P

a

must be triggered “on”, so that both P
a

and P
o

can be overlooked.

Further, when the targets are uniformly distributed, the
patch with larger size has higher probability to contain a

v� u�

Arc&vu�
in�out� a�

b�
c�
d�

e�
f�
g�

c�

b� d� f�

a� g� e�

a)&Edge&direction&in&patch&
DAG&is&determined&by&the&

arc&direction�

b)&Transformation&from&the&
sensor&coverage&scenario&to&the&

patch&DAG�

Figure 5: Explanation of Patch DAG

Algorithm 1 Generate-Target-Distribution-by-Snapshot()

Require: S is the snapshot. Gp(S) is the patch graph.
Ensure: O

1:m

, Occupancy state for each Patch coincides
with S.

1: O
1:m

 0.
2: while Gp(S) 6= ; do
3: Select v form Gp(S) randomly with probability ac-

cording to the size of the patch v
4: O

v

 1.
5: G

p

(S)  G
p

(S) \ O(v) \ A(v), where O(v) are the
o↵springs of v and A(v) are the ancestors of v on
G

p

(S)
6: end while
7: output O

1:m

target. Therefore, we also took the patch size into consider-
ation, and developed algorithm 1 to e�ciently generate the
possible target distribution scenarios.
Algorithm 1 output the most likely target distribution in

positive patches. Since the estimation may be incorrect, we
generate many alternative target distributions by running
the algorithm multiple times. Then we categorize the tar-
get distributions by putting the distributions that contain
the same number of targets into a common scenario. After
the categorizing, we suppose there are � scenarios and each
scenario contains di↵erent number of target distributions as
shown in Fig.6.

4.2.2 Handle an Event
Scenario generation is carried out by the first snapshot af-

ter initialization. Now suppose we know the latest scenarios
and possible target trajectories at event t � 1. Once a new
on/o↵ event happens at event t, we try to estimate the target
distributions at time T

t

. Note that the events are indexed
by 1, 2, , t � 1, t. It is not necessarily the interval between
two events are equal. We denote T

t

as the time of event t.
The target trajectory updating scheme contains four steps:
1) determining the FCA, 2) dynamically edge coloring, 3)
location updating for all the targets, and 4) evaluate the
likelihood of particles.
1). Determining the FCA: When an event happens, the

feasible crossing arc is easily determined by comparing the
two snapshots before and after the event. The FCA are the
intersected edges of the state changing sensor with other
positive sensors surrounding it at the event time.
2) Dynamically edge coloring: After determining the FCA,

for each feasible target distribution of each scenario, we eval-
uate the color of the FCA. This is based on the target dis-
tribution estimations at the event t � 1. This step judges
two things:

1. It helps to verify the feasibility of the guessed target
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Figure 6: Example of scenario generation and par-
ticle generation

distributions at the last event. If based on a distri-
bution at event t� 1, all the targets cannot reach the
FCA at event t, the distribution is judged infeasible
and will be deleted.

2. For feasible distributions, we estimate which target is
on the FCA at event t, i.e, the color of the arc, which
is the basis for generating new target distributions.

To assign color to the FCA, this step needs to calculate
the shortest distance from the feasible patches to the FCA,
i.e, patch-arc distance, which is complex because both the
patches and the FCA are in irregular shapes. We designed
an e�cient Monte-Calo algorithm to carry out this task. �
points are randomly generated in the feasible patch, whose
shortest distances to the FCA are calculated, and the over-
all shortest distance to the FCA is used as the shortest dis-
tance from the patch to the FCA. The shortest distance
from a point to an arc can be easily calculated via geomet-
ric method. For a considering patch, let’s denote d

min

be
the shortest distance from this patch to the FCA, then if

d
min

� " > V
max

(T
t

� T
t�1

) (3)

the target in the patch at T
t�1

cannot reach the FCA at T
t

,
where " is a small value to compensate the calculation error
of d

min

by Monte-Calo. If in a target distribution at T
t�1

,
all the targets cannot reach the FCA, the target distribution
is judged invalid and will be deleted. If a target can reach
the FCA, we update the target distribution as following.

3) Feasible Region Shrinking and Expanding: Suppose
a target distribution in a scenario at T

t�1

has ⇥ targets,
among which, ⇥

1

targets can reach the FCA at T
t

and
⇥

2

= ⇥�⇥
1

targets cannot reach the FCA. In this case, we
generate ⇥

1

new possible target distributions at T
t

. In each
generated target distribution, a target which can reach the
FCA is put on the FCA (i.e., shrinking), while the feasible
regions of the other targets will be expanded based on the

elapsed time from T
t�1

to T
t

to a broad area where they may
reach. So that by shrinking and expanding, we update the
location estimations of all the targets at event T

t

. It helps
us to update not only the possible locations of the targets
that may trigger the event, but also the possible locations
of the unobservable targets at T

t

.
The feasible region of a target is maintained by a patch

vector {P
i,1

, · · · , P
i,k

}, which are a set of patches that the
target i may locate at time t. Expanding of feasible region
is carried out on the patch graph. From T

t�1

to T
t

, the
maximum distance a target can move is d

max,t

= V
max

(T
t

�
T
t�1

), so all its connected positive patches within d
max,t

will be added into its feasible patch vector at T
t

. Di↵erent
methods can be used to calculate the patch-patch distance:
1) Since the patches are static, the patch-patch distances can
be evaluated o✏ine only once by Monte-Calo method, i.e.,
generating random points in two patches and calculating the
average distance between the points in the two patches; 2)
An more e�cient method of expanding the feasible region is
to simply add all direct neighboring positive patches of the
current feasible patches into the feasible region when a new
event happens. By knowing the feasible region of targets at
time T

t

, dynamic coloring can be carried out by (3) at time
T
t+1

when an new event happens.
4) Particle Generation and Likelihood Evaluation: In each

generated target distribution, a target is on FCA and some
other targets are predicted to be in their feasible regions. In
particle generation step, we generate the possible positions
of the target on the FCA and generate the possible positions
of other targets in their feasible regions. All particle gener-
ation and the likelihood evaluation are for the same color
target. Multiple targets’ particle filters work in parallel.
Let’s consider only the kth target in a distribution of ⇥

targets at time T
t�1

. Its MCPF stores: 1) M most possible
trajectories for the target up to time T

t�1

and the possible
end positions denoted by {x

k,j

(T
t�1

), where k = 1, 2, · · · ,⇥
is the target index. 2) the probability distribution functions
(pdf) of the moving speed of the target in trajectory j, i.e.,
{p

k,j

(v)}, j = 1, · · · ,M ; 3) the likelihood of each trajectory,
denoted by {l

k

(track
j

(T
t�1

))}.
So that, at time T

t

, we generate Q random positions for
the target and connect these points to the M end points at
time T

t�1

, which generates P = M ·Q particles representing
the possible movement trajectories of this target from T

t�1

to T
t

. For each particle, we can evaluate the moving speed
of this target by:

v
k,i,j

(t) =
|x

k,i

(T
t

)� x
k,j

(T
t�1

)|
T
t

� T
t�1

, (4)

where x
k,j

(T
t�1

) is an ending location at time T
t�1

and
x
k,i

(T
t

) is a generated location at T
t

. The likelihood of the
particle from x

k,j

(T
t�1

) to x
k,i

(T
t

) is evaluated by p
k,j

(v
k,i,j

(t)).
To evaluate the likelihood of the trajectory goes through
x
k,j

(T
t�1

) and ends at x
k,i

(T
t

) by multiplying p
k,j

(v
k,i,j

(t))
with l

k

(track
j

(T
t�1

)). So that we can get the likelihoods
of the MQ particles. We sort these particles by likelihood
and only preserve the most possible M trajectories for the
next step. The pdfs of the target speed are updated and
the M most possible trajectories are stored at T

t

. Algo-
rithm 2 presents the pseudo code of the MCPF for a target
in one scenario. Note that parallel MCPFs are run for mul-
tiple targets in each parallel scenario. Fig.6 shows particle
generation scenarios at T

1

. Because no historical trajectory
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information exist, both x
k,j

(T
0

) and x
k,i

(T
1

) are randomly
generated. For clarity, only the particles generated on FCA
are plotted. The particles generated for the other targets
are not visually shown.

Algorithm 2 MCPF-for-A-Target-in-A-Scenario

Require: m trajectories up to T
t�1

; pdf of the
moving speed of the target in each trajectory
{p

k,j

(v)}, j = 1, 2, · · · ,m; likelihood of each trajectory
{l

k(trackj(Tt�1))
}; feasible region of the target

Ensure: Updated trajectories, pdf of speed and likelihood
of trajectories up to T

t

;
1: Generate Q points in feasible region of target;
2: Connect Q points to m trajectories’ ending points to

generate mQ particles;
3: for i = 1; i <= Q; i++ do
4: for j = 1; j <= m; j ++ do
5: Evaluate v

k,i,j

(t);
6: Evaluate c

i,j

= p
k,j

(v
k,i,j

(t))l
k

(track
j

(T
t�1

));
7: end for
8: end for
9: Sort {c

i,j

};
10: Preserve the most likely m trajectories;
11: Update pdfs of the target speed in the trajectories;

4.3 Interplay of DEC and MCPF
The top level interplay of DEC and MCPF is explained

in Algorithm 3. In initialization phase, scenarios and pos-
sible target distributions are generated by placing targets
on the patch graph. We generate a large amount of target
distributions (denote by I) to increase the probability that
the distributions close to the ground truth can be generated.
In online phase, the interplay of DEC and MCPF is split-
ted into di↵erent scenarios. In each scenario, the algorithm
conducts dynamic edge coloring, feasible region shrinking
and expanding for each target trajectory and generate new
trajectories based on the new event. Then for each target,
MCPF is run to rank the trajectories to find the top-M tra-
jectories that can better interpret the event sequence. At
last, all the scenarios are ranked by the likelihood of their
most possible trajectory. The overall best trajectory pro-
vides not only the estimation of the target number but also
the location estimations of the targets.
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Figure 7: Random sample on patch DAG

5. EVALUATION
We developed a multi-agent simulator to evaluate the MCPF

and DEC algorithms. In this platform, trace of targets
are generated by random walk, which is updated frame by
frame. In each frame, the reading of BPS is calculated ac-
cording to the location of targets. The velocity of target is
draw from normal distribution. The size of target is omitted

Algorithm 3 Interplay of DEC and MCPF

Require: Readings of sensors at T
t

; Sensors’ positions and
sensing radius; Patch indices;

Ensure: Estimation of the most possible number of targets;
most possible locations of the targets;

1: Initialization:
2: for i = 1 : 1 : I do
3: Generate-Target-Distribution-by-Snapshot ();
4: end for
5: Categorizing the generated target distributions to form

� scenarios; suppose the ith scenario contain ⇥
i

targets
and �

i

target trajectories.
6: Online Phase:
7: Determine FCA by an event;
8: for i = 1 : 1 : �(number of scenarios) do
9: for j = 1 : 1 : �

i

(# of trajectories in scenario i) do
10: Dynamic edge coloring;
11: if (n

1

targets can reach the FCA) then
12: Generate n

1

new target distributions;
13: Shrink and expand targets’ feasible regions;
14: end if
15: if (0 targets can reach the FCA) then
16: delete the target distribution;
17: end if
18: end for
19: for i = 1 : 1 : ⇥

i

(number of targets in scenario i) do
20: run MCPF-for-A-Target-in-A-Scenario();
21: end for
22: end for
23: Rank the scenarios and trajectories by likelihood;
24: Output the estimation of target number and target’s

positions based on the most possible scenario and the
most possible trajectory in the scenario;

and each target is represented by a point. Setting of simula-
tion is presented in Fig.9, where 36 BPSs are placed in grid
topology. The sensing area of BPS is denoted by black cir-
cles. The target is denoted by small star with di↵erent color.
The reachable region of targets are constrained in a square
denoted by red dashed line to prevent target entering region
uncovered by BPS. In this setting, sensing range of BPS

target
BPS

*
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x(m)

y(
m
)

Figure 9: Simulation setting and area distribution

separate the area into 211 patches as shown in Fig.9. The
maximum and the minimum number of BPS covering one
patch is 4 and 1. The average of patches’ size is 0.447m2.
The DEC and MCPF are evaluated from several aspects.

We firstly evaluate the counting accuracy. Then the track-
ing accuracy is evaluated in patch level by comparing the
located patch band with the true trajectory. After that,
the accuracy is evaluated by point to point distance from
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estimated trajectory to true trajectory, which is called fine-
grained accuracy evaluation. Finally, the accuracy regarding
to the di↵erent target density is investigated.

One of the di�culties to e�ciently implement DEC is how
to e�ciently store the irregular patch areas and the arcs.
In our implementation, we stored the starting and ending
point of each arc segment, so that each FCA was repre-
sented by a set of arc segments. Then, by giving every arc
and every patch an index, we can refer their locations and
size in the tracking process and specify their colors and size
to visualize the result of tracking. Some snapshots of the
output of the multi-agent simulator in tracking five targets
are illustrated in Fig.8 and 7. Fig. 7 shows the random
target distribution generation on the patch graph. Fig.8(a)-
8(d) shows the DEC and feasible region shrinking and ex-
panding process at four successive events. For an example,
in the Fig.8(d) when an event happens, the feasible region
of the green target shrinked its feasible region onto the re-
gion of FCA, while the other targets expanded their feasible
regions. We have provided our multi-agent simulator for
the multi-target tracking as an open-source project, which
is hosted at: https://bitbucket.org/thufresh/multi-object-
tracking-simulation-platform

5.1 Counting Accuracy
In our tracking algorithms, the estimation of the number

of targets is maintained by the parallel possible scenarios.
Di↵erent scenarios represent di↵erent estimations of the tar-
get number. Each scenario contains a set of potential target
distributions under the target number estimation. Initially,
all possible scenarios and their target distributions are gen-
erated randomly by the first event. As sequential events
are processed, some invalided target distributions will be
deleted by DEC. When all target distributions in a scenario
are deleted, the scenario is deleted. The scenario with the
feasible estimation of the target number is more likely to
survive as time going, which makes the counting process

converge. As an example shown in Figure 10, for tracking 5
targets, our initial guess of target number was 1-8. The dis-
tribution of feasible target distributions was plotted by the
box graph, which indicated the scenarios with 3 to 6 targets
containing more target distributions. As more events were
processed, wrong target distributions with less than 5 tar-
gets were cleaned up. Only scenarios with 5, 6 and 8 targets
survived after step 3 and the possible target distributions
with 8 colors had been very limited. The wrong scenarios
with a little higher number estimation than the ground truth
can survive for long time, which can only be corrected when
targets are enough separated.

5.2 Patch Level Tracking Accuracy
Patch is generally treated as the minimum representing

unit of the target position, therefore we firstly evaluate the
patch level accuracy. The located patches of a target over-
time will form a band of the same color. We visually plot
two tracked bands of two targets, which are shown in figure
11(a). Note that the bands are plotted for the most likely
scenario’s most likely target distribution, whose estimation
of the target number is correct. The ground truth of the
targets’ moving tracks are represented by the solid lines. It
shows that the detected most possible patch locations well
covered and followed the movement the targets. Some errors
happened when two traces intersect, but the errors could be
recovered soon by the particle filter.

5.3 Trace Level Tracking Accuracy
We have also drawn samples in patches to form estimated

traces of the targets. The trace is timestamped, such that
the distance between the estimated location and the real
location at the same time is counted as the locating error.
Contrast between the real traces and the estimated traces is
shown in Fig.11(b). We can see the estimated trace followed
well to the real traces even when the two targets are moving
closely. When real traces intersected to each other, esti-
mated traces were overlapped in segments. The cumulated
distribution of the locating error is presented in Fig.11(e),
which tells that more than 90% tracking error in tracking
one or two targets is less than 0.5m. This result is benefited
by the small size of patches.
Increasing the density of targets would improve probabil-

ity of individual target been overlooked, we can expect accu-
racy deterioration with number of targets increasing. Bands
and traces formed by 5 targets are shown in Fig.11(c) and
11(d). Fig. 11(e) shows how target density a↵ect locating
accuracy. When number of target was 5 or 10, the tracking
accuracy degraded, but it was still acceptable considering
the very limited information provided by the sensors.
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Figure 11: Patch and Trace Level Accuracy of Multi-target Tracking

6. CONCLUSION
This paper has investigated the problem of counting and

tracking multiple, anonymous targets by binary motion sen-
sors, which provide only binary proximity information about
the target’s presenting. A tight lower bound for target
counting in two-dimensional scenario based on snapshot read-
ings of sensors has been presenting by a novel UDG model
on the sensing graph of sensors. Then we investigated how
to more accurately count and track the multiple targets by
exploiting the temporal and spatial constraints captured by
the sequential snapshots of sensors. We present the inter-
play of dynamic edge coloring and the multi-color particle
filter to generate di↵erent color scenarios, and rank the most
potential trajectory in a scenario which can best interpret
the sequential sensor readings to output the estimation of
the most possible target number and the trajectories of the
targets. In future work, the dynamic tracking resolution,
the conditions for precisely dynamic counting all need fur-
ther investigations; multi-target counting and tracking when
sensors are noisy should also be further investigated.
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