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ABSTRACT
To address the problem of information spreading over lossy
communication channels, this paper proposes a joint FoUn-
tain coding and Network coding (FUN) approach. Differ-
ent from the Transmission Control Protocol (TCP), our
FUN approach is a mechanism of Forward Error Correc-
tion (FEC), which does not use retransmission for recov-
ery of lost packets. The novelty of our FUN approach lies
in combining the best features of fountain coding, intra-
session network coding, and cross-next-hop network coding.
As such, our FUN approach is capable of achieving unprece-
dented high throughput over lossy channels. Experimental
results demonstrate that our FUN approach achieves higher
throughput than the existing schemes for multihop wireless
networks.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication

Keywords
Fountain code; network coding; erasure channel; multihop;
multiple sources; loss tolerant; information spreading

1. INTRODUCTION
Information spreading plays a central role in human soci-

ety. In the information age, how to efficiently and reliably
spread information with low delay is critical for numerous
activities involving humans and machines, e.g., the spread
of tweets in Twitter, the dissemination of data collected by
wireless sensor networks, and delivery of Internet TV. This
paper is concerned with the problem of information spread-
ing over lossy communication channels (a.k.a., erasure chan-
nels) where packets may be lost/discarded due to bit errors
or buffer overflow. For wired networks over optical fiber
channels, the bit error rate can be as low as 10−12; hence
packet loss is mainly due to overflow of the buffers at routers
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rather than bit errors. For wireless channels, packet loss is
mainly due to uncorrectable bit errors1, which are caused
by fading, shadowing, interference, path loss, noise, etc. [13]

To address the packet loss problem, this paper proposes a
joint FoUntain coding and Network coding (FUN) approach,
which belongs to the category of FEC. Under our FUN cod-
ing approach, each source node uses a fountain code to en-
code information packets (which we call as native packets);
each intermediate node (or a relay node) uses intra-session
network coding to re-encode the packets in the same batch
of the same session2 received from the upstream node, and,
if possible, uses cross-next-hop network coding to re-encode
packets destined to different next-hop nodes; a sink node
decodes the coded packets on the fly, and is able to recon-
struct all the native packets as long as it receives sufficient
number of coded packets.

The main contributions of this paper are:

1. We propose an FUN approach, which consists of three
coding components, namely, fountain coding, intra-
session network coding, and cross-next-hop network
coding. The novelty of FUN lies in combining the
best features of fountain coding, intra-session network
coding, and cross-next-hop network coding. As such,
our approach is capable of achieving unprecedented
high throughput while allowing uncoordinated multi-
ple source transmission of the same file to the same
destination. Hence, FUN is well suited for peer-to-peer
content delivery network (CDN), file transfer from dis-
tributed storage networks, social networks, social TV,
and mobile TV.

2. We develop practical protocols for the proposed FUN
approach, which are backward compatible with the ex-
isting protocols. Therefore, our protocols can seam-
lessly work with existing Medium Access Control

1At the transmitter, most physical layer schemes encode messages
by both an error-detecting code such as cyclic redundancy check
(CRC) and an error-correction code. At the receiver, a received
packet is first decoded by the error-correction decoder. If the
resulting packet has uncorrectable bit errors, it will not pass the
check of the error-detecting module. Most physical layer designs,
if not all, will drop those packets that have uncorrectable bit
errors.
2In this paper, a unicast session is identified by a unique
source/destination IP address pair while a multicast session is
identified by a tuple of the source IP address and all the multi-
cast receiver IP addresses. In our future work, we will consider
a session identified by a unique tuple of source/destination IP
addresses, source/destination Layer-4 port numbers.
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(MAC) protocols, IP, TCP, UDP, HTTP, etc. In ad-
dition, the proposed FUN architecture provides a uni-
fied framework for existing network coding schemes,
our proposed FUN codes, and existing protocols.

To evaluate the performance of FUN, we conduct ex-
tensive experiments. Experimental results demonstrate
that our approach achieves higher throughput than exist-
ing schemes for multihop wireless networks.

The rest of the paper is organized as follows. Section 2 re-
views the related work. In Section 3, we present the overview
of the FUN architecture. Section 4 describes the FUN cod-
ing schemes in detail. In Section 5, we show the experimen-
tal results. Section 6 concludes the paper and points out the
future directions.

2. RELATED WORK
In this section, we review various FEC mechanisms for

erasure channels, i.e., erasure codes, network coding, and
joint erasure coding and intra-session network coding.

2.1 Erasure Codes
Erasure codes can be used to recover native packets with-

out feedback and retransmission. Erasure codes include
Reed-Solomon codes, LDPC codes, and fountain codes [12].
Compared to erasure codes (including fountain codes), our
proposed FUN approach can achieve much higher through-
put for communication over multihop wireless networks.
The lower bound on the end-to-end packet loss rate under
FUN is maxi∈{1,2,··· ,Nh} pi (where pi is the packet loss rate
of Link i and Nh is the number of hops from the source to
the destination) while the end-to-end packet loss rate un-
der an erasure code is 1 − ∏Nh

i=1(1 − pi) [18], which is much
larger than maxi∈{1,2,··· ,Nh} pi for large Nh. For example,
for Nh = 2 and pi = 0.1 (i = 1, 2), the end-to-end packet
loss rate under FUN is 0.1 while the end-to-end packet loss
rate under an erasure code is 0.19; for Nh = 10 and pi = 0.1
(∀i), the end-to-end packet loss rate under FUN is still 0.1
while the end-to-end packet loss rate under an erasure code
is 0.65, which is 6.5 times as much as 0.1. The much lower
end-to-end packet loss rate achieved by FUN translates to
much higher throughput (date rate), compared to erasure
codes. In our simulations, we observe that the throughput
under FUN is 35 times as large as that under a fountain
code (RQ code), for Nh = 10 and pi = 0.1 (∀i).

The reason why FUN achieves higher throughput over
multihop lossy networks than erasure codes, is because
under FUN, each relay node performs network coding
and hence coded packets that are lost at each hop are
regenerated/re-coded for the next hop. To illustrate how
FUN works, here is an analogy: a person carries a leaky
tank of water from the source node to the destination; in
each hop, the tank leaks p percent of water; at each re-
lay node, the tank gets refilled to its full capacity; finally,
the tank only lost p percent of water from the source node
to the destination since only the lost water in the last hop
is not refilled. In contrast, erasure codes (including foun-
tain codes) are like no refill at any relay node since network
coding is not used at any relay node; hence the tank loses
(1 − (1 − p/100)Nh ) × 100 percent of water from the source
node to the destination. Here, p/100 is the percentage, e.g.,
p = 10 gives p/100 = 10%.

2.2 Network Coding
Simply forwarding packets is not an optimal operation

at a router from the perspective of maximizing throughput.
Network coding was proposed to achieve maximum through-
put for multicast communication [2]. Network coding tech-
niques can be classified into two categories: intra-session
(where coding is restricted to the same multicast or unicast
session) [2, 5, 8] and inter-session (where coding is applied
to packets of different sessions) [7,14,17]. For wireless com-
munication, cross-next-hop network coding [7,14] and intra-
session network coding [10, 18, 19] are usually used. Under
cross-next-hop network coding, a relay node applies coding
to packets destined to different next-hop nodes. Cross-next-
hop network coding is a special type of inter-session network
coding.

Cross-next-hop network coding has been heavily stud-
ied in the wireless networking area. The major works in-
clude [7, 14]. In [7], Katti et al. proposed an opportunis-
tic network coding scheme for unicast flows, called COPE,
which can achieve throughput gains from a few percent to
several folds depending on the traffic pattern, congestion
level, and transport protocol. In [14], Rayanchu el al. de-
veloped a loss-aware network coding technique for unicast
flows, called CLONE, which improves reliability of network
coding by transmitting multiple copies of the same packet,
similar to repetition coding [9].

Different from COPE [7], which does not add redundancy
to the coded packets, our FUN approach adds redundancy to
the received packets at a relay node; specifically, under FUN,
a relay node re-codes the received packets, using random
linear code [18,19]. Different from CLONE [14], which uses
repetition coding, our FUN approach uses random linear
coding, which is more efficient than repetition coding. Our
experimental results show that FUN achieves much higher
throughput over lossy channels, compared to COPE.

2.3 Joint Erasure Coding and Intra-Session
Network Coding

The following Joint Erasure coding and intra-session
Network coding (JEN) approach has been used for uni-
cast/multicast communication in [10]: The source node uses
random linear erasure coding (RLEC) to encode the native
packets and add a global encoding vector to the header of
each coded packet. A relay node uses random linear network
coding (RLNC) to re-code the packets it has received, i.e.,
the relay node generates a coded packet by randomly lin-
early combining the packets that it has received and stored
in its buffer; the relay node also computes the global en-
coding vector of the re-coded packet, and add the global
encoding vector to the header of the re-coded packet. A
destination node can decode and recover K native packets
as long as it receives enough coded packets that contain K
linearly independent global encoding vectors. In practice,
under JEN, the data to be transmitted is partitioned into
multiple segments [16], or generations [4], or blocks [11], or
batches [3], and coding is restricted within the same seg-
ment/generation/block/batch. In doing so, the encoding
vector is small enough to be put into the header of a coded
packet. To combine the best features of JEN and fountain
codes, Yang and Yeung proposed BATched Sparse (BATS)
codes [18,19]. Our FUN approach combines the best features
of fountain coding, intra-session network coding, and cross-
next-hop network coding. Different from BATS codes, FUN
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utilizes cross-next-hop network coding and hence achieves a
higher rate.

3. FUN OVERVIEW
In this section, we introduce FUN, a new forwarding ar-

chitecture for wireless multihop networks. Since a wireless
channel is a shared medium, it can be regarded as a broad-
cast channel, i.e., a transmitted packet can be overheard by
all the nodes within the transmission range of the sender of
the packet.

We consider a pair of nodes, say Node A and Node B.
Assume that there are two unicast flows between the two
nodes, i.e., a forward flow from Node A to Node B and a
backward flow from Node B to Node A. We propose two
coding schemes, i.e., FUN-1 and FUN-2:

• FUN-1 basically combines BATS coding [18] with
COPE [7] for two flows. But FUN-1 is not a simple
combination of BATS and COPE; a relay node needs
to recover BATS-encoded packets of the forward flow
before recovering packets of the backward flow.

• FUN-2 combines BATS coding with RLNC for two
flows; each relay node needs to add a new encoding
vector to the header of a re-coded packet; only the
destination node performs decoding.

Under FUN-1, two sub-layers, i.e., Layer 2.1 and Layer
2.2, are inserted between Layer 2 (MAC) and Layer 3 (IP).
Layer 2.1 is for cross-next-hop network coding, similar to the
functionality of COPE [7]. Layer 2.2 is for BATS coding [18].
At a source node, Layer 2.2 uses a fountain code to encode
all native packets from upper layers (similar to the outer
code in a BATS code); there is no Layer 2.1 at a source
node. At a relay node, Layer 2.1 is used for cross-next-
hop network coding and Layer 2.2 is used for intra-session
network coding (similar to the inner code in a BATS code);
for Layer 2.2, the relay node runs a procedure called FUN-
1-2.2-Proc, which performs RLNC within the same batch.
At a destination node, Layer 2.2 decodes the coded packets
received; there is no Layer 2.1 at a destination node.

Under FUN-2, only one sub-layer, i.e., Layer 2.2, is in-
serted between Layer 2 (MAC) and Layer 3 (IP). At a source
node, Layer 2.2 uses a fountain code to encode all native
packets from upper layers (similar to the outer code in a
BATS code). At a relay node, if Layer 2.2 receives a packet
with FUN-2
switch enabled, it will run a procedure called FUN-2-2.2-
Proc for mixing packets from two flows; otherwise, it will run
the procedure FUN-1-2.2-Proc, which does not mix packets
from two different flows. Note that different from a BATS
code, FUN-2-2.2-Proc performs re-coding of batches from
two different flows. At a destination node, Layer 2.2 de-
codes the coded packets received.

Different from COPE, FUN-2 is an end-to-end solution,
i.e., a re-coded packet is never decoded at a relay node. In
contrast, under COPE, a next-hop node, say, Node A, needs
to recover the native packet, whose next-hop node is Node
A; the recovery process is like decoding; the relay node may
not recover the native packet if the relay node does not have
enough known packets that are mixed in the XOR-ed packet.

In the current version, both FUN-1 and FUN-2 are re-
stricted to two flows, i.e., forward flow and backward flow
between two nodes. The advantage is that there is no need

for coordination while a higher coding gain can be achieved.
The limitation is that it restricts its use to two flows between
two nodes.

Both FUN-1 packet and FUN-2 packet have two headers
as shown in Fig. 1. If a re-coded packet is mixed from two
flows (i.e., forward and backward flows), it will have a non-
empty Header 2; otherwise, there will be no Header 2.

Header 1 and Header 2 have the same structure for FUN-1
and FUN-2. Fig. 2 shows the structure for FUN-1 Header 1
and Header 2. Fig. 3 shows the structure for FUN-2 Header
1 and Header 2. In Figs. 2 and 3, the NC switch consists of
two bits and indicates one of the following four schemes is
used: 1) FUN-1, 2) FUN-2, 3) RLNC, 4) no network coding.
COPE is a special case of FUN-1, where there is no encoding
vector in FUN Headers; in other words, if the NC switch
equals 00 (in binary format) and there is no encoding vector
in FUN Headers, then the packet is a COPE packet. BATS
is a special case of FUN-2, where there is no FUN Header
2. The fountain code corresponds to the no-network-coding
case with the NC switch equal to 11 (in binary format) and
no encoding vectors in FUN header and no Header 2.

In fact, our FUN architecture is extensible to accommo-
date more than two flows and more than two FUN headers.

4. DESCRIPTION OF FUN CODING

4.1 FUN-1
At a source node, Layer 2.2 uses a RaptorQ (RQ) code

[15] to encode all native packets from Layer 3. The RQ
code is the most advanced fountain code that is available
commercially.

Assume Node A will transmit K native packets to Node
B, and Node B will transmit K native packets to Node A3.
Each packet has T symbols in a finite field Fq, where q is
the size of the field. Denote a packet by a column vector in
F

T
q . In the rest of the paper, we denote the set of K native

packets by the following matrix

B = [b1, b2, · · · , bK ], (1)

where bi is the i-th native packet. With an abuse of notation,
when treating packets as elements of a set, we write bi ∈ B,
B′ ∈ B, etc.

Next we describe the outer code, inner code, XOR coding,
and precoding of FUN-1.

4.1.1 Outer Code of FUN-1
The outer code of FUN-1 is the same as the outer code of

a BATS code. The outer coding of FUN-1 is performed at
a source node at Layer 2.2.

At a source node, each coded batch has M coded packets.
The i-th batch Xi is generated from a subset Bi ⊂ B (B ∈
F

T ×K
q ) by the following operation

Xi = BiGi (2)

where Gi ∈ F
di×M
q is called the generator matrix of the i-th

batch; Bi ∈ F
T ×di
q ; Xi ∈ F

T ×M
q . Similar to a fountain code,

matrix Bi is randomly formed by two steps: 1) sample a
given degree distribution Ψ = (Ψ0, Ψ1, · · · , ΨK) and obtain
a degree di with probability Ψdi ; 2) uniformly randomly
3For simplicity of notation, we let the two flows have the same
number K of packets to transmit. Actually, this is not required
for the FUN architecture.
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Figure 1: The structure of a FUN-1/FUN-2 packet

Figure 2: The header structure of a FUN-1 packet

choose di packets from B to form Bi. Matrix Gi is randomly
generated; specifically, all the entries in Gi are independent,
identically distributed with a uniform distribution in Fq. In
our implementation, Gi is generated by a pseudorandom
number generator and can be recovered at the destinations
using the same pseudorandom number generator with the
same seed.

4.1.2 Inner Code of FUN-1
At a relay node, Layer 2.2 performs inner coding of FUN-

1, which is the same as that for a BATS code. We first
consider the first down-stream relay node, say, Node R1.
Assume X′

i,1 are the set of packets of the i-th batch correctly
received by Node R1, transmitted by the source. Since there
may be lost packets from the source to Node R1, we have
X′

i,1 ⊆ Xi. We write

X′
i,1 = XiEi,1 (3)

where Ei,1 is an erasure matrix, representing the erasure
channel between the source and Node R1. Ei,1 is an M ×M
diagonal matrix whose entry is one if the corresponding
packet in Xi is correctly received by Node R1, and is zero
otherwise. Hence, matrix X′

i,1 ∈ F
T ×M
q has the same di-

mensions as Xi. Here, with an abuse of the notation X′
i,1,

we replace each lost packet in Xi by a column vector whose
entries are all zero, resulting in matrix X′

i,1.
At Node R1, the inner coding of FUN-1 is performed by

Yi,1 = X′
i,1Hi,1 = XiEi,1Hi,1 = BiGiEi,1Hi,1, (4)

where Hi,1 ∈ F
M×M is the transfer matrix of an RLNC for

the i-th batch at Node R1. After inner-encoding, each col-
umn of the product matrix Ei,1Hi,1 is added to the header of
the corresponding coded packet as a global encoding vector,
which is needed by the destination node for decoding.

At the relay node of the j-th hop, denoted as Node Rj ,
the following re-coding is performed

Yi,j = X′
i,jHi,j = Yi,j−1Ei,jHi,j

= BiGiEi,1Hi,1 · · · Ei,jHi,j , (5)

where Ei,j is an erasure matrix of the i-th batch for the
erasure channel from Node Rj−1 to Node Rj ; Hi,j ∈ F

M×M
q

is the transfer matrix of an RLNC for the i-th batch at
Node Rj . After inner-encoding, each column of the prod-

uct matrix Ei,1Hi,1 · · · Ei,jHi,j is used to update the global
encoding vector of the corresponding coded packet.

The above inner-coding procedure is implemented in soft-
ware module FUN-1-2.2-Proc mentioned in Section 3.

4.1.3 XOR Coding of FUN-1
The XOR coding of FUN-1 is similar to COPE [7]. At

Node Ri w.r.t. the forward flow from Node A to Node B,
the XOR encoding procedure is shown in Algorithm 1. The
XOR decoding procedure is shown in Algorithm 2.

4.1.4 Precoding of FUN-1
At a source node, precoding is performed, similar to Rap-

tor codes. The precoding can be achieved by a traditional
erasure code such as LDPC and Reed-Solomon code. The
precoding of FUN-1 is performed at a source node at Layer
2.2. After precoding, the resulting packets is further en-
coded by the outer encoder described in Section 4.1.1.

4.2 FUN-2
FUN-2 consists of outer code, inner code, and precoding,

which are described as below.

4.2.1 Outer Code of FUN-2
The outer code of FUN-2 is the same as the outer code

of FUN-1, except the decoding process. In the decoding
process, the destination node of the forward flow is also a
source node of the backward flow. So this destination node
can use its known packets of the backward flow to decode
the coded packets of the forward flow. To limit the size of
the encoding vector in the packet header, at a relay node,
FUN-2 only allows the mixing of two batches from two flows
once; i.e., if a packet is already a mixture of two packets from
two flows, it will not be re-coded again at a relay node. The
FUN-2 outer decoding procedure is shown in Algorithm 3.
For simplicity, we denote the two nodes as Node 0 and 1.
The equation in Step 17 can be proved as below. Since the
inner coding is a mixture of two flows according to Eq. (8),
we have

Yi,j = [Bi,j , Bk,1−j ][Hi,j , Hk,1−j ]T (6)
= Bi,jHi,j + Bk,1−jHk,1−j (7)

Hence, Bi,jHi,j = Yi,j − Bk,1−jHk,1−j . Since Bi,jHi,j are
the coded packets of the i-th batch and Destination j, we
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Figure 3: The header structure of a FUN-2 packet

Algorithm 1 XOR encoding of FUN-1
1: while at least one flow (forward or backward flow) is alive do
2: if Layer 2.2 output queues for the forward flow and the backward flow both have at least one batch of M re-coded

packets, say, the i-th batch for the forward flow and the j-th batch for the backward flow then
3: for m = 1, · · · , M do
4: Pick Packet yi,m at the head of Layer 2.2 output queue for the forward flow;
5: Pick packet ȳj,m at the head of Layer 2.2 output queue for the backward flow;
6: pm = yi,m ⊕ ȳj,m;
7: Put the following in the header of packet pm: 1) packet ID m, 2) the MAC address of the next-hop node of Packet

yi,m, 3) batch ID i of Packet yi,m, 4) the MAC address of the next-hop node of packet ȳj,m, 5) batch ID j of packet
ȳj,m, 6) local encoding vectors of packets yi,m and ȳj,m;

8: Enable the bit F UN_XOR in the header of packet pm, i.e., F UN_XOR = 1;
9: Place packet pm in Layer 2.1 output queue;

10: end for
11: else
12: if Layer 2.2 output queue of one flow (forward or backward) has at least two batch of M re-coded packets, say, the

i-th batch being the head-of-line batch then
13: for m = 1, · · · , M do
14: Pick Packet yi,m at the head of Layer 2.2 output queue of the flow;
15: Disable the bit F UN_XOR in the header of packet yi,m, i.e., F UN_XOR = 0;
16: Place packet yi,m in Layer 2.1 output queue;
17: end for
18: end if
19: end if
20: end while

assign Bi,jHi,j to Yi,j . This proves the equation in Step
17.

4.2.2 Inner Code Encoding of FUN-2
The inner code of FUN-2 is similar to the inner code of

FUN-1 in the sense that both of them use RLNC. The dif-
ference is that FUN-2 mixes the packets of two flows while
FUN-1 does not. Specifically, under FUN-2, at the relay
node of the j-th hop, denoted as Node Rj , the following
re-coding is applied to two juxtaposed matrices of received
packets:

Zi,j = [Zi,j−1Ei,j , Zk,j+1Ek,j ]Hi,j , (8)

where Zi,j ∈ F
T ×M
q contains M re-coded packets of the i-th

batch, generated by Node Rj ; Ek,j ∈ F
M×M
2 is an erasure

matrix of the k-th batch for the erasure channel from Node
Rj+1 to Node Rj ; Hi,j ∈ F

2M×M
q is the transfer matrix of

an RLNC for the i-th batch of the forward flow and the
k-th batch of the backward flow at Node Rj . The FUN-
2 inner-coding procedure is shown in Algorithm 4, where
Destination 0 and 1 denote the destination of the forward
and backward flow, respectively; Packet yi,m has batch ID i
and its position in the batch is m; a buffer being complete
means that a buffer is full with M packets OR a newly arriv-
ing packet has a batch ID, which is larger than that of the

packets in the buffer. After inner-encoding, each column
of the matrix Hi,j is added to the global encoding vector
of the corresponding coded packet. The inner-coding pro-
cedure is implemented in software module FUN-2-2.2-Proc
mentioned in Section 3.

4.2.3 Precoding of FUN-2
The precoding of FUN-2 is the same as the precoding of

FUN-1.

5. EXPERIMENTAL RESULTS

5.1 Development of Simulator
We implement our proposed FUN-1 and FUN-2 on Qual-

Net [1]. For comparison, we also implement a BATS code
[18], a fountain code (specifically, the RQ code [15]), RLNC
[16], and COPE [7] in QualNet. For COPE, we only imple-
ment the XOR operation for mixing two flows; and Layer 4
in the COPE scheme is TCP; the reason why we use TCP
for COPE is because each scheme needs to achieve perfect
recovery of lost packets to make a fair comparison. In the
future, we will implement COPE with UDP and hop-by-hop
retransmission for packet recovery as in Ref. [7].

For RLNC, a file is segmented into batches, each of which
consists of M native packets. Each batch is transmitted in-
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Algorithm 2 XOR decoding of FUN-1
1: while at least one flow (forward or backward flow) is alive do
2: if the head-of-line packet in Layer 2.1 input queue has F UN_XOR = 0 then
3: Move this head-of-line packet to Layer 2.2 input queue;
4: else
5: Move this head-of-line packet to its corresponding queue in the buffer of Layer 2.1 (each queue is uniquely identified

by the same set of receiver MAC addresses in the packet header);
6: if a queue in the buffer of Layer 2.1 has two batches of received packets (assume the head-of-line XOR-ed batch has

batch ID i for the forward flow and batch ID j for the backward flow) then
7: while the head-of-line packet, say pm, has its forward-flow batch ID equal i do
8: Recover the packet of the forward flow by yi,m = pm ⊕ ȳj,m, where ȳj,m is a packet in Yj,l−1 = Yj,lEj,l−1Hj,l−1,

where l is the index of the current node Rl, l − 1 is the index of the next-hop node Rl−1 of the backward flow,
Yj,l−1 is the matrix whose columns are coded packets, re-coded by Node Rl−1 for the backward flow, Ej,l−1 is an
erasure matrix for the erasure channel from Node Rl to Node Rl−1, Ej,l−1 can be obtained by Node Rl via the
global encoding vector in FUN-1 packet header, Hj,l−1 is the transfer matrix of an RLNC for the j-th batch at
Node Rl−1 for the backward flow, Hj,l−1 can be obtained by the local encoding vectors in FUN-1 packet header;

9: Recover the packet of the backward flow by ȳi,m = pm⊕yj,m, where yj,m is a packet in Yj,l+1 = Yj,lEj,l+1Hj,l+1,
where l is the index of the current node Rl, l + 1 is the index of the next-hop node Rl+1 of the forward flow,
Yj,l+1 is the matrix whose columns are coded packets, re-coded by Node Rl+1 for the forward flow, Ej,l+1 is an
erasure matrix for the erasure channel from Node Rl to Node Rl+1, Ej,l+1 can be obtained by Node Rl via the
global encoding vector in FUN-1 packet header, Hj,l+1 is the transfer matrix of an RLNC for the j-th batch at
Node Rl+1 for the forward flow, Hj,l+1 can be obtained by the local encoding vectors in FUN-1 packet header;

10: end while
11: end if
12: end if
13: end while

dependently as if it is a single file; there is no coding across
two batches. A source node keeps transmitting coded pack-
ets of a batch until the source node receives an ACK mes-
sage from the destination node. A relay node has a buffer
of M packets; when a relay node receives a packet from
its upstream node, it places the packet in the buffer; if the
buffer is full, the newly arriving packet will push out the
oldest packet; then the relay node takes all the packets in
the buffer as input and generates one RLNC-coded packet,
which is then sent out to its downstream node. When a
destination node decodes all the native packets in a batch,
the destination node transmits an ACK message toward the
source node. Upon receiving the ACK message, the source
node stops transmitting the coded packets of the current
batch, and starts to transmit the coded packets of the next
batch.

We use IEEE 802.11b for the physical layer and MAC
layer of each wireless node, and use the Ad hoc On-Demand
Distance Vector (AODV) protocol for routing. For COPE,
we use TCP as the Layer 4 protocol; for FUN-1, FUN-2,
BATS, fountain code, and RLNC, we use UDP as the Layer
4 protocol. All the experiments have the following setting:
the packet size T = 1024 bytes; the batch size M = 16
packets.

5.2 Performance Evaluation
We conduct experiments for the following four cases: 1)

two hops with no node mobility (fixed topology) under var-
ious packet loss rate per hop, 2) various number of hops
with no node mobility (fixed topology) under fixed packet
loss rate per hop, 3) a large number nodes with node mobil-
ity (dynamic topology). There are two flows (forward and
backward flows) between each source/destination pair. For
each case, we compare the performance of seven schemes,

i.e., FUN-1, FUN-2, a BATS code, a fountain code, RLNC,
COPE, and TCP.

As we know, the lower the packet sending rate of UDP,
the lower throughput. But too high packet sending rate of
UDP will incur congestion and packet loss. Hence, in the
experiments of FUN-1, FUN-2, BATS, fountain code, and
RLNC, which use UDP as their Layer 4 protocol, we tune
the packet sending rate of UDP until we find the maximum
throughput for each of these five schemes. At the optimal
packet sending rate of UDP, we conduct ten experiments for
each of these five schemes, and take the average throughput
of the ten experiments as the performance measure of each
scheme.

For COPE and TCP, we conduct ten experiments for each
of these two schemes, and take the average throughput of
the ten experiments as the performance measure of COPE
and TCP.

5.2.1 Case 1: Two Hops with No Node Mobility
The setup of this set of experiments is the following. There

are three nodes in the network: a source node, a destination
node, and one relay node. The communication path from
the source node to the destination node has two hops. All
the three nodes are immobile; hence the network topology
is fixed.

Denote K the number of native packets to be transmitted
by the source. In the experiments, we measure the through-
put in Mbits/s under different values of K and different
packet loss rate (PLR). The PLR is the same for all the
links/hops in the network. Here, the PLR does not include
packet loss due to the thermal noise in the physical layer and
packet collision, which is out of our direct control; here the
PLR is achieved by randomly dropping a correctly received
packet at Layer 2 with a probability equal to the given PLR.
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Algorithm 3 Outer decoding of FUN-2 at Node j (j ∈ {0, 1})
1: while not all native packets destined to Node j are decoded do
2: if the receiving queue of Layer 2.2 is complete then
3: Pick packets of the same batch from the head of the receiving queue of Layer 2.2;
4: if FUN-2 Header 2 is not empty then
5: if the destination IP address in FUN-2 Header 1 is that of Node j then
6: Let i equal the batch ID in FUN-2 Header 1 of any picked packet;
7: Let k equal the batch ID in FUN-2 Header 2 of any picked packet;
8: Let Hk,1−j be a matrix whose columns are the global encoding vectors in FUN-2 Header 2 of all the picked

packets;
9: Let Bk,1−j be a matrix whose columns are native packets of the k-th batch, sent from Node j to Node 1 − j;

10: else
11: Let i equal the batch ID in FUN-2 Header 2 of any picked packet;
12: Let k equal the batch ID in FUN-2 Header 1 of any picked packet;
13: Let Hk,1−j be a matrix whose columns are the global encoding vectors in FUN-2 Header 1 of all the picked

packets;
14: Let Bk,1−j be a matrix whose columns are native packets of the k-th batch, sent from Node j to Node 1 − j;
15: end if
16: Let Yi,j be a matrix whose columns are the payloads of all the picked packets;
17: Compute Yi,j = Yi,j − Bk,1−jHk,1−j ;
18: else
19: Let i equal the batch ID in FUN-2 Header 1 of any picked packet;
20: Let Yi,j be a matrix whose columns are the payloads of all the picked packets;
21: end if
22: Do outer decoding in the same way as BATS outer decoding with input packets Yi,j ;
23: end if
24: end while

Table 1 shows the total throughput of the two flows (i.e.,
forward/backward flows) of the seven schemes under Case 1.
We have the following observations:

• For both the lossless and lossy situations, FUN-1 and
FUN-2 achieve the highest throughput. This is be-
cause FUN-1 and FUN-2 combine the best features
of fountain coding, intra-session network coding, and
cross-next-hop network coding.

• The throughput of FUN-2 is higher than or equal to
that of FUN-1. This is because FUN-2 uses RLNC at
a relay node and RLNC has a higher coding gain than
the XOR operation used in FUN-1.

• For both the lossless and lossy situations, the foun-
tain code achieves a higher throughput than the BATS
code. This is because a BATS code only achieves
higher throughput than a fountain code when there
are more than two hops or the PLR is high (say, 20%).

• For the lossless situation, COPE achieves a higher
throughput than the BATS and the fountain code for
K = 1600 but achieves a lower throughput than the
BATS and the fountain code for K = 6400 and 16000.
This may be due to the fact that BATS codes and foun-
tain codes are erasure channel coding (while COPE is
not) and hence, the more native packets to transmit,
the higher coding gain.

• For both the lossless and lossy situations, RLNC
achieves a lower throughput than the fountain code
and the BATS code. This is because a coded packet
in RLNC is restricted to one batch of M native pack-
ets while a coded packet in the BATS code and the
fountain code is a random mixture of all the K native

packets; hence each native packet has a less chance
of being recovered in RLNC for the same number of
coded packets, compared to the BATS code and the
fountain code.

• RLNC achieves a lower throughput than COPE in
the lossless situation, but achieves a higher through-
put than COPE in the lossy situation. This is be-
cause RLNC is erasure channel coding: when there is
no packet loss, the redundancy induced by RLNC re-
duces the throughput; when there is packet loss, the
reliability induced by RLNC make it achieve a higher
throughput.

• TCP achieves the least throughput for the lossless sit-
uation. This is because TCP has a slow start and a
congestion avoidance phase, which reduces through-
put. In contrast, COPE has network coding gain and
FUN-1, FUN-2, the BATS code, the fountain code,
and RLNC use UDP with optimal packet sending rate.

• For PLR=10%, COPE and TCP time out and could
not receive all K number of packets due to high packet
loss rate. This is consistent with the fact that TCP
performs poorly under environments of high packet
loss rates [6].

5.2.2 Case 2: Various Number of Hops with No
Node Mobility

The setup of this set of experiments is the following. The
network consists of a source node, a destination node, and
1 or 2 or 4 relay nodes. All the nodes in the network form
a chain topology from the source node to the destination
node. The communication path from the source node to the
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Table 1: Throughput under Case 1
K Scheme Throughput (Mbits/s)

PLR = 0 PLR = 10%
FUN-1 0.697 0.652
FUN-2 0.697 0.668
BATS 0.484 0.488

1600 Fountain 0.498 0.508
RLNC 0.460 0.340
COPE 0.520 N/A
TCP 0.375 N/A
FUN-1 0.720 0.665
FUN-2 0.727 0.669
BATS 0.517 0.502

6400 Fountain 0.533 0.513
RLNC 0.460 0.340
COPE 0.500 N/A
TCP 0.378 N/A
FUN-1 0.714 0.637
FUN-2 0.714 0.655
BATS 0.521 0.487

16000 Fountain 0.533 0.493
RLNC 0.460 0.340
COPE 0.504 N/A
TCP 0.379 N/A

destination node has 2 or 3 or 5 hops. All the nodes are
immobile; hence the network topology is fixed. For all the
experiments in Case 2, we set PLR=10% for each hop/link.
Again, the PLR does not include packet loss due to the
thermal noise in the physical layer and packet collision.

Table 2 shows the throughput of seven schemes under
Case 2. We have the following observations:

• For both the lossless and lossy situations, FUN-1 and
FUN-2 achieve similar throughput and their through-
put is the highest among the seven schemes.

• When the number of hops is two, the throughput of
FUN-2 is not less than than FUN-1. This is because
FUN-2 uses RLNC at a relay node and RLNC is better
than the XOR operation used in FUN-1.

• When the number of hops is more than two, FUN-1
may achieve a higher throughput than FUN-2. This is
because FUN-2 only allows mixing two flows once but
FUN-1 allows mixing two flows unlimited number of
times. Hence, FUN-1 potentially has a higher coding
gain than FUN-2 due to more coding opportunities.
However, this is not always true. Since FUN-1 always
uses broadcast and FUN-2 has to use unicast when
FUN-2 packet has already been mixed from two flows
once, FUN-2 unicast packets are more reliably received
than FUN-1 broadcast packets under 802.11 MAC. It
is known that in the 802.11 unicast mode, packets are
immediately acknowledged by their intended next-hop
nodes; if no ACK message is received, the 802.11 MAC
layer will retransmit the packet a number of times
(with exponential backoff) until an ACK message is
receiver or a time-out event happens. But a broadcast
packet will not be acknowledged and retransmitted un-
der 802.11.

Table 2: Throughput under Case 2
K Scheme Throughput (Mbits/s)

2 hops 3 hops 5 hops
FUN-1 0.652 0.413 0.045
FUN-2 0.652 0.364 0.042
BATS 0.488 0.317 0.036

1600 Fountain 0.508 0.271 0.005
RLNC 0.340 0.202 0.024
COPE N/A N/A N/A
TCP N/A N/A N/A
FUN-1 0.665 0.376 0.026
FUN-2 0.669 0.357 0.033
BATS 0.502 0.327 0.025

6400 Fountain 0.513 0.220 N/A
RLNC 0.340 0.202 0.024
COPE N/A N/A N/A
TCP N/A N/A N/A

• When the number of hops is two, the fountain code
achieves a higher throughput than the BATS code;
when the number of hops is more than two, the BATS
code achieves a higher throughput than the fountain
code.

• COPE and TCP time out and could not receive all K
number of packets due to high packet loss rate. Hence,
COPE and TCP achieve the least throughput.

• For all the situations in Case 2, RLNC achieves a lower
throughput than the BATS code. This is because a
coded packet in RLNC is restricted to one batch of M
native packets while a coded packet in the BATS code
is a random mixture of all the K native packets.

• When the number of hops is 2 and 3, RLNC achieves
a lower throughput than the fountain code. This is
because a coded packet in RLNC is restricted to one
batch of M native packets while a coded packet in
the fountain code is a random mixture of all the K
native packets. But when the number of hops is 5,
RLNC achieves a higher throughput than the fountain
code. This is because the more relay nodes, the more
opportunities for network coding in RLNC while the
fountain code does not have such a benefit.

• For the case of K = 6400 and five hops, the fountain
code does not receive all the K native packets within
6000 seconds, which we call “timeout”. The timeout is
because the end-to-end packet loss is too high for five
hops.

5.2.3 Case 3: A Large Number of Nodes with Node
Mobility

The setup of this set of experiments is the following. There
are 400 nodes in the network. All the nodes move under the
random waypoint mobility model, i.e., each node selects a
random position, moves towards it in a straight line at a
constant speed that is randomly selected from a range, and
pauses at that destination; each node repeats this process
throughout the experiment. Due to node mobility, the com-
munication routes change over time. Hence, the network
topology is dynamic.
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In this set of experiments, the range of the nodes’ speed
is from 5 meters/s to 10 meters/s. All the nodes move in
a square area of 3000 meters by 3000 meters. We measure
the throughput between a specific pair of source/destination
nodes. This pair of source/destination nodes do not move
and are not in the transmission range of each other. Hence,
they need relay nodes to forward packets to the destination.
The relay nodes are moving around. The number of hops
between the intended source and the intended destination is
varying since the relay nodes are moving around.

To make the experiments more realistic, we also generate
some background traffic. The background traffic is gener-
ated in the following manner: we randomly select 100 pairs
of nodes out of the 400 nodes; generate a Constant Bit Rate
(CBR) flows between each pair of nodes. Each CBR flow
lasts for 30 seconds with a random start time. Since the
data rate needs to be constant for CBR, the source gener-
ates a packet every Tc second (Tc ∈ (0, 1]); the packet size is
1024 bytes. For example, for Tc = 1 second, the data rate is
1024 bytes/s. The number of hops from the source node to
the destination node is random, depending on the positions
of all the nodes. Since all the nodes are mobile, the network
topology is dynamic.

In this set of experiments, the number of native packets to
be transmitted by the source under study is 1600 packets,
i.e., K = 1600. Table 3 shows the throughput of seven
schemes under Case 3. We have the following observations:

• FUN-2 achieves the highest throughput and FUN-1
achieves the second highest throughput. This is be-
cause the number of hops in Case 3 is usually small
(mostly two hops) and hence FUN-2 performs better
than FUN-1 as in Case 1.

• COPE achieves the third highest throughput and
TCP achieves the fourth highest throughput. Their
throughput is higher than the BATS code, the foun-
tain code, and RLNC; this may be because congestion
and MAC contention are serious performance-limiting
problems in multihop wireless networks and COPE
and TCP both have congestion control to avoid conges-
tion/contention with the background traffic while the
BATS code, the fountain code, and RLNC do not. We
will study how congestion control (e.g., back-pressure)
affects the throughput in our future work.

• The fountain code achieves a higher throughput than
the BATS code. This is because when a relay node
moves out of the transmission range of the source node,
the BATS code suffers more than the fountain code.
This can be illustrated by an example for the BATS
code: a relay node may hold M/2 packets of the same
batch when it moves out of the transmission range of
the source; if this relay node does not come back within
the transmission range of the source, the M/2 pack-
ets will never be forwarded to the destination since
they are waiting for the batch to be complete to be al-
lowed to conduct network coding. This waste of M/2
packets reduces the throughput of the BATS code. In
comparison, the fountain code does not have a batch
structure; the relay node always forwards any packet
in its buffer without waiting for future packets.

• RLNC achieves a lower throughput than the BATS
code as in Case 3.

Table 3: Throughput under Case 3
Scheme Throughput (Mbits/s)
FUN-1 0.669
FUN-2 0.691
BATS 0.330
Fountain 0.385
RLNC 0.291
COPE 0.493
TCP 0.451

In summary, all the experimental results demonstrate that
our FUN approach achieves higher throughput than BATS
code, the best fountain code (RQ code), RLNC, COPE, and
TCP for multihop wireless networks.

6. CONCLUSION
This paper is concerned with the problem of information

spreading over lossy communication channels. To address
this problem, a joint FoUntain coding and Network coding
(FUN) approach has been proposed. The proposed FUN ar-
chitecture provides a unified framework for FUN-1, FUN-2,
BATS codes, fountain codes, RLNC, COPE, and existing
protocols. The novelty of our FUN approach lies in com-
bining the best features of fountain coding, intra-session
network coding, and cross-next-hop network coding. As
such, our FUN approach is capable of achieving unprece-
dented high throughput over lossy channels. Experimental
results demonstrate that our FUN approach achieves higher
throughput than existing schemes for multihop wireless net-
works.

It is worth mentioned that the computational complexity
of FUN-1 and FUN-2 (in terms of number of additions and
multiplications per coded packet) is linear w.r.t. the batch
size M . Since M is usually small, the delay incurred by
FUN-1 and FUN-2 at a terminal node or a relay node is
small.

Our future work includes extending intra-session network
coding to general intra-session network coding, which ap-
plies to both unicast and multicast.
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Algorithm 4 Inner encoding of FUN-2
1: for j=0 to 1 do
2: Initialize two buffers for Destination j, which are de-

noted by Fj,new and Fj,old;
3: end for
4: while at least one flow (forward or backward flow) is

alive do
5: if Layer 3 output queue is not empty then
6: Pick Packet yi,m at the head of Layer 3 output

queue; assume the destination of Packet yi,m is j;
7: switch (State of Buffers Fj,new , Fj,old, F1−j,old)
8: case Buffer Fj,new is not complete:
9: Insert yi,m to the m-th position of Buffer Fj,new;

10: if Buffer Fj,new is complete then
11: Goto Step 7;
12: end if
13: case Buffer Fj,new is complete AND Buffer Fj,old

is empty AND Buffer F1−j,old is empty:
14: Move all the packets in Fj,new to Fj,old;
15: if the packets in Fj,old were mixed before then
16: Apply RLNC to all the packets in Fj,old and

generate M re-coded packets;
17: Move the re-coded packets to the unicast out-

put queue of Layer 2;
18: end if
19: case Buffer Fj,new is complete AND Buffer Fj,old

is empty AND Buffer F1−j,old is complete:
20: Move all the packets in Fj,new to Fj,old;
21: if the packets in Fj,old were mixed before then
22: Apply RLNC to all the packets in Fj,old and

generate M re-coded packets;
23: Move the re-coded packets to the unicast out-

put queue of Layer 2;
24: else
25: Apply RLNC to all the packets in Fj,old and

F1−j,old and generate M re-coded packets;
26: Move the re-coded packets to the broadcast

output queue of Layer 2;
27: end if
28: case Buffer Fj,new is complete AND Buffer Fj,old

is complete AND Buffer F1−j,old is empty:
29: Apply RLNC to all the packets in Fj,old and gen-

erate M re-coded packets;
30: Move the re-coded packets to the unicast output

queue of Layer 2;
31: Move all the packets in Fj,new to Fj,old;
32: if the packets in Fj,old were mixed before then
33: Apply RLNC to all the packets in Fj,old and

generate M re-coded packets;
34: Move the re-coded packets to the unicast out-

put queue of Layer 2;
35: end if
36: end switch
37: if yi,m has not been inserted into Fj,new then
38: Insert yi,m to the i-th position of Fj,new;
39: end if
40: end if
41: end while
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