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ABSTRACT

Legacy networks are often designed to operate with simple
single-path routing, like shortest-path, which is known to
be throughput suboptimal. On the other hand, previously
proposed throughput optimal policies (i.e., backpressure)
require every device in the network to make dynamic routing
decisions. In this work, we study an overlay architecture
for dynamic routing such that only a subset of devices
(overlay nodes) need to make dynamic routing decisions.
We determine the essential collection of nodes that must
bifurcate traffic for achieving the maximum multicommodity
network throughput. We apply our optimal node placement
algorithm to several graphs and the results show that a
small fraction of overlay nodes is sufficient for achieving
maximum throughput. Finally, we propose a heuristic policy
(OBP), which dynamically controls traffic bifurcations at
overlay nodes. In all studied simulation scenarios, OBP
not only achieves full throughput, but also reduces delay
in comparison to the throughput optimal backpressure
routing.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design - Packet-Switching Networks
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1. INTRODUCTION
We study optimal routing in networks where some legacy

nodes are replaced with overlay nodes. While the legacy
nodes perform only forwarding on pre-specified paths,
the overlay nodes are able to dynamically route packets.
Dynamic backpressure is known to be an optimal routing
policy, but it typically requires a homogeneous network,
where all nodes participate in control decisions. Instead, we
assume that only a subset of the nodes are controllable; these
nodes form a network overlay within the legacy network.
The choice of the overlay nodes is shown to determine the
throughput region of the network.

A first finding is that ring networks require exactly 3
controllable (overlay) nodes to enable the same throughput
region as when all nodes are controllable, independent of the
total number of nodes in the network. Motivated by this, we
develop an algorithm for choosing the minimum number of
controllable nodes required to enable the full throughput
region. We evaluate our algorithm on several classes of
regular and random graphs. In the case of random networks
with a power-law degree distribution, which is a common
model for the Internet, we find that fewer than 80 out of
1000 nodes are required to be controllable to enable the full
throughput region.

Since standard backpressure routing cannot be directly
applied to the overlay setting, we develop a heuristic
extension to backpressure routing that determines how to
route packets between overlay nodes. Simulation results
confirm that maximum throughput can be attained with our
policy in several scenarios, when only a fraction of legacy
nodes are replaced by controllable nodes. Moreover, we
observe reduced delay relative to the case where all nodes
are controllable and operate under backpressure routing.

1.1 Motivation and Related Work
Backpressure (BP) routing, first proposed in [10], is a

throughput optimal routing policy that has been studied for
decades. Its strength lies in discovering multipath routes
and utilizing them optimally without knowledge of the
network parameters, such as arrival rates, link capacities,
mobility, fading, etc. Nevertheless, the adoption of this
routing policy has not been embraced for general use on the
Internet. This is due, in part, to an inability of backpressure
routing to coexist with legacy routing protocols. With
few exceptions, backpressure routing has been studied in
homogeneous networks, where all nodes are dynamically
controllable and implement the backpressure policy across
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Figure 1: Example of a network overlay. The bottom

plane shows the full network graph, while the top plane

shows a subset of network nodes and their conceptual

overlay connectivity. In this work we study network

throughput under the assumption that overlay nodes im-

plement dynamic routing schemes and underlay nodes

forward packets using pre-specified paths.

all nodes uniformly. As will be shown, backpressure routing
— as proposed in [10] — is suboptimal when applied only
to a subset of nodes in the network.
Techniques to provide throughput-optimal multipath

routing have been explored in various contexts. The work
in [3] considers the problem of setting link weights pro-
vided to the Open Shortest Path First (OSPF) routing
protocol such that, when coupled with bifurcating traffic
equally among shortest paths, the network achieves through-
put equal to the optimal multicommodity flow. The authors
of [11] use an entropy maximization framework to develop
a new throughput-optimal link state routing protocol where
each router intelligently bifurcates traffic for each destina-
tion among its outgoing links. These techniques all require
centralized control, universal adoption by all network nodes,
or both; thus none of these techniques could provide incre-
mental deployment of throughput optimal routing to wire-
less networks. Moreover, these techniques cannot be used
in conjunction with throughput optimal dynamic control
schemes, such as backpressure.
We would like to enable new network control policies to be

deployed in existing networks, alongside legacy nodes that
are unaware of the new control policies. There are many
reasons to integrate controllable nodes into heterogeneous
networks in a gradual manner, not the least of which is the
financial cost of replacing all nodes at once. Other reasons
include a need to maintain compatibility with current appli-
cations and special purpose hardware, a lack of ownership
to decommission legacy equipment, and a lack of adminis-
trative privilege to modify existing software.
Conceptually, we model controllable nodes as operating

in a network overlay on top of a legacy network. Network
overlays are frequently used to deploy new communication
architectures in legacy networks [8]. To accomplish this,
messages from the new technology are encapsulated in the
legacy format, allowing the two methods to coexist in the
legacy network. Nodes making use of the new communi-
cation methods are then connected in a conceptual network
overlay that operates on top of the legacy network, as shown
in Figure 1.
Several works have considered the use of network overlays

to improve routing in the Internet. The work in [1] proposes
resilient overlay networks (RON) to find paths around net-
work outages on a faster timescale than BGP. Similarly, [4]
proposed a method for choosing placement of overlay nodes
to improve path diversity in overlay routes. While both of
the preceding works show that their strategies choose high

quality single-path routes, we go further and identify multi-
path routes that offer maximum throughput.

Delay reduction for BP routing has been studied in a va-
riety of scenarios. While multipath routes are required to
support the full throughput region, the exploratory phase
of BP can lead to large queues when the offered load is low
and single-path routes would suffice. In [6], a hybrid pol-
icy combining BP with shortest-path routing is proposed,
where flows are biased towards shortest-path routes, yet still
support the full throughput region. This hybrid policy is
extended in [5] to also include digital fountain codes, and
shown to achieve good end-to-end delay performance in the
presence of random link failures. The work in [12] develops
a policy that achieves a similar shortest-path result by min-
imizing the average hop count used by flows. In a scenario
with multiple clusters that are intermittently connected, [9]
combines BP with source routing in a network overlay model
to separate the queue dynamics of intra-cluster traffic from
longer inter-cluster delays. The work in [2] applies shadow
queues to allow the use of per-neighbor FIFO queues instead
of per-commodity queues, as is typical with differential back-
log routing, and finds that this can improve network delay.
These prior works assume a homogeneous scenario where all
nodes use the same control policy and thus differ fundamen-
tally from our approach.

1.2 Problem Statement and Contributions
Given a graph G with nodes N supporting shortest-path

routes between each pair of nodes, we wish to identify a min-
imal set of controllable nodes V ⊆ N such that if only these
nodes are allowed to bifurcate traffic, maximum throughput
can be achieved. Given any subset of nodes that are con-
trollable, we also wish to develop an optimal routing policy
that operates solely on these nodes.

Ideally, we would like to solve P1,

V ∗
1 = min

V⊆N
|V| s.t. ΛG(V) = ΛG(N ) , (P1)

where ΛG(V) is the throughput region (i.e., the set of multi-
commodity arrival rate vectors that can be stably supported
by the network) for graph G when only nodes V are con-
trollable, while ΛG(N ) is the throughput region when all
nodes are controllable. Note that comparing throughput re-
gions directly can be difficult, so instead we identify a con-
dition that is necessary and sufficient to guarantee the full
throughput region, and then we search for the minimal V
that satisfies this condition. Second, we develop a modified
BP routing policy and show through simulation that if ap-
plied on nodes V, it stabilizes any arrival vector in ΛG(V).
Our solutions for the first and second problems are comple-
mentary, in the sense that they can be used together to solve
the joint problem. However, our node placement algorithm
can be used with other policies, and our backpressure policy
works under any overlay node placement.

Our contributions are summarized below.

• We formulate the problem of placing the minimum
number of overlay (controllable) nodes in a legacy
network in order to achieve the full multicommodity
throughput region and provide an efficient placement
algorithm.

• We apply our placement algorithm to several scenarios
of interest including regular and random graphs, show-
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ing that in some cases, only a small fraction of overlay
nodes is sufficient for maximum throughput.

• We propose a dynamic control policy — OBP — as a
modification of BP for use at overlay nodes. We show
via simulation that OBP can outperform BP when lim-
ited to control at overlay nodes, and that OBP also has
better delay performance compared to BP with control
at all nodes.

2. MODEL
We model the network as a directed graph G = (N , E),

where N is the set of nodes in the network and E is the set
of edges. We assume that the underlay network provides a
fixed realization for shortest-path routes between all pairs
of nodes, and that uncontrollable nodes will forward traf-
fic only along the given shortest-path routes. Further, we
assume that only one path is provided between each pair
of nodes. Let P SP

ab be the shortest path from a to b, and
let PSP = (P SP

ab ), for all pairs a, b ∈ N , be the set of all
shortest paths provided by the underlay network. If (i, j)
is a link in G, then we assume that the single hop path is
available, i.e. P SP

ij ∈ PSP. Whenever a packet enters a for-
warding node, the node inspects the corresponding routing
table and sends the packet towards the pre-specified path.
Therefore, the performance of the system depends on the
available set of paths PSP. Optimal substructure is assumed
for shortest-paths, such that if shortest-path P SP

ac from node
a to c includes node b, then path P SP

ac includes shortest-
paths P SP

ab , from a to b, and P SP
bc , from b to c. This optimal

substructure is consistent with shortest-paths in OSPF, a
widely used routing protocol based on Dijkstra’s shortest-
path algorithm [8], where OSPF allows for the use of lowest
next-hop router ID as a method for choosing between mul-
tiple paths of equal length.
Next, we consider the subset of nodes V ⊆ N , called

overlay or controllable nodes, which can bifurcate traffic
throughput different routes. Intuitively, these nodes can im-
prove throughput performance by generating new paths and
enabling multipath routing. The remaining uncontrollable
nodes u ∈ N \ V provide only shortest-path forwarding in
the underlay network, with an exception that any uncon-
trollable node u can bifurcate all traffic that originates at u;
this may occur, for example, in the source applications at un-
controllable nodes, or in a shim-layer between the network-
layer and application-layer. Without such an exception, all
sources may be required to be controllable nodes.
Controllable nodes can increase the achievable through-

put region by admitting new paths to the network as con-
catenations of existing paths from shortest-path routing. A
2-concatenation of shortest-paths P SP

av and P SP
vb is an acyclic

path from a to b, Pab, where v ∈ V is a controllable node
and v is the only node shared between shortest-paths P SP

av

and P SP
vb . Note that a 2-concatenation of acyclic paths will

always be acyclic, as we only allow the concatenated paths
to share the overlay node v at which concatenation is per-
formed. An n-concatenation is then the concatenation of n
shortest-paths at n − 1 controllable nodes, performed as a
succession of (n−1) 2-concatenations, and therefore acyclic.
Consider the set of paths P(V), which contains all underlay
paths PSP as well as all possible n-concatenations of these
paths at the controllable nodes V. We will see that this
set P(V) plays a role in the achievability of the throughput
region.

3. THROUGHPUT REGION
The throughput region ΛG(V) is the set of all arrival rates

that can be achieved by any policy implemented at control-
lable nodes V on graph G. For the case where all nodes are
controllable, i.e., V = N , the throughput region equals the
stability region of graph G. This section characterizes this
region for a given set of paths P(V).

Packets destined for node c are called commodity c pack-
ets. Let λc

a be the rate of exogenous arrivals at node a for
commodity c, and let λ = (λc

a) be the multicommodity ar-
rival rate vector for all sources a and commodities c. Let
fab,c
ij be the edge-flow for commodity c on edge (i, j) along
the shortest-path from node a to b. Flow for a path is al-
lowed only on the edges along that path, i.e. fab,c

ij = 0

unless (i, j) ∈ P SP
ab . Let f̄c

ab be path-flow for commodity c
along shortest-path P SP

ab , from node a to b. Decision variable
vi = 1 if node i is controllable, and vi = 0 otherwise, for all
nodes i ∈ N . The capacity of edge (i, j) is Rij . The control-
lable throughput region ΛG(V) is then the set of all arrival
rate vectors (λc

a) such that Eqns. (1-6) can be satisfied.

Flow Conservation:

λc
v =

∑

b∈{c,V\v}

f̄c
vb −

∑

d∈V\v

f̄c
dv , ∀ v ∈ V, c ∈ N \ v (1)

λc
u =

∑

b∈{c,V}

f̄c
ub , ∀ u ∈ N \ V, c ∈ N \ u (2)

Path Constraint:

f̄c
ab = fab,c

ij , ∀ (i, j) ∈ P SP
ab , ∀ a, b, c ∈ N (3)

Overlay Neighbor Constraints:

fab,c
ij ≤ (1− vi)Rij , ∀ (i, j) ∈ P SP

ab , a 6= i, ∀c ∈ N (4)

fab,c
ij ≤ (1− vj)Rij , ∀ (i, j) ∈ P SP

ab , b 6= j, ∀c ∈ N (5)

Edge Rate Constraint:
∑

a,b,c

fab,c
ij ≤ Rij , ∀ (i, j) ∈ E (6)

Eqn. (1) represents flow conservation of commodity c
packets at controllable node v. Here, exogenous arrivals
at node v equal network departures minus (endogenous)
network arrivals at v. Similarly, Eqn. (2) represents flow
conservation for exogenous arrivals at uncontrollable nodes.
The exogenous arrivals for commodity c at uncontrollable
node u are equal to network departures on the shortest-
path to destination c plus network departures along shortest-
paths to controllable nodes. This is the special case where
uncontrollable node u is a source, in that u can dynami-
cally route exogenous arrivals but not endogenous network
arrivals. Eqn. (3) is a path constraint for each commod-
ity c along the shortest-path from node a to node b, where
the path-flow equals the edge-flow for each edge along path
P SP
ab . Eqns. (4-5) force edge-flow fab,c

ij = 0 if node i or j

is a controllable node intermediate to path P SP
ab , i.e., for

i 6= a and j 6= b, as such paths remove routing ability from
intermediate controllable nodes. Eqns. (4-5) are necessary
to allow for dynamic choice of controllable nodes, and are
redundant with Eqn. (6) when nodes i and j both are un-
controllable. Finally, Eqn. (6) is an edge rate constraint for
every edge (i, j), such that total flow over an edge is upper
bounded by the edge capacity.

75



If there are no controllable nodes, i.e. V = ∅, then Eqn. (2)
simplifies to

λc
a = f̄c

ac , ∀ a, c ∈ N , a 6= c , (7)

where Eqns. (4-5) can be ignored as they are always redun-
dant with Eqn. (6). The throughput region without con-
trollable nodes, ΛSP

G ≡ ΛG(∅), is thus limited to the set of
arrival rate vectors λ such that Eqns. (7), (3) and (6) are
satisfied. Indeed, these equations specify the shortest-path
formulation for the throughput region on graph G, defined
as ΛSP

G ≡ ΛG(∅).
If all nodes are controllable, i.e. V = N , then there are

no constraints from underlay paths and all dynamic routing
decisions are allowed. Eqns. (1) and (6) simplify to

λc
a =

∑

b:(a,b)∈E

f̄c
ab −

∑

d:(d,a)∈E

f̄c
da , ∀ a, c ∈ N , a 6= c , (8)

∑

c

f̄c
ab ≤ Rab , ∀ (a, b) ∈ E . (9)

There are no uncontrollable nodes here, so Eqn. (2) is
unused, and Eqns. (3), (4), and (5) are redundant with
Eqns. (8) and (9). The full region ΛG ≡ ΛG(N ) is then de-
fined as the set of arrival rate vectors λ that satisfy Eqns. (8-
9). This is the largest region supported by network G.
Any work-conserving policy with shortest-path routing

can support the region ΛG(∅), while backpressure routing
is known to support the full region ΛG(N ). However, how
to achieve the heterogeneous region ΛG(V) with a dynamic
routing policy is not generally known. For heterogeneous
networks, converting an uncontrollable node u into a control-
lable node v relaxes the constraints for node u from Eqn. (2)
into Eqn. (1). Note that when node v becomes controllable,
the overlay neighbor constraints from Eqns. (4-5) become
active.
Recall that we assume optimal substructure for shortest-

paths. We use this structure to find an additional property
about the throughput region. Any path P SP

ab that passes
through a controllable node v can be split into two sub-paths
P SP
av and P SP

vb , where optimal substructure guarantees that
both sub-paths are in the set of underlay routes PSP. Node
v can then concatenate these sub-paths to form the original
path P SP

ab . Therefore, if there exists a flow decomposition of
λ that uses path P SP

ab , then there is also a flow decomposition
that uses sub-paths P SP

av and P SP
vb . Thus, with shortest-path

routing, adding controllable nodes can allow the throughput
region to grow, but never causes the region to shrink. This
implies a subset relationship in the throughput region with
shortest-path underlay routing, such that for any overlay
node sets V1,V2 : V1 ⊆ V2 ⊆ N ,

ΛSP
G ≡ ΛG(∅) ⊆ ΛG(V1) ⊆ ΛG(V2) ⊆ ΛG(N ) ≡ ΛG. (10)

4. PLACEMENT OF OVERLAY NODES
We would like to place controllable nodes to solve P1, but

the constraint ΛG(V) = ΛG(N ) is difficult to evaluate di-
rectly. A simple implementation for P1 can use the fact that
ΛG is a convex polytope, choosing the minimum number of
controllable nodes to satisfy all points in the throughput
region, as

V ∗
2 = min

V⊆N
|V| s.t. λ

(i) ∈ ΛG(V) , ∀λ
(i) ∈ ΛG , (P2)

ΛG(∅)

ΛG(V1)

ΛG(V2)

ΛG(N )

Figure 2: Projection of throughput regions ΛG(·) for
sets of overlay nodes V1,V2 : V1 ⊆ V2 ⊆ N , indicating
subset relationship as described in Eqn. (10).

where λ
(i) enumerates all extreme points of ΛG. It is clear

that P2 is equivalent to P1, although enumerating all ex-
treme points may be impractical.

Instead of evaluating P2, we propose a surrogate condi-
tion that is easier to evaluate while still leading to the same
optimal solution. Recall that the set of paths P(V) includes
all underlay paths PSP and all n-concatenations (for any n)
of these paths at controllable nodes V. Let PG be the set of
all acyclic paths between all pairs of nodes in G. A first ob-
servation is that P(N ) = PG. This holds by the assumption
that all 1-hop paths are included in the set PSP, and since
all nodes are controllable we can produce any path in G as a
concatenation of 1-hop paths. Next, we define an important
condition.

Condition C.1 (All-paths) A set of controllable nodes V
is said to satisfy the all-paths condition if P(V) = PG.

The condition requires the formation of all acyclic paths in
a network. Since some of the paths are already given (in our
paper PSP), to satisfy the condition, a set of nodes V must
enable all missing paths PG \ PSP by path concatenations.
The following result establishes that this condition is neces-
sary and sufficient for ΛG(V) = ΛG. In other words, to allow
for maximum throughput achievability we must choose V to
ensure that the path concatenations on these nodes form all
missing paths in the network.

Theorem 1 Given a placement of controllable nodes V, sat-
isfying the all-paths condition is necessary and sufficient for
maximizing the throughput region, i.e.,

ΛG(V) = ΛG if and only if P(V) = PG.

The proof is in the Appendix. Using the all-paths condition
C.1, we define P3:

V ∗
3 = min

V⊆N
|V| s.t. All-paths condition C.1. (P3)

Corollary 1 P1 ⇐⇒ P3, therefore V ∗
1 = V ∗

3 .

4.1 Overlay Node Placement Algorithm
We design an algorithm to choose the placement of over-

lay nodes V ⊆ N on a given graph G = (N , E) such that
the choice of overlay nodes is sufficient to satisfy the full
throughput region of the network, i.e. ΛG(V) = ΛG(N ).
At the end of this section we will show that the proposed
algorithm optimally solves P3.

The algorithm consists of three phases: (1) removal of
degree-1 nodes; (2) constraint pruning; and (3) overlay node
placement. These phases are explained below, while each
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step is supported by a related claim which will help proving
the optimality of the algorithm.
Phase 1: Remove Degree-1 Nodes. An attached tree

is a tree that is connected to the rest of graph G by only a
single edge. An intuitive observation is that the throughput
region does not increase by installing controllable nodes on
attached trees. Thus, at this preparatory phase, we remove
all attached trees by removing degree-1 nodes recursively,
as follows. Start with original graph G = (N , E), and ini-
tialize N ′ := N and E ′ := E . While there exists any node
n ∈ N ′ such that degree(n) = 1, set N ′ := N ′ \ n and set
E ′ := E ′ \ e, where e is the only edge that connects to node n.
Repeat until no degree-1 nodes remain. All remaining nodes
have a degree of at least 2, thus all attached trees have been
removed. The graph that remains is G′ = (N ′, E ′).

Lemma 1 Suppose that placement V satisfies the all-paths
condition (C.1), and n ∈ V lies on an attached tree. Then
V \ n also satisfies the all-paths condition.

Proof. To prove P(V) = P(V \ n), it is enough to show
that for any pair a, b ∈ N , the acyclic path Pab ∈ P(V) can
be formed without concatenating paths at n. Note, that if
n /∈ Pab, then the requested is immediately obtained. Thus,
we are free to assume that additionally to lying on an at-
tached tree, n is also on the path Pab. We study four cases:

1. Nodes a and b are both on the same attached tree:
There is only one path from a to b, and this is the
shortest path. Thus, Pab ∈ PSP = P(∅) ⊆ P(V \ n).

2. Node a is on a specific attached tree and node b is not
on that tree: Assume that overlay nodes w, v ∈ V∩Pab

exist on path Pab such that w is not on the attached
tree of node a and it is the closest overlay node to this
tree on path Pab (where distance is defined using hops
on the path), while v is the overlay neighbor of w on the
tree of a. Observe that values w = b, n and v = n are
possible. Unless w = b, we have that Pwb ∈ P(V \ n)
since n /∈ Pwb. From the fact Pab ∈ P(V) and since
v, w are overlay neighbors, we conclude Pvw ∈ PSP.
By optimal substructure, we have that Paw ∈ PSP.
Concatenating at w we get Pab ∈ P(V \ n). For the
case w = b, we immediately get Pvb ∈ PSP and the
result follows from optimal substructure. If w does
not exist, then Pab ∈ PSP ⊆ P(V \ n). If v does not
exist (this is a special case where b, n must lie on a
different attached tree from a) we have Paw ∈ PSP

thus we can still concatenate at w. Last if w, v both
do not exist, then clearly Pab ∈ PSP.

3. Node b is on a specific attached tree and node a is not
on that tree: We define again w, v as in the above case.
Symmetrically we have Paw ∈ P(V \n) since n /∈ Paw,
Pwv ∈ PSP and by optimal substructure Pwb ∈ PSP.
Thus, concatenating at w we obtain Pab ∈ P(V \ n).
Special cases for w, v are treated in a similar manner.

4. Nodes a and b are both on G′: No possible acyclic
path from node a to node b can go through attached
trees, as entering and exiting an attached tree forms
a cycle. Thus, n /∈ Pab from which we obtain directly
Pab ∈ P(V \ n).

By induction, it suffices to allocate overlay nodes in G′ to
satisfy the all-paths condition.

Overlay Node Placement Algorithm

Phase 1: Recursively remove all degree-1 nodes N1

and associated edges E1 from graph G, until no degree-1
nodes remain. The remaining graph is G′ = {N ′, E ′}, where
N ′ = N \ N1 and E ′ = E \ E1. This removes all attached
trees from G.

Phase 2: Consider the destination tree Dn for each
node n ∈ N ′, and consider the degree of all nodes b ∈ N ′ \n
on tree Dn. If the degree of b on Dn is less than the degree
of b on G′, then prune destination tree Dn at node b by
removing all edges to children of node b on Dn, and remove
any nodes and edges that become disconnected from n. The
remaining subgraph is the pruned tree D′

n.
Phase 3: Solve P4, and place an overlay node at each

node n where the solution to P4 has vn = 1.

Figure 3: Summary of node placement algorithm.

Phase 2: Constraint Pruning. In this phase, we de-
fine the destination trees which will be used to find the con-
straints for node placement. Exploiting a necessary condi-
tion from Lemma 2 regarding the placement of controllable
nodes, we show that proper pruning of these destination
trees will identify the set of constraints over which we min-
imize the allocation of controllable nodes.

By optimal substructure, the union of shortest-paths P SP
xn

to any destination n from all nodes x ∈ N ′ \ n forms desti-
nation tree Dn. Define {P SP

xn } \ n to be the set of nodes on
the shortest path from x to n, excluding node n. We have
the following.

Lemma 2 If the degree of node x on tree Dn is less than the
degree of x on graph G′, and there is no overlay node along
the shortest path from x to n (i.e. ∄v ∈ V : v ∈ {P SP

xn } \ n),
then the all-paths condition C.1 is not satisfied.

Proof. Let (b, x) be an edge in G′ but not in Dn, where
such an edge exists by the premise of Lemma 2. Consider
path p formed from the concatenation of (b, x) and shortest-
path P SP

xn . We will show that this path cannot be formed if
there are no controllable nodes in the shortest path from x
to n, and thus the all-paths condition C.1 is not satisfied.

First, observe that since edge (b, x) is not on tree Dn,
shortest-path P SP

bn does not include this edge. Thus, the
path p requires a concatenation of two or more shortest-
paths. Such a concatenation must occur at a controllable
node on path P SP

xn . However, this is impossible since there
are no controllable nodes on path P SP

xn . Thus, C.1 is not
satisfied.

For Phase 2, we prune destination trees Dn at nodes with
degree less in Dn than in G′ to obtain pruned trees D′

n. By
Lemma 2, for the all-paths condition to be satisfied it is
necessary to have at least one overlay node on the shortest
path to n from every leaf node of pruned tree D′

n. The
pruned trees D′

n and this necessary condition from Lemma 2
will be used as constraints in Phase 3.

Phase 3: Overlay Node Placement. Consider the
following binary program to place the minimum number of
overlay nodes to satisfy Lemma 2 for all nodes on all pruned
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trees D′
n:

V ∗
4 = min

∑

n

vn

s.t.
∑

a∈{PSP

bn
}\n

va ≥ 1, ∀b ∈ LeafNodes(D′
n), ∀n

vn ∈ {0, 1}, ∀n

(P4)

where LeafNodes(D′
n) is the set of all leaf nodes on pruned

tree D′
n, and where {P SP

bn } \ n is defined in Phase 2. Next,
we show that the placement determined by the solution of
P4 satisfies the all-paths condition.

Lemma 3 The overlay node placement of P4 satisfies the
all-paths condition for graph G′.

The proof is in the Appendix.
A summary of the algorithm is shown in Figure 3. The

following main result establishes the performance of the pro-
posed placement algorithm.

Theorem 2 Let V∗ be the solution produced by the overlay
node placement algorithm. Then, V∗ is an optimal solution
to P3. It follows that

• ΛG(V
∗) = ΛG.

• V∗ is an optimal solution to P1.

Proof. By Lemma 2, the constraint of P4 is necessary
for the all-paths condition. By Lemmas 1 and 3 it is also
sufficient. Thus, we have P4 ⇐⇒ P3. By Theorem 1, the
remaining assertions follow.

Phases 1-2 of the algorithm have complexity O(N2). P4
solves a vertex cover problem, which is known to be NP-Hard
in general. However, note that the constraints of our prob-
lem have optimal substructure, which might be exploitable.
For our experiments on graphs with 1000 nodes, the solver
found most solutions to P4 within 5 seconds, and we only
rarely encountered scenarios that required more than a few
minutes to solve. Thus, the algorithm is practical.

5. EXPERIMENTS WITH OPTIMAL

NODE PLACEMENT
We provide results for various types of network graphs,

including specific graph families and random graphs. By
Theorem 1, the full throughput region is provided by the
placement of our algorithm on all these cases.

5.1 Simple Scenarios

5.1.1 Trees and Forests

Consider trees with single-path underlay routes P SP
ab for

every pair of nodes a and b. A tree is loop free, and thus
each path P SP

ab is the unique acyclic path from node a to b.
Thus, the all-paths condition is automatically satisfied, and
ΛG(∅) = ΛG(N ).
It follows that no controllable nodes are required for a

forest, which is a disjoint union of trees.

5.1.2 Cycles and Rings

Lemma 4 Every cycle requires at least 3 controllable nodes
to satisfy the all-paths condition.

0 250 500 1000
0

0.1

0.2

0.3

Z, power−law truncation parameter

V
/N

 

 

α = 2

α = 2.25

α = 2.5

α = 2.75

α = 3

Figure 4: Results of overlay node placement algo-
rithm on random graphs where node degree follows
a power-law distribution with exponent α. Graphs
generated with configuration model and truncated
Zipf distribution.

Proof. Consider controllable nodes v, w ∈ V on a cycle,
and without loss of generality assume shortest-path P SP

vw is
on the cycle. Then path P SP

vw allows one direction of flow
on the cycle, and at least one additional controllable node is
required to allow flow in the counter direction on the cycle.
Note that the same problem occurs in scenarios with 0 or 1
controllable node on the cycle, and when path P SP

vw is not on
the cycle. Thus, at least 3 controllable nodes are required
on each cycle in the network.

Further, the lower bound from Lemma 4 is tight for the
case of a ring, where the entire graph is a single cycle.

Lemma 5 Exactly 3 controllable nodes are required to sat-
isfy the all-paths condition for a ring network with N ≥ 5
nodes and hop-count as the metric for shortest-path routing.

The proof is in the Appendix.

5.1.3 Cliques

Consider cliques with single-path underlay routes P SP
ab for

every pair of nodes a and b. We require all edges (a, b) be
included in the underlay routes, however there is an edge
between every pair of nodes in a clique. Thus, all underlay
routes are single edges, i.e. P SP

ab = (a, b) for all pairs a, b ∈
N . A Hamiltonian path, traversing all nodes, will require
all intermediate nodes to be controllable. Such paths can
start and end at any node, therefore the all-paths condition
requires all nodes to be controllable for a clique, i.e. V = N .

5.2 Random Networks
This section considers placement of overlay nodes to sup-

port the full throughput region on random graphs. We
present here results about power-law graphs, where the de-
gree of nodes is random and roughly follows a power-law
distribution. This is recognized as a realistic model for the
Internet [7]. We have experimented with several other mod-
els for random graphs, which are omitted here due to lack
of space.

We construct random networks that have power-law de-
gree distributions using the configuration model and a trun-
cated Zipf distribution [7]. Zipf is a discrete distribution
with parameters α and Z, where α is the power-law expo-
nent and Z is a truncation parameter indicating the maxi-
mum degree of the distribution. The Zipf PMF is

P(D = d) =
d−α

∑Z

k=1 k
−α

, for d = 1, ..., Z.
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Figure 5: Results of P5 for chosen rate vector on
6 × 6 grid. (a) Arrival rate vector λ includes traffic
demands for all all pairs of nodes. Here we con-
sider λ with four active traffic demands with sym-
metric rates, as indicated with arrows. (b) Fraction
of λ supported when limited to |V| ≤ X controllable
nodes.

For a given number of nodes N , the configuration model
attaches a number of stubs to each node according to the
Zipf distribution, where a stub is half of an edge. Pairs of
unconnected stubs are then chosen randomly and connected
to form edges. Thus, node degree follows a power-law dis-
tribution.
Figure 4 shows results from the overlay node placement al-

gorithm for random power-law graphs with N = 1000 nodes,
averaged over 10 realizations per data point. Values of α
between 2 and 3 are considered, with α = 2.5 being a fre-
quent estimate for the Internet [7]. For α = 2.5, the overlay
node placement algorithm finds that less than 8% of nodes
need to be controllable for the full throughput region to be
achievable.

6. PLACING A LIMITED NUMBER OF

OVERLAY NODES
A formulation similar to P2 is useful in scenarios where

only a small subset of arrival rate vectors require support,
such that the constraints are limited to the specific vectors
λ

(i) of interest. For example, this includes networks with
nodes that neither generate nor consume information such as
network routers. This approach can also use P2 to minimize
the number of controllable nodes required to allow maximum
flow between a specific source and destination.
A similar formulation can be used to maximize the achiev-

able flow when the maximum number of controllable nodes
is upper bounded by some number X, as shown in P5.
This can be useful in scenarios where resource limitations
don’t allow enough controllable nodes to achieve maximum
throughput. As in P2, multiple rate vectors λ

(i) can be
supported with additional constraints ρλ(i) ∈ ΛG(V).

max
V⊆N

ρ s.t. ρλ ∈ ΛG(V), |V| ≤ X. (P5)

Figure 5 shows results of P5 on a 6× 6 grid for a specific
rate vector λ with four equal traffic demands. Figure 5b
shows that a fraction 80% of throughput is supported in the
direction λ with only X = 4 and diminishing returns from
additional overlay nodes, with X = 9 required for 100%
throughput.

7. BACKPRESSURE OVERLAY POLICY
Subject to the placement of overlay nodes, we study the

problem of throughput maximization using dynamic routing
decisions at overlay nodes.

7.1 The Control Problem
We are interested in a dynamic policy that is stable for

any arrival vector in the region ΛG(V), i.e. achieves maxi-
mum throughput. Under policy π, let µc

vn(t, π) be the ser-
vice function on the link (v, n) for commodity c packets,
where v ∈ V and n ∈ N . The edge rate constraint im-
plies

∑

c
µc
vn(t, π) ≤ Rvn must be satisfied at every slot.

Thus, at each overlay node, the policy chooses the number
of packets to be sent to any outgoing neighbor by assigning
values to these functions. The uncontrollable nodes N \ V
are assumed to only forward the packets on pre-specified
shortest-paths, and are assumed to use a fair scheduler to
choose between competing commodities. In our simulations
we use the example of proportionally-fair random service
on a packet-by-packet basis, such that node a transmits a
packet of commodity c with probability pca = Uc

a/
∑

x
Ux

a ,
where Ux

a is the queue backlog for commodity x at uncon-
trollable node a.

Every overlay node v ∈ V maintains a queue for each
commodity c and we denote its backlog with Qc

v(t) at slot
t. For two overlay neighbors v, w ∈ V, we define F c

vw(t) the
number of commodity c packets that have departed overlay
node v but have not yet reached overlay node w. We call
these the packets-in-flight between overlay nodes v and w
for commodity c. While it may be impractical to observe
individual queue sizes at uncontrollable nodes, counting F c

vw

can be realized by looking at the difference in cumulative
count for packets of commodity c sent from v to w versus the
cumulative count for these packets received at w. This may
be realized using a simple packet acknowledgment scheme
for each pair of overlay nodes.

In what follows, we study the problem of controlling this
system by observing queue backlogs Q and packets-in-flight
F , and choosing service function µ at overlay nodes only.

7.2 Insufficiency of Traditional Backpressure
For an interference-free wired network, the backpressure

(BP) routing policy [10] is as follows. For each link (a, b),
define the differential backlog W c

ab(t),

W c
ab(t) = Qc

a(t)−Qc
b(t), ∀ (a, b) ∈ E , ∀ c ∈ N ,

and define commodity c∗ab(t) that maximizes this weight,

c∗ab(t) ∈ argmax
c∈N

W c
ab , ∀ (a, b) ∈ E , (11)

with ties broken arbitrarily. Then the BP policy chooses

µ
c∗ab

ab (t,BP) =

{

Rab if W
c∗ab

ab > 0
0 otherwise,

(12)

where µc
ab(t,BP) = 0, ∀c 6= c∗ab. In [10], this policy is shown

to stabilize any point in the region ΛG(N ).
The intuition behind the optimality of BP is that conges-

tion information propagates through the network via queue
backlogs. The policy balances neighboring backlogs, such
that when node n becomes congested, any upstream neigh-
bors of n also become congested. In our problem, the un-
controllable nodes do not use BP, and thus any congestion
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Figure 6: Insufficiency of BP in overlay net-
works. (a) Scenario with contention at uncontrol-
lable node 3. (b) Queue size of BP in overlay vs.
BP in underlay.

occurring on these nodes is not propagated. This is the pri-
mary reason why we do not expect BP to perform well in
our system.
Consider the example of Figure 6a, where (controllable)

overlay nodes V = {1, 2, 5, 6} are indicated in blue, with
directed unit-rate links. It can easily be verified that the
all-paths condition C.1 is satisfied for this setting, thus
ΛG(V) = ΛG(N ). The dashed red arrows show two traf-
fic demands with symmetric arrival rates λ. With unit-rate
links, offered load ρ = λ, where ρ < 1 is required for this
network to be stable. We examine two different cases. First,
we run BP at all nodes; this achieves maximum throughout
and it is stable for all ρ < 1. Second, we run BP only
at overlay nodes, computing differential backlogs across the
overlay edges, e.g. node 2 computes W 6

2,5 = Q6
2 − Q6

5 and
W 6

2,6 = Q6
2 −Q6

6. Simulation results in Figure 6b show that
BP at the overlay nodes cannot stabilize ρ > 2/3, i.e. it
is throughput suboptimal. The intuition is as follows. Note
thatQ6

6 = 0, since node 6 is a destination. Then, any conges-
tion at uncontrollable node 3 cannot be detected by source
node 2, leading to positive traffic flow from source 2 through
node 3. This motivates our policy in the following section.

7.3 The Proposed OBP Policy
Let E represent the set of edges in the overlay network. We

propose the following policy, both dynamic and distributed,
to account for packets-in-flight.
Overlay Backpressure (OBP). Redefine the differen-

tial backlog as

W c
vw(t) = Qc

v(t)−Qc
w(t)− F c

vw(t), ∀ (v, w) ∈ E , ∀ c ∈ N ,

then determine c∗vw and µc
vw(t,OBP) as in Eqns. (11)-(12).

Intuitively, this policy takes into account both the packet
accumulation at the neighbor overlay node v, as well as any
packets-in-flight on the path Pvw, in the form of negative
pressure. Through simulation we observe the following prop-
erties of the algorithm. (i) OBP maximizes throughput in all
examined scenarios, including the one of Figure 6a, (ii) OBP
outperforms BP applied only at overlay nodes, and (iii) OBP
has good delay properties, outperforming BP even when the
latter is applied at all nodes.
In Figure 7, we study different arrival vectors for the net-

work of Figure 6a. The simulation results in Figure 7b show
that all studied vectors are supported by the OBP policy.
In Figure 8, we study a directed tandem network for the

purpose of illustrating the delay properties of OBP. From [2]
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Figure 7: Evaluation of OBP policy on scenario from
Figure 6a. (a) Throughput region of Figure 6a, with
select rate vectors indicated. (b) Average queue
backlog of OBP, after 1e6 time steps, for rate vectors
indicated in (a).

it is known that for BP on a tandem network, per-node
queues grow linearly with distance from the destination, and
thus network queue size grows quadratically with the total
number of nodes. However, for the OBP policy we observe
this linear growth of per-node queues only at controllable
nodes, implying smaller total network queues size and im-
proved delay performance when there are few controllable
nodes. In this particular example, only the source is control-
lable, with n− 1 legacy nodes, a setting that corresponds to
the maximum benefit. Delay is compared between BP and
OBP for a fixed offered load in Figure 8b and for a fixed
number of nodes in Figure 8c. Although BP is applied at
all nodes it is still outperformed by OBP applied only at the
source.

Finally, in Figure 9, we show simulation results from three
policies: OBP, BP at all nodes, and BP with shortest-path
bias (BP+SP) from [6]. Although the latter two are both
throughput optimal policies, they yield worse delay than
OBP. The reason is threefold: (i) the quadratic network
queue size of BP is proportional to the number of control-
lable nodes used (in this scenario, OBP uses only 5 overlay
nodes), (ii) no packets are sent to attached trees in case of
OBP, and (iii) under light traffic, packets under BP perform
random walks.

While our OBP policy seems to perform well in simula-
tions, we do not believe that it is optimal in general set-
tings. A promising future direction of research is to identify
a maximally stable dynamic routing policy for our overlay
architecture.

8. CONCLUSIONS
We study optimal routing in legacy networks where only

a subset of nodes can make dynamic routing decisions, while
the legacy nodes can forward packets only on pre-specified
shortest-paths. This model captures evolving heterogeneous
networks where intelligence is introduced at a fraction of
nodes. We propose a necessary and sufficient condition for
the overlay node placement to enable the full multicommod-
ity throughput region. Based on this condition, we devise an
algorithm for optimal controllable node placement. We run
the algorithm on large random graphs to show that very
often a small number of intelligent nodes suffices for full
throughput. Finally, we propose a dynamic routing policy
to be implemented in a network overlay, that demonstrates
superior performance in terms of both throughput and delay.
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(b) Simulation Results for Fixed ρ = 0.8
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(c) Simulation Results for Fixed n = 25

Figure 8: Directed tandem with n nodes. (b) BP
versus OBP for offered load ρ = 0.8. Quadratic
growth for BP. Linear growth for OBP. (c) BP ver-
sus OBP for n = 25. Quadratic backlog in BP results
for ρ > 0.5. Dotted horizontal line at n(n− 1)/2 for
BP, and at 2n for OBP.
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APPENDIX
Proof of Sufficiency for Theorem 1. We will show

that the all-paths condition is sufficient for supporting any
multicommodity vector λ ∈ ΛG while bifurcating traffic only
at nodes V. Feasibility of λ implies existence of a feasible
flow decomposition of λ. Without loss of generality, choose
any one component of λ that sends flow from node a to
node b with corresponding arrival rate λb

a. This arrival rate
λb
a is supported by flow fλ

ab, where fλ

ab can be decomposed
into subflows fλ

ab(p) for paths p ∈ Pab. Since V satisfies all
path condition it follows that all-paths Pab can be formed as
concatenations of available shortest paths on nodes V, and
thus the feasible flow decomposition can be constructed with
a stationary policy using underlay routes and the given set
of controllable overlay nodes.

81



Proof of Necessity for Theorem 1. We will show
that given a V such that there is a path that is not avail-
able either as a shortest path or as a concatenation, i.e.
the all-paths condition is not satisfied, the full throughput
region cannot be achieved. Support of the full through-
put region requires support for all arrival rate vectors in-
terior to the rate region allowed by the network. Assume
ΛG(V) = ΛG and some path PX

ab is unavailable, both as a
shortest-path and as an n-concatenation of shortest-paths
at controllable nodes V. Without loss of generality, assume
that this unavailable path does not traverse any controllable
nodes. Otherwise, split the unavailable path at controllable
nodes and choose an unavailable segment induced from the
split as path PX

ab; such an unavailable segment must ex-
ist, otherwise the original path could be formed as an n-
concatenation of the induced segments. We will show that
there exists a feasible arrival rate vector that requires use of
the unavailable path PX

ab.
Construct an arrival rate vector λ that includes compo-

nent λb
a equal to the maximum flow allowed for path PX

ab,
plus edge rate Rab if edge (a, b) exists. In vector λ, also in-
clude one-hop traffic demands for all edges (i, j) ∈ E \ (a, b)
by choosing λj

i to equal any remaining capacity on edge
(i, j). This rate vector λ is then feasible by construction.
Let NX

ab be the set of nodes on path PX
ab. For every node

j not on path PX
ab, i.e., j ∈ N \ NX

ab, the arrival rate vector
λ was constructed such that

∑

i
λj
i =

∑

i
Rij . Applying the

edge rate constraints from Equation (6) at node j and taking
the sum over all neighbors i, we have

∑

i

∑

x,y,c
fxy,c
ij ≤

∑

i
Rij =

∑

i
λj
i for all j ∈ N \NX

ab, where the last equality
comes from the previous equation. Then flow conservation
requires that fxy,c

ij = 0 for all commodities c 6= j. Thus,

no feasible flow decomposition of λ can route flow for λb
a

through any nodes in N \ NX
ab. Therefore, it remains to

consider only nodes in NX
ab to support λb

a.
If PX

ab is the only path from node a to b using nodes from
the set NX

ab, then PX
ab is clearly necessary to support flow

λb
a. Otherwise, recall that by assumption there are no con-

trollable nodes intermediate to path PX
ab. Then it remains

only to consider the case where the shortest-path from node
a to b uses a strict subset of nodes in NX

ab, as no controllable
nodes are available for path concatenation. Consider edge
(i, j) such that nodes i and j are on path PX

ab, where edge
(i, j) is on P SP

ab but not on PX
ab. Here, P SP

ij = (i, j) is the only
available path from i to j with unused capacity, because no
controllable nodes are available. Then, f ij,j

ij = λj
i = Rij ,

and Equation (6) requires fab,b
ij = 0. Therefore, there is no

unused capacity on path P SP
ab , so λb

a and λj
i cannot be sup-

ported simultaneously. There are no other paths to consider
from node a to b for a feasible flow decomposition of λ.
Therefore, ΛG(V) ⊂ ΛG if any path is not available. Thus,

we have proved the necessity of the all-paths condition for
wired networks with shortest-path routing.

Proof for Lemma 3. Let V be a overlay node place-
ment chosen by P4, and consider every acyclic path Pab

between all pairs of nodes a and b in graph G′. For all such
paths Pab, we will show that either (1) Pab is a shortest-path
or (2) Pab can be formed as a concatenation of shortest-paths
at overlay nodes V. Thus, Pab ∈ P(V) for all-paths Pab on
graph G′, proving that P(V) = PG′ , i.e., that the all-paths
condition is satisfied.

Define overlay neighbor tree D′′
n to be the union of short-

est path routes to node n from all overlay neighbors of n,
i.e. nodes v ∈ V such that flow on path P SP

vn is allowed by
Eqns. (4-5). Because P4 places overlay nodes on the shortest
paths from the leaf nodes of D′

n to n, we have the relation-
ship D′′

n ⊆ D′
n ⊆ Dn. The leaf nodes of D′′

n are the closest
overlay nodes to n, and we will make use of this construction.

For each path Pab, one of two cases must hold.

(1) The entire path Pab is contained in overlay neighbor
tree D′′

b . In this case, Pab = P SP
ab , so Pab ∈ P(V).

(2) There exists an overlay node v ∈ D′′
b such that path

Pab is a concatenation of paths Pav and P SP
vb at v.

Path P SP
vb is provided by a shortest-path route, so it only

remains to show that path Pav is either (1) a shortest-path
or (2) can be formed as a concatenation of shortest-paths at
overlay nodes V, i.e., Pav ∈ P(V). To show this, first note
that neighbor tree D′′

b includes all neighbors of node b, and
that v is at least one hop away from b. Then path P SP

vb has
a positive length, and thus the length of path Pav is strictly
less than the length of path Pab. We can then iteratively
repeat the above two-case argument by letting b′ = v, and
consider sub-path Pab′ , repeatedly shortening the path until
case (1) holds.

Therefore, every path Pab on graph G′ is also in the set of
paths P(V). Thus, P(V) = PG′ , and the all-paths condition
is satisfied.

Proof for Lemma 5. Lemma 4 establishes the neces-
sity of at least 3 controllable nodes, so it only remains to
show that 3 controllable nodes are sufficient to satisfy the
all-paths condition.

Starting from any node x, consider nodes y and z that
are neighbors, i.e., (y, z) ∈ E , where shortest-paths P SP

xy

and P SP
xz are disjoint. Without loss of generality assume

|P SP
xy | ≤ |P SP

xz | where |p| is the length of path p. With
hop-count as the shortest-path metric, the length of these
disjoint shortest-paths can differ at most by 1. Otherwise,
there would exist a contradiction, as the path formed as a
concatenation of P SP

xy with edge (y, z) would be shorter than

shortest-path P SP
xz . Then the following inequality holds for

any number of nodes N ≥ 5.

|P SP
xy | ≥

⌊

N − 1

2

⌋

≥
N

3
(13)

Therefore, any node can reach a minimum of N/3 nodes in
either direction around the ring using shortest-path routing.
Conversely, any node can be reached by a minimum of N/3
nodes in either direction. Then we can place 3 controllable
nodes, v1, v2, and v3, such that shortest-paths P SP

vivj
and

P SP
vivk

are edge-disjoint for all permutations i, j, k ∈ {1, 2, 3}.
The overlay edges between these controllable nodes then
form a bidirectionally connected ring as shown in Figure 1,
making use of all-paths between the controllable nodes. Ev-
ery uncontrollable u is on the shortest-path between two
controllable nodes vi and vj ; thus, by optimal substructure,
paths P SP

uvi
and P SP

uvj
are edge-disjoint paths from u to vi and

vj , and paths P SP
viu

and P SP
vju

are edge-disjoint paths from vi
and vj to node u. Then every path in the network is either
a shortest-path or can be formed as an n-concatenation of
shortest paths, and the all-paths condition is satisfied with
exactly 3 controllable nodes.
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