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ABSTRACT
The limited battery capacities of sensor nodes have become
the biggest impediment to the applications of wireless sen-
sor networks (WSNs) over the years. Recent breakthroughs
in wireless energy transfer-based rechargeable batteries pro-
vide a promising application of mobile vehicles in WSNs.
These mobile vehicles act as mobile chargers to transfer en-
ergy wirelessly to static sensors in an efficient way. In this
paper, we study the mobile charger coverage problem of sen-
sor nodes distributed on a 1-dimensional line and ring. Each
sensor needs to be recharged at a given frequency. A mobile
charger can charge a sensor after it moves to the location
of the sensor. We assume that the mobile charger has an
unlimited charging capability, moves at a speed subject to
a given limit, and that the charging time is negligible. An
optimization problem is then presented on a time-space cov-
erage of sensors so that none of them will run out of energy:
(1) What is the minimum number of mobile chargers need-
ed? (2) Given the minimum number of mobile chargers,
how should these mobile chargers be scheduled in terms of
trajectory planning? Given homogeneous sensors with the
same recharging frequency, we provide an optimal solution
with a linear complexity in finding the minimum number of
charges, as well as the actual schedule. We then examine an
extension to heterogeneous sensors and provide a greedy ap-
proach that has a constant ratio of 2 to the optimal solutions
for a line and ring. Extensive simulations are conducted to
verify the competitive performance of the proposed scheme.

Categories and Subject Descriptors
G.1.6 [Optimization]: Constrained optimization;
G.2.4 [Graph Theory]: Network problems

General Terms
Algorithms, Design, Theory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSCC’14, August 11, 2014, Philadelphia, PA, USA.
Copyright 2014 ACM 978-1-4503-2986-6/14/08 ...$15.00.
http://dx.doi.org/10.1145/2633675.2633676.

0.50

time

space

1.75

1.50

1.25

1.00

0.75

0.25

0.00

external paths

1.00 1.25 1.50

. . . . . .

.
.

.
.

.
.

. . . . . .

. . .. . .

Figure 1: An example of the heterogeneous WSNs.
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1. INTRODUCTION
Recent breakthroughs in rechargeable batteries, which sup-

port the wireless energy transfer, provide a promising appli-
cation of mobile vehicles in wireless sensor networks (WSNs).
These mobile vehicles act as either mobile sinks, mobile
chargers, or combinations of both, to collect data from the
sensors and/or transfer energy wirelessly to the sensors in
an efficient way. Results show that significant energy and
cost savings, as well as an extended life span of WSNs, can
be achieved by placing mobile vehicles closer to the sensors
for data collections and/or battery recharge [7].

In this paper, we study the mobile charger coverage prob-
lem for sensor nodes distributed on a 1-dimensional line and
ring. In recent years, linear WSNs [4] have been proposed
as a platform to perform various applications ranging from
oil and water pipeline, monitoring of AC powerlines, to bor-
der monitoring. In such a network, each sensor needs to be
recharged at a given frequency. A mobile charger (MC), a
special mobile vehicle, can charge a sensor after it moves
to the location of the sensor. We assume that the MC has
an unlimited charging capability, moves at a speed subject
to a given limit, and that the charging time is negligible.
An optimization problem is then presented on a time-space
coverage of sensors so that none of them will run out of en-
ergy: (1) What is the minimum number of MCs needed?
(2) Given the minimum number of MCs, how should MCs
be scheduled in terms of trajectory planning?
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To put the problem more formally, we consider an n-
dimensional (n-D) space with two types of nodes: S = {si}
where si, called sensors, have fixed locations of xi; MC =
{MCj}, whereMCj , called mobile chargers, are mobile with
a given moving speed limit. Each si is required to be visit-
ed by MCs at frequency fi. That is, the time between two
adjacent visits to si (it can be visited by different MCs) is
no more than 1

fi
. Our questions become the following:

• What is the minimum |MC| (called minimization prob-
lem)?

• Once minimum |MC| is determined, how can we sched-
ule MCs to meet the need of each si (called scheduling
problem)?

Here, scheduling refers to the area coverage and the speed
selection of each MC over the time domain. If fi is identi-
cal, the problem is called the homogeneous mobile charging,
otherwise, it is called the heterogeneous mobile charging.
Consider a circle track with circumference 8.75 that is

densely covered with sensors having frequency 1, as shown
in Figure 1. In addition, there are (1) a sensor with fre-
quency 2 at position 1, (2) a sensor with frequency 4 at
position 1.25, and (3) a sensor with frequency 2 at position
1.5. To simplify our discussion, we assume the maximum
speed to be one unit distance per unit time for each MC
(also called a car shown in the figure). It turns out that
10 cars are sufficient to ensure the coverage of all sensors
of required frequencies. However, the optimal scheduling is
more intriguing, as shown in Figure 1, as we have to select
proper speeds for cars. Let us define 1

4
as a mini-unit of a

time step (or simply a mini-unit). One car enters location
1 at unit 0, and one more car enters the same location for
every one additional time unit. Once having entered the re-
gion of [1, 1.5], each car in mini-units performs mini-steps
as follows: (enters at mini-unit 0) at position 1, (1) 1.25, (2)
1, (3) 1.25, (4) 1.25, (5) 1.5, (6) 1.25, and (exits at 7) 1.5.
In addition, another car is assigned at location 1.25 at time
unit 0. This corresponds to its fourth mini-unit of the car,
as to ensure that one car exits from the region of [1, 1.5] per
time unit. In this optimal solution, the trajectories of cars
are overlapped. When the trajectories of cars are disjointed,
the corresponding solution is called non-overlapped.
Our study begins with homogeneous WSNs on a 1-D ring,

where fi = 1 and the moving speed is limited by 1 without
loss of generality. We then extend our study to the hetero-
geneous WSNs and to the higher dimensional space. Our
results are summarized as follows:

• An optimal solution to both minimization and schedul-
ing problems is given in a homogeneous 1-D ring. Both
solutions are linear with respect to |S|. This solution
has either overlapped or non-overlapped trajectories.

• A greedy solution to both minimization and scheduling
problems is given in a heterogeneous 1-D line and ring
with an approximation ratio of 2. Again, this solution
is linear with respect to |S|. Cars in this solution have
non-overlapped trajectories.

• In the heterogeneous WSNs, simulations have been
conducted to verify the closeness of the greedy ap-
proach to the optimal one.

The remainder of the paper is organized as follows. In
Section II, some related works are reviewed. We point out
that most of existing work focus on scheduling of one mobile
charger. In Section III, an optimal scheduling in the homo-
geneous setting is given as well as a linear solution that finds
the optimal result. In Section IV, a greedy scheduling in the
heterogeneous setting is provided that has an approximation
ratio of 2 compared to the optimal solution in a 1-D line and
ring. In Section V, some simulation results are presented to
show the difference between the greedy and optimal solu-
tions. Finally, the conclusion is given in Section VI.

2. RELATED WORKS
The notion of MCs evolve from mobile sinks in WSNs,

including data mules [8], and from message ferries [12] in
delay tolerant networks (DTNs) for data collection. Anoth-
er evolution comes from the recent wireless energy transfer
technology (e.g., electromagnetic radiation [3] and magnetic
resonant coupling [5] using MCs). MCs offer energy to sen-
sors, and also consume energy due to their own movement.

Mobile charging can be modeled as the travelling sales-
man problem (TSP), where an MC constructs a tour of all
sensors once and only once. In some cases, when an MC
recharges energy to a node, it can also charge nodes in its
neighborhood. This problem can be modeled as a coverage
salesman problem (CSP) [1] to identify the least-cost tour
of a subset of given cities (i.e., sensors in this paper) such
that every city not on the tour is within some predetermined
covering distance of a city that is on the tour. Usually, a pre-
determined distance corresponds to a 1-hop neighborhood,
as used in CSP [1]. When neighborhood distance does not
matter, CSP is similar to a connected dominating set-based
tour construction [9]. Note that an MC does not have to be
at a sensor for charging, and this corresponds to an exten-
sion of CSP in Qi-ferry [6].

Xie et al. [10] and Guo et al. [2] proposed several op-
timization models by considering an MC as both a data
collector and an energy charger. Their focus is primarily on
energy minimization using optimization and approximation
on different scenarios of data collection and energy recharge;
they focus less on scheduling of MCs, as only one MC is used.

Zhang et al. [11] studied collaborative mobile charging.
In this model, a fixed charging location (i.e., base station,
BS) provides a source of energy to MCs, which in turn are
allowed to recharge each other while collaboratively charg-
ing sensors. The objective is to ensure sensor coverage while
maximizing the ratio of payload energy (used to charge sen-
sors) to overhead energy (used to move MCs from one lo-
cation to another). An optimal scheduling scheme that can
cover a 1-D homogeneous WSN with a infinite length is pro-
posed. Several greedy scheduling solutions are also proposed
for 1-D heterogeneous WSNs and 2-D WSNs, which are NP-
hard.

3. OPTIMAL SOLUTION FOR THE HOMO-
GENEOUS WSNS

We assume the maximum speed to be one unit distance
per unit time for each car. The circumference of the circle is
L. The sensors are homogeneous (i.e., fi = 1). Algorithm 1
is proposed for this scenario. In Algorithm 1, Method 1 is
a scheduling policy where cars have overlapped trajectories.
This methods assigns cars to move around the circle one
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Algorithm 1 Optimal Schedule for the Homogeneous
WSNs
Input: Locations of uncovered sensors {s1, ..., sn};
1: Method 1: There are k1 = ⌈L⌉ cars moving continu-

ously around the circle.
2: Method 2: There are k2 cars moving inside fixed inter-

vals of length 1
2
so that all sensors are covered.

3: Combined method: It is either Method 1 or Method
2. That is, the combined solution uses k = min{k1, k2}
cars.

by one (with the same direction). Meanwhile, Method 2
is a scheduling policy where cars move in non-overlapped
intervals. This method assigns each car to go back and forth
for a fixed interval. Then, the following theorem shows the
optimality of Algorithm 1.

Theorem 1. The combined method in Algorithm 1 is op-
timal in terms of the minimum number of cars used in the
homogeneous WSNs.

Proof: Assume that the optimal solution uses k MCs. If
the circumference of the circle is not greater than k, Al-
gorithm 1 obtains the optimal solution through Method 1.
Therefore, we focus on the case that the circumference is
larger than k. Now, let us define an MC’s type as follows:
(1) Type 1, the MC visits 2 sensors that are more than 1

2
away from each other during the first time unit; (2) Type 2,
all the other MCs.
Consider an optimal solution OPT that has the minimum

possible number of type 1 MCs. If OPT does not have type 1
MCs, then Algorithm 1 obtains the optimal solution through
Method 2. Therefore, we focus on the case that OPT has
at least one MC of type 1. At this step, we convert OPT to
an optimal solution that uses fewer MCs of type 1.

• Step 1: MCs never pass each other. If two MCs meet
each other, we can always swap their velocities (speed
and direction) to obtain a better solution.

• Step 2: During the first time unit, MCs travel in inter-
vals that do not overlap, except possibly at their end-
points. Assign each point to the last MC that visited
it during the first time unit (in case of a tie, assign it
to both MCs). Instead of leaving its assigned interval,
an MC will just wait at the endpoint for the amount
of time that it would have traveled outside it.

• Step 3: We identify sensors by their coordinates on
the circle. Choose an MC of type 1 with its interval to
be [a0, b0]. Assume a0 is located at the left (i.e., the
counter-clockwise direction) of b0, where a0 + 1

2
< b0

according to the definition of type 1. Without loss
of generality, assume that this MC visits a0 before it
visits b0. For each sensor located at x, define p(x) to
be the location of the first sensor that is strictly to the
left of x − 1

2
. We number the MCs from right to left,

so that the first MC to the left of MC0 is MC1, etc.

We know that p(b0) is between a0 and b0 since the interval
length of MC0 is greater than 1

2
. Define t0 to be the last

time prior to time 1 that MC0 is at p(b0). Since p(b0) is
more than 1

2
away from b0, MC0 cannot return to p(b0) by

time t0 + 1. Hence, MC1 must reach p(b0) by time t0 + 1.
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Figure 2: A directed interval graph.

Therefore, at time t0, the position of MC1 must be larger
than p(b0)− 1.

Suppose that MC1 starts at a1. If p(b0)−a1 ≤ 1
2
then we

can assign MC1 to the interval [a1, p(b0)] and MC0 to the
interval (p(b0), b0], where both of those MCs will be type 1.
For this case, Algorithm 1 determines the optimal solution
through Method 2. Hence, assume that p(b0) − a1 > 1

2
.

Then, p(p(b0)) is between a1 and p(b0) so that MC1 visits
p(p(b0)) during the first time unit, but cannot return to
p(p(b0)) in time to serve it after visiting p(b0). Therefore,
MC2 must visit p(p(b0)) within one time unit after MC1

visits p(p(b0)). Traveling at a full speed, MC2 would in
principle be able to reach p(b0) one time unit after MC1

reaches p(b0), i.e., at time t0 + 2. Therefore, at time t0,
the position of MC2 must be ≥ p(b0) − 2. Continuing this
way, we find that for every i, the position of MCi must be
≥ p(b0)− i at time 0.

Finally, there must be an MCk whose position is no less
than p(b0)− k at time 0. MCk cannot be the same as MC0

because the circle circumference is larger than k. Therefore,
there are k + 1 MCs, which is a contradiction. 2

Method 2 requires scheduling, i.e., an appropriate break
point to convert a circle to a line. Once a line is given (la-
beled from left to right starting from location 0 in an increas-
ing order of distance), a simple greedy approach will follow.
A naive approach will work that breaks the circle at each
sensor. Method 2 for each given line requires min{|S|, L}
steps. Therefore, the overall complexity is |S|×min{|S|, L}.
In the following, we provide a linear scheduling with respect
to |S|.

Start from location 0 (i.e., the leftmost point), the greedy
approach, which follows Method 2, always places the right
endpoint of an interval as far to the right as possible, except
for the very last interval. We generate a directed interval
graph, where each directed link points from the start to the
end of an interval (i.e., the first sensor to the right of the
interval of length 1

2
) as shown in Figure 2. Clearly, each

interval can be covered by one car. In this directed graph,
each node has exactly one outgoing link (but one or more
incoming links).

To find all cycles, we first construct a breadth-first search
(BFS) forest on the directed interval graph. Then, each
backward link in that forest determines a cycle, since each
sensor has only one outgoing link. A backward link from
level j (a larger BFS level) to level i (a smaller BFS level)
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Algorithm 2 Greedy Algorithm for the Heterogeneous
WSNs
Input: Locations {x1, ..., xn} and frequencies {f1, ..., fn} of

uncovered sensors {s1, ..., sn};
1: if n = 0 then return;
2: Generate a car that goes back and forth as far as possible

at a full speed to cover sensors at {x1, ..., xi−1};
3: Recursively call Algorithm 2 for {si, ..., sn};

determines a cycle of length j−i+1. Since each link is visited
only once, we can find all of the cycles and determine the
shortest cycle in a linear time (i.e., O(|S|)). In addition,
the correctness of algorithm follows from two facts: (1) all
greedy solutions differ in cost (i.e., cycle length) by at most
1; (2) If there are two greedy solutions whose costs are k
and k + 1, then there is a cycle of length k.

4. GREEDY SOLUTION FOR THE HETERO-
GENEOUS WSNS

As shown in the example of Figure 1, the challenge of
scheduling in the heterogeneous WSNs is not only the tra-
jectory of each car, but also the speed of each car along time.
We consider a greedy algorithm where all cars go back and
forth at full speeds in disjoint intervals. The greedy algo-
rithm (shown in Algorithm 2) produces a result that has an
approximation ratio of 2 compared with the optimal ones.
For a line, the algorithm starts from the leftmost sensor (s1)
to the rightmost one (sn). For a ring, it is converted to a
line by arbitrarily selecting a breakpoint.

Theorem 2. Algorithm 2 has a factor of 2 of the optimal
ones for sensors on a line and ring.

Proof: Consider an optimal solution OPT that uses k
cars in total. Without loss of generality, we assume that
cars do not meet or pass each other, otherwise, switching
the velocity (both speed and direction) of the crossed cars
will lead to the same or a better solution.
Consider each subset (in terms of car composition in the

subset) of the OPT as a color. Let us color each sensor with
the set of cars that serve it infinitely often. For example, in
Figure 3, the first area is served by car 1, which is colored
by red; the second area is served by cars 1 and 2, which are
colored by green. Now, we show that this coloring scheme
partitions the sensors into at most 2k − 1 monochromatic
intervals as follows. The 2k endpoints of these k intervals
partition the line into 2k − 1 bounded intervals (colors 1 to
5 in Figure 3) and 2 unbounded intervals (black and gray
in Figure 3), each of which must be monochromatic. The
unbounded intervals contain no sensors.
We now show that each color can be served by a single car

moving back and forth at a full speed. Consider any of those
intervals [a, b] and a sensor in it, which is located at x (a ≤
x ≤ b) with frequency f . We call a and b being at the left
side and right side of x, respectively. Consider the rightmost
car (in the geographical sense) that serves this sensor. When
the rightmost car serves x, all the other cars that serve this
sensor should be at the left side of the rightmost car, due to
the fact that cars do not pass each other. Therefore, when
the rightmost car leaves x and runs toward a, it should be
the first car that comes back to x, among all the cars that
serve this sensor. Moving from x to a and then back to x

Car 2

Car 3

Car 1

a b

x

1 2 3 4 5

0-black

1-red

2-green

3-yellow

4-purple

5-blue

6-gray

0 6

Figure 3: A partition of a line into 2k − 1 segments
of different colors.

takes at least 2(x − a) time, as the actual speed of the car
may not be full. Therefore, 2(x−a)f ≤ 1. Similarly, we can
get 2(b − x)f ≤ 1 by considering the leftmost car. Overall,
2(x− a)f ≤ 1 and 2(b− x)f ≤ 1 imply that this sensor can
be served by a single car that moves back and forth at a full
speed in the interval [a, b].

Since Algorithm 2 is optimal under the constraint that all
cars go back and forth at a full speed in disjoint intervals,
it generates a solution that uses fewer than 2k − 1 cars.
Therefore, it is within a factor of 2 of the optimal solution on
a line. For a ring, one extra car may be introduced when it is
converted into a line (as discussed in the linear scheduling in
Section III). (2k− 1)+ 1 reseats in the same approximation
ratio of 2. 2

Note that for any solution, the speed of an MC can be re-
placed by either zero (which is minimum), or the maximum
given speed without increasing the number of MCs.

5. SIMULATION
In this section, we conduct simulations to evaluate the

gap between the proposed greedy algorithm and the optimal
solution for the heterogeneous WSNs on a ring. The results
for a line follow similar trends and are omitted due to the
space limitation. The optimal solution is obtained through
an exhaustive search with discrete time steps. Due to the
exponential time complexity of the exhaustive search, we
focus on small-scale scenarios, i.e., scheduling results for 5
and 10 sensors, respectively, on a line.

In our simulations, the frequencies of sensors (f) follow
normal distribution, i.e., N(µf , σ

2
f ), where µ and σ are mean

and variance, respectively. Meanwhile, the distances be-
tween adjacent sensors (∆x) also follow normal distribution
N(µ∆x, σ

2
∆x). To match the physical meaning, only posi-

tive f and ∆x are used. The speeds of MCs are either zero
or one unit (i.e. the maximum speed). The average value
of the frequencies and distances are represented by µf and
µ∆x, respectively, while σf and σ∆x indicate their fluctua-
tion. Since the maximum MC speed is one unit, cases where
µf > 1 and µ∆x > 1 are not considered as they will lead
to trivial solutions, where one static MC is assigned to a
sensor. Cases where µf = 0 and µ∆x = 0 are also ignored,
since the former means that the corresponding sensor is free
of recharge, and the latter one means that all sensors are
in the same location. In our simulations, we fix three pa-
rameters at a time among µf , µ∆x, σf , σ∆x to be 0.5, and
tune the remaining one parameter to observe its influence.
Each simulation is repeated until the confidence interval of
the average result is sufficiently small (±1% percent for 90%
probability).
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Figure 4: Simulation results. The last numbers of the labels indicate the number of sensors in the simulation,
e.g., optimal-5 represent the optimal result in a WSN of 5 sensors. Three parameters among µf , µ∆x, σf , σ∆x

are fixed to be 0.5, while the remaining one is tunable.

The simulation results are shown in Figure 4. It can be
seen that larger µf and µ∆x bring more demands on MCs,
i.e., more MCs are needed to cover these sensors. Larger
frequencies and distances post higher requirements for an
MC to serve more sensors. Meanwhile, larger σf and σ∆x

also call for more MCs. A sensor with a high frequency
requires a designed MC; likewise, a large distance between
two adjacent sensors indicates that they have to be served by
different MCs. Overall, simulations show the approximation
ratios at around 1.5.
A more intriguing result is that our greedy algorithm has

a lower (i.e., better) ratio of the optimal solution, when µf ,
µ∆x, σf , σ∆x are larger. Smaller frequencies and distances
bring more possible routes for an MC in an optimal soluton,
since it can serve more sensors. Therefore, MC mobilities
can be utilized more efficiently in these scenarios, leading to
a higher (i.e., worse) optimal ratio of our greedy solution.

6. CONCLUSION
In this paper, scheduling of multiple mobile chargers (M-

Cs) is studied to meet the recharge frequency of each sensor
in a 1-D line and ring of wireless sensor networks (WSNs).
The objective is to use the minimum number of MCs. We
provide an optimal solution when sensor recharge frequen-
cy is uniform. For a WSN with non-uniform frequency, we
provide a greedy solution with an approximation ratio of 2
comparing with the optimal solutions in a 1-D line and ring.
Simulation results show the closeness of the greedy solution
to the optimal one in various heterogeneous settings. In fu-
ture work, we will focus on optimal solutions with a fixed set
of recharge frequencies. We will also explore solutions with
good approximation ratios in a higher dimensional space.

Acknowledgment
This work was supported in part by NSF CCF 1301774,
ECCS 1231461, CNS 1156574, ECCS 1128209, and CNS
1065444.

7. REFERENCES
[1] J. R. Current and D. A. Schilling. The covering

salesman problem. Transportation Science,
23(3):208–213, 1989.

[2] S. Guo, C. Wang, and Y. Yang. Mobile data gathering
with wireless energy replenishment in rechargeable
sensor networks. In Proc. of IEEE INFOCOM 2013,
pages 1932–1940.

[3] S. He, J. Chen, F. Jiang, D. K. Yau, G. Xing, and
Y. Sun. Energy provisioning in wireless rechargeable
sensor networks. In Proc. of IEEE INFOCOM 2011,
pages 2006–2014.

[4] I. Jawhar, M. Ammar, S. Zhang, J. Wu, and
N. Mohamed. Ferry-based linear wireless sensor
networks. In Proc. of IEEE Globecom 2013, accepted
to appear.

[5] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos,
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