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ABSTRACT
Sensing quality evaluation is fundamentally important for
mobile sensor network. However, due to the inherent sensing
uncertainty in mobile sensor networks and the unavailability
of the ground truth, achieving effective and accurate eval-
uation on sensing quality is extremely challenging. In this
paper, we propose a confidence-interval based sensing quality
evaluation method, leveraging the Fisher information and the
asymptotic normality property of maximum likelihood esti-
mation. The simulation results demonstrate our method can
evaluate the sensing quality more reasonably and accurately
than the status quo method. Further, our evaluation asymp-
totically approaches to the ground truth with the stepwise
movements of sensors.

1. INTRODUCTION
Recent years, mobile sensor networks have been widely in-

vestigated, especially in pollution source localization in aquat-
ic environments, so as to adapt to the dynamic diffusion of
pollution sources and reduce the sensing cost[1, 2, 3, 4]. Most
of current methods focus on how to improve the sensing qual-
ity of mobile sensor network, e.g. how to schedule the sensor
movements to improve the localization accuracy[2]. However,
few studies concentrate on evaluating the sensing quality of
mobile sensor network. It is noted that, in this paper, the
sensing quality indicates the source localization accuracy in
the typical application of pollution source localization.

Sensing quality evaluation is greatly important for mobile
sensor network. For example, it could be an effective feed-
back for making efficient moving policies, so as to improve
the sensing quality iteratively[5]. Nevertheless, it is challeng-
ing to evaluate the sensing quality of sensor network for two
reasons. First, as the ground truth values for reference are
unknown in prior, sensing errors turn to be unmeasurable.
Even worse, as the sensors’ measurements are bearing un-
certain noise, it is greatly difficult to evaluate the sensing
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quality. Recently, Wang et al. [5] propose a profiling metric,
intuitively using the sum of reciprocals of the Cramer-Rao
Bound (CRB) [6] to evaluate the sensing quality of mobile
sensor network. Nevertheless, this metric fails to evaluate
the sensing quality accurately, as its evaluation values are
not in the same scale as the ground truth.
To address these problems, in this paper, we propose a

confidence-interval based sensing quality evaluation method
for mobile sensor network. We leverage the asymptotic nor-
mality property of Maximum Likelihood Estimation (MLE)[7]
and the Fisher information [8] to compute the confidence
interval radius of the pollution source, which evaluates the
sensing quality accurately. Also, we conduct simulations to
demonstrate that, ours can evaluate the sensing quality more
accurately and reasonably than the profiling metric[5]. Fur-
ther more, our evaluation is asymptotically approaching to
the ground truth with the sensor movements.

2. SYSTEM MODEL AND PROBLEM FOR-
MULATION

2.1 Pollution Diffusion Model and Sensor Mea-
surement Model

A pollution source diffuses with a constant rate in a 2-
dimension static aquatic environment. Let c(x, y, t) denote
the pollution concentration at the location (x, y) with the
diffusion time t. Hence, according to the Fick’s law[9], the
pollution concentration c(x, y, t) satisfies the following partial
equation:

∂c(x, y, t)

∂t
= λ · ∂

2c(x, y, t)

∂x2
+ λ · ∂

2c(x, y, t)

∂y2
(1)

where λ is a constant diffusion coefficient, related to the
species of the solvent and diffuser.
Let A and (x0, y0) denote the total pollution substance and

the location of the pollution source respectively. According
to Equ.1, we have:

c(x, y, t) =
A

4πλt
exp(−d2(x, y)

4λt
) (2)

where d(x, y) denotes the distance between the measurement
location (x, y) and the source location (x0, y0). This diffusion
model in Equ.2 has been widely used in numbers of approach-
es[9, 2, 3, 4] and validated by the experiments in [2].
The sensor measurements are subjected to noise, due to

their limited sensing capability and the environment noise.
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For simplicity, we assume the measurement noise of each sen-
sor follows an i.i.d. Gaussian distribution. Specifically, let
z(x, y, t) denote the sensor measurement at the location (x, y)
with the diffusion time t. Thus, we have:

z(x, y, t) ∼ N (c(x, y, t) + u, σ2) (3)

where u denotes the bias of the noise experienced by the sen-
sor, and σ2 denotes its variance. These two parameters can
be easily available. For example, they can be specified by the
sensor manufacturer or measured before the real deploymen-
t. The above measurement model has been widely used for
most of chemical sensors[10, 3, 1, 2].

2.2 Sensing Quality Evaluation Problem of Sen-
sor Network

Let N denote the number of sensors in mobile sensor net-
work. Besides the pollution concentration measurement, the
sensor can measure its location, e.g. GPS[1, 5, 4]. Let Z
denote the measurement set of mobile sensor network. Thus,
Z = {(xk, yk, zk), k = 1, . . . N}, where zk and (xk, yk) denote
the concentration measurement as well as its location of the
k-th sensor respectively.

As the pollution source appears unpredictably and abrupt-
ly, the parameters of the pollution source are known, includ-
ing the total pollution substance A, the diffusion time t and
the position (x0, y0). Let Θ denote the unknown parameters,
i.e. Θ = {A, t, x0, y0}. In most of studies[2, 10, 3, 9], the head
uses the MLE method to estimate the unknown parameter-
s of the pollution source, based on the measurement set Z.
According to Equ.2 and 3, we derive the likelihood function
of the sensor measurements as:

L(Z/Θ) = ln
(

N
∏

k=1

fk(z/Θ)
)

(4)

fk(z/Θ) =
1√
2πσ

exp
(z − A

4πλt
· hk)

2

−2σ2
(5)

where fk(z/Θ) denotes the probability density function of the

k-th sensor’s measurement, and hk = exp( d
2(xk,yk)
−4λt

).
Using the MLE method, we can easily get the parameter

estimation Θ̂ of the pollution source, i.e. Θ̂ = {Â, t̂, x̂0, ŷ0}.
However, what is the sensing quality of mobile sensor network
for localizing the pollution source? In other words, what are
the localization errors? In this paper, we focus on studying
how to evaluate the sensing quality of sensor network without
the ground truth localization of the pollution source.
Sensing Quality Evaluation Problem of Sensor Net-

work: Given a pollution source with the unknown parame-
ters Θ, only based on the measurement set Z of the sensor
network, find a metric of sensing quality evaluation, mini-
mizing the distance between this metric and the actual local-
ization error ǫ of the pollution source, i.e. ǫ =‖ (x̂0, ŷ0) −
(x0, y0) ‖2.

3. CONFIDENCE-INTERVAL BASED SENS-
ING QUALITY EVALUATION METHOD

To solve the sensing quality evaluation problem, we pro-
pose a confidence-interval based sensing quality evaluation
method for mobile sensor network. Specifically, we leverage
the confidence interval radius as a metric, evaluating the sens-
ing quality of mobile sensor network. Moreover, we use the
Fisher information and the asymptotic normality property of
MLE to compute the confidence interval radius. In the fol-
lowing, we first derive the fisher information of the sensor

measurements. And then, based upon this fisher informa-
tion, we use the asymptotic normality property of MLE to
derive the confidence interval radius. Finally, based on these
derivation results, we propose the confidence-interval based
sensing quality evaluation algorithm.

3.1 Derivation of Fisher Information
The fisher information is a way of evaluating the amount

of information that the sensor measurements carry about the
parameters of pollution source, on which the probability of
these measurements are dependent[8]. Let I(Θ) denote the
fisher information. As Θ includes four unknown parameters,
I(Θ) is a 4×4 matrix, represented by (J(i, j))|4×4. According
to the definition of Fisher information[8], we have:

J(i, j) = −E(
∂2L(Z,Θ)

∂θi∂θj
) i, j = 1, 2, 3, 4 (6)

where θi(θj) denotes the unknown parameter of the pollution
source, i.e. θi, θj ∈ Θ.
We firstly derive the Fisher information for the measure-

ment of a single sensor. Let Ik(Θ) denote the Fisher informa-
tion for the k-th sensor,(k = 1, 2 . . . N). According to Equ.4
and 5, the likelihood function of the k-th sensor measurement
is:

Lk(Z/Θ) = ln(fk(z/Θ)) = ln(
1√
2πσ

)− (z − Ahk

4πλt
)2

2σ2
(7)

In order to facilitate derivation, we substitute the variable
β for A, where β = A

4πλt
. Then, the unknown parameter

vector Θ includes β, t, x0 and y0, denoted by θ1, θ2, θ3 and θ4
respectively. As the pollution source location only involves
the parameters x0 and y0, this substituting process does not
affect the derivation results.
Ik(Θ) is also a 4× 4 matrix, represented by (Jk(i, j))|4×4.

Substituting Equ.7 into Equ.6, we have:

Jk(i, j) =
1

σ2

(∂(βhk)

∂θi

∂(βhk)

∂θj
+ E(βhk − z)

∂2(βhk)

∂θi∂θj

)

(8)

As E(z) = βhk, E(βhk − z) = 0. Then, we have:

Jk(i, j) =
1

σ2
· ∂(βhk)

∂θi
· ∂(βhk)

∂θj
(9)

According to Equ.5, hk involves three unknown parameter-
s, i.e. t, x0 and y0, while β is independent of them. Thus, we
have:

∂(βhk)

∂θi
=

{

β · ∂hk

∂θi
when θi 6= β

hk when θi = β
(10)

According to Equ.9 and 10, we derive Jk(i, j) as: (k =
1, 2 . . . N)

Jk(i, j) =
1

σ2
· ϑk

i · ϑk
j i, j = 1, 2, 3, 4 (11)

ϑk
i =

{

A
4πλt

· ∂hk

∂θi
i = 2, 3, 4

hk i = 1
(12)

According to the additive property of Fisher information[8],

we have I(Θ) =
N
∑

k=1

Ik(Θ). Thus, according to Equ.11 and

12, we derive J(i, j) as: (i, j = 1, 2, 3, 4)

J(i, j) =

N
∑

k=1

1

σ2
· ϑk

i · ϑk
j i, j = 1, 2, 3, 4 (13)
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Figure 1: Comparison between our metric and the profiling metric, under the benchmark of the ground truth.

3.2 Derivation of Confidence Interval Radius
Maximum likelihood estimation has an asymptotic nor-

mality property, i.e. the distribution of MLE tends to the
Gaussian distribution when the scale of the measurements is
large[7]. Specifically, the distribution of the estimation error
is:

√
N(Θ̂−Θ)

d−−→ N (0, I−1(Θ̂)) (14)

where I−1(Θ) is the inverse of Fisher information I(Θ), which
is computed by Equ.13 in the previous section.

According to Equ.13 and 14, the confidence interval of the
parameter θi (∀θi ∈ Θ) with the confidence probability p is
derived as:

θi ∈
[

θ̂i ± ρp
4
√
N

√

I−1
i,i (Θ̂)

]

, i = 1, 2, 3, 4 (15)

where ρp denotes the standard score of the confidence prob-

ability p. θ̂i denotes the estimation value for the unknown
parameter θi. I

−1
i,i (Θ) denotes the element in the ith row and

ith column of the matrix I−1(Θ).
As the position of the pollution source involves two param-

eters, i.e. x0 and y0, according to Equ.15, the confidence
interval of the source’s position is:

{

(x, y)
∣

∣|x− x̂0| ≤ lx, |y − ŷ0| ≤ ly
}

(16)

where lx =
ρp
4
√

N

√

I−1
3,3(Θ̂), and ly =

ρp
4
√

N

√

I−1
4,4(Θ̂). x̂0 and ŷ0

denote the estimation value of x0 and y0 respectively.
According to Equ.16, the confidence interval of the source’s

position is a rectangle centered at the estimation position of
the source. For ease of sensing quality evaluation, we employ
a disc of this confidence interval defined by Equ.17, as the
confidence interval of the source approximately.

{

(x, y)
∣

∣(x− x̂0)
2 + (y − ŷ0)

2 ≤ γ2
}

(17)

where γ is the confidence interval radius as:

γ =
ρp
4
√
N

√

I−1
3,3(Θ̂) + I−1

4,4(Θ̂) (18)

where ρp is a constant determined by the confidence proba-

bility. I−1
3,3(Θ̂) and I−1

4,4(Θ̂) are the CRB of x0 and y0 respec-
tively.

3.3 Confidence-interval Based Sensing Quality
Evaluation Algorithm

We use the confidence interval radius γ as a metric, eval-
uating the localization error of the pollution source for the
following reasons. The actual location of the pollution source
is within the confidence interval centered at its estimation lo-
cation with a probability. If the probability is very large and
close to 1, the actual location is nearly with this confidence
interval. As a result, the confidence interval radius can accu-
rately evaluate the error between the actual location and the
estimation one of the pollution source. This also conforms
to the following intuition. According to Equ.18, the confi-
dence interval radius is determined by the CRB of x0 and y0,
which approximates the estimation error of x0 and y0 respec-
tively[6]. Thus, it is reasonable to use the confidence interval
radius as the evaluation metric. We will validate the accuracy
of this metric by experiments in the following section.
In summary, based on the above derivations and analy-

sis, we propose the confidence-interval based sensing quality
evaluation algorithm (as Algorithm 1).

Algorithm 1: Confidence-interval Based Sensing Quality
Evaluation Algorithm

Input:

Measurement set of sensors: Z;
Output:

Evaluation value of sensing quality: γ;
1: Given the measurement set of sensors Z, use the MLE

method to compute the parameter estimations Θ̂ of the
pollution source, according to Equ.4 and 5.

2: Given the parameter estimations Θ̂, calculate the Fisher
information matrix I(Θ̂), according to Equ.12 and 13.

3: Given the Fisher information matrix I(Θ̂), calculate the
confidence interval radius γ, according to Equ.18.

4: return the evaluation value of sensing quality γ;

4. EXPERIMENTAL RESULTS

4.1 Simulation Methodology and Settings
Like most of related works[1, 2, 3], we use the following

iterative process of mobile sensor network to localize the pol-
lution source in the aquatic environment. In each iteration,
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Figure 2: Comparison between our metric and the ground
truth when the beginning time of the sensor movements is
1500s.

firstly, all the sensors make measurements, based on which
the head estimates the parameters of the pollution source,
using the MLE method. Note that, in this simulation, we ex-
ploit the Nelder-Mead’s algorithm[11] to solve the nonlinear
optimization of the likelihood function. And then, the sen-
sors move towards to the estimation location of the pollution
source for a constant distance. We evaluate the sensing qual-
ity of mobile sensor network in each iteration. We compare
our evaluation metric with the profiling metric in [5], which is
the most accurate evaluation metric. The compared bench-
mark is the ground truth of the localization error, which is
the error between the actual location of the pollution source
and the estimation one.

The simulation settings are as follows. The parameters of
the pollution source are that, A = 0.7×106cm3, λ = 0.5m2/s.
They are consistent with the real field experiment reports[12].
The standard deviation of the measurement noise for each
sensor σ = 1cm3/m2. 20 sensors are randomly deployed in
a 150m × 150m square region, and the pollution source is
centered at this region, i.e. x0 = y0 = 0. The moving speed
of each sensor ν = 2.5m/min, according to the speed of the
robotic fish[13]. The sensors start moving after the pollution
source diffuses for 1000s. The number of iterations is set to
20. The simulation programs are written in Matlab. All the
simulations are executed for 100 times and we get average
values.

4.2 Performance Evaluation
We make simulations to analyze the accuracy of our evalu-

ation metric (i.e. the confidence interval radius γ), compared
with the profiling metric. As shown in Fig.1(a), our metric
values are in the same scale as the ground truth. The error
between the evaluation value of our metric and the ground
truth is small. The average error is 4.76m. Further more,
the errors gradually decrease with the iterations. Surprising-
ly, after the 15-th iteration, our metric values nearly are the
same as the ground truth. In addition, the evaluation val-
ues of our metric are always below the ground truth. The
reason is that, our metric is derived from the Cramer-Rao
Bound, which is the lower bound of the estimation errors. In
contrast, as shown in Fig.1(b), the profiling metric values on-
ly approximately reflect the changing tendency of the ground
truth. However, this metric cannot evaluate the sensing qual-
ity accurately, as their values are not in the same scale as the
ground truth. Thus, our metric evaluates the sensing quality
more accurately than the profiling metric. Also, we change

the start time of the sensor movements, and analyze the ac-
curacy of our metric again. As shown in Fig.2, similarly,
our metric still evaluates the sensing quality accurately. The
largest error between our metric value and the ground truth
is 4.6m, the average one is 1.5m.

5. CONCLUSION
In this paper, leveraging the asymptotic normality property

of MLE and the Fisher information, we propose a confidence-
interval based sensing quality evaluation method for mobile
sensor network. Simulation results show that, our method
can evaluate the sensing quality of mobile sensor network
more accurately and reasonably than the current best method.
Further, our metric values are gradually close to the ground
truth in pace with the sensor movements.
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